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PREFACE

INTRODUCTION

I am grateful for the enthusiastic reception given to my book Linear and Combinatorial

Programming published in ����� Many readers from all over the world commented that

they liked Chapter �� on the Linear Complementarity Problem �LCP� in this book� but

found it too brief� and suggested that a new up�to�date book devoted exclusively to this

topic� covering all aspects of linear complementarity would be worthwhile� This book is

the result of the encouragement I have received from all these suggestions�

An important class of applications for the LCP stems from the fact that the neces�

sary optimality conditions for a Quadratic Programming Problem �QP� lead to an LCP�

Until recently� a practitioner of mathematical programming could have brushed o	 QP as

an academically interesting generalization of linear programming which is not very use�

ful� But the recent development of recursive quadratic programming methods for solving

Nonlinear Programming Problems �NLP� has changed all that� These methods solve an

NLP through a sequence of quadratic approximations� and have become extremely popu�

lar� They have suddenly made QP and thereby LCP an important topic in mathematical

programming with a large number of practical applications� Because of this� the study of

LCP is attracting a great deal of attention both in academic curricula and in the training

of practitioners�

THE OBJECTIVES

�� To provide an in�depth and clear treatment of all the important practical� technical�

computational� geometric� and mathematical aspects of the LCP� QP� and their various

applications�


� To discuss clearly the various algorithms for solving the LCP� to present their e�cient

implementation for the Computer� and to discuss their computational complexity�

�� To present the practical applications of these algorithms and extensions of these al�

gorithms to solve general nonlinear programming problems�

� To survey new methods for solving linear programs� proposed subsequently to the

publication of �
�
���

BACKGROUND NEEDED

The background required to study this book is some familiarity with matrix algebra and

linear programming �LP�� The basics of LP are reviewed in Chapters � and 
�
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SUMMARY OF CHAPTER CONTENTS

The book begins with a section titled �notation� in which all the symbols and several terms

are de�ned� It is strongly recommended that the reader peruse this section �rst at initial

reading� and refer to it whenever there is a question about the meaning of some symbol or

term�

Chapter � presents a clear geometric interpretation of the LCP through the de�nition

of the system of complementary cones as a generalization of the set of orthants in Rn�

Applications to LP� QP� and nonzero sum game problems are discussed� There is a complete

discussion of positive de�niteness and positive semide�niteness of square matrices� their

relationship to convexity� together with e�cient pivotal methods for checking whether

these properties hold for a given matrix� Various applications of QP are discussed� as well

as the recursive quadratic programming method for solving NLP models�

Chapter 
 presents a complete discussion of the many variants of the complemen�

tary pivot method and proofs of its convergence on di	erent classes of LCPs� Section


�� contains a very complete� lucid� but elementary treatment of the extensions of the

complementary pivot method to simplicial methods for computing �xed points using tri�

angulations of Rn� and various applications of these methods to solve a variety of general

NLP models and nonlinear complementarity problems�

Chapter � covers most of the theoretical properties of the LCP� There is extensive

treatment of the various separation properties in the class of complementary cones� and

a complete discussion of principal pivot transforms of matrices� In this chapter we also

discuss the various classes of matrices that arise in the study of the LCP� Chapter 

provides a survey of various principal pivoting methods for solving the LCP� Algorithms

for parametric LCP are presented in Chapter ��

Chapter � contains results on the worst case computational complexity of the com�

plementary and the principal pivoting methods for the LCP� Chapter � presents a special

algorithm for the LCP associated with positive de�nite symmetric matrices� based on or�

thogonal projections� which turned out to be very e�cient in computational tests� Chapter

� presents the polynomially bounded ellipsoid methods for solving LCPs associated with

positive semide�nite matrices� or equivalently convex QPs�

Chapter � presents various iterative methods for LCPs� In Chapter �� we present

an extensive survey of various descent methods for unconstrained and linearly constrained

minimization problems� these techniques provide alternative methods for solving quadratic

programming problems� In Chapter �� we discuss some of the newer algorithms proposed

for solving linear programming problems and their possible extensions to solve LCPs� and

we discuss several unsolved research problems in linear complementarity�

To make the book self�contained� in the appendix we provide a complete treatment

of theorems of alternatives for linear systems� properties of convex functions and convex

sets� and various optimality conditions for nonlinear programming problems�
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EXERCISES

Each chapter contains a wealth of various types of exercises� References are provided

for theoretical exercises constructed from published literature� A new sequence of exercise

numbers begins with each chapter �e�g� Exercise ��
 refers to Exercise number 
 of Chapter

���

HOW TO USE THE BOOK IN A COURSE

This book is ideally suited for �rst year graduate level courses in Mathematical Program�

ming� For teaching a course in nonlinear programming� the best order for presenting the

material may be the following� Section ���� �formulation example�� ���
 �types of solutions

in NLP�� ���� �types of nonlinear programs and what can and cannot be done e�ciently by

existing methods�� ��� �can we at least compute a local minimum e�ciently�� ���� �pre�

cision in computation�� ���� �rates of convergence�� Appendix �theorems of alternatives

for linear systems of constraints� convex sets and separating hyperplane theorems� convex�

concave functions and their properties� optimality conditions�� Chapters � to � in serial

order� remaining portions of Chapter ��� and some supplemental material on algorithms

for solving nonlinearly constrained problems like the GRG� penalty and barrier methods�

and augmented Lagrangian methods� For teaching a course in linear complementarity us�

ing the book� it is best to cover the Appendix �rst� and then go through Chapters � to ��

in serial order�

The material contained in Chapters �
� �� ��� �� of �
�
�� can be combined with that

in Appendices �� 
� Chapter � and Section ��� of this book to teach an advanced course

in linear programming�

Since the book is so complete and comprehensive� it should prove very useful for

researchers in LCP� and practitioners using LCP and nonlinear programming in applied

work�
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Notation xv

NOTATION

SuperscriptT Denotes transposition� AT is the transpose of the

matrix A� If x is a column vector� xT is the same

vector written as a row vector and vice versa� Col�

umn vectors are printed as transposes of row vec�

tors to conserve space in the text�

w� z w � �w�� � � � � wn�
T � z � �z�� � � � � zn�

T are the col�

umn vectors of variables in a linear complementar�

ity problem of order n�

�q�M� A linear complementarity problem in wich the data

is the column vector q � �q�� � � � � qn�
T � and square

matrix M � �mij� of order n�

Rn Real Euclidean n�dimensional vector space� It is

the set of all ordered vectors �x�� � � � � xn�� where

each xj is a real number� with the usual operations

of addition and scalar multiplication de�ned on it�

� Approximately equal to�

�� � � tends to zero�

�� �� � tends to zero through positive values�

J� K� H� E� Z� U� P� A

���� I� ���� S� W� D

These bold face letters usually denote sets that are

de�ned in that section or chapter�

P
Summation sign�

P
�aj � j � J� Sum of terms aj over j contained in the set J�

�
�� �� � Given two vectors x � �xj�� y � �yj� in R

n� x �
� y

means that xj �� yj � that is� xj�yj is nonnegative�

for all j� x � y means that x �� y but x �� y� that is�

xj � yj is nonnegative for all j and strictly positive

for at least one j� x � y means that xj � yj � ��

strictly positive� for all j� The vector x is said to

be nonnegative if x �
� �� semipositive if x � �� and

positive if x � ��

Ai� The ith row vector of the matrix A�



xvi Notation

A�j The jth column vector of the matrix A�

Superscripts We use superscripts to enumerate vectors or ma�

trices or elements in any set� When considering

a set of vectors� in Rn� xr may used to denote

the rth vector in the set� and it will be the vector

�xr�� � � � � x
r
n�

T � In a similar manner� while consider�

ing a sequence of matrices� the symbol P r may be

used to denote the rth matrix in the sequence� Su�

perscripts should not be confused with exponents

and these are distinguished by di	erent type styles�

Exponents In the symbol �r� r is the exponent� �r � �� �� � � �

��� where there are r ��s in this product� Notice the

di	erence in type style between superscripts and

exponents�

log�x De�ned only for positive numbers x� It is the log�

arithm of the positive real number x� with 
 as the

base �or radix��

jjxjj Euclidean norm of a vector x � Rn� If x � �x�� � � � �

xn�� jjxjj � �
p
x�� � � � �� x�n�

d�e De�ned only for real numbers �� It represents the

smallest integer that is greater than or equal to ��

and is often called the ceiling of �� For example

d���e � �� d��e � ��

b�c De�ned only for real numbers �� It represents the

larg�

est integer less than or equal to �� and is often

called the �oor of �� For example b���c � ���

b��c � �

� In�nity�

� Set inclusion symbol� If F is a set� �F� � F� means

that �F� is an element of F�� Also �F� �� F� means

that �F� is not an element of F��

	 Subset symbol� If E� ��� are two sets� �E 	 ����

means that �E is a subset of ����� or that �every

element in E is also an element of �����



Notation xvii


 Set union symbol� If D� H are two sets� D 
H is

the set of all elements that are either in D or in H

or in both D and H�

� Set intersection symbol� If D and H are two sets�

D�H is the set of all elements that are in both D

and H�

� The empty set� The set containing no elements�

n Set di	erence symbol� If D and H are two sets�

D nH is the set of all elements of D that are not

in H�

f g Set brackets� The notation fx � some propertyg

represents the set of all elements x� satisfying the

property mentioned after the ����

jFj If F is a set� this symbol denotes its cardinality�

that is� the number of distinct elements in the set

F�

e The base of the natural logarithms� e� � �
�P
n��

�
n� �

if is approximately equal to 
���

e� er The symbol e denotes a column vector� all of whose

entries are equal to �� Its dimension is usually un�

derstood from the context� When we want to spec�

ify the dimension� er denotes the column vector in

Rr� all of whose entries are equal to ��

I� Ir The symbol I denotes the unit matrix� its order

understood from the context� When we want to

specify the order� Ir denotes the unit matrix of or�

der r�

j�j Absolut value of the real number ��

This symbol indicates the end of a proof�

y� If y � �yj� � R
n� let y�j � Maximum f�� yjg� j � �

to n� Then y� � �y�j ��



xviii Notation

 Lexicographically greater than� Given two vectors

x � �xj�� y � �yj� in R
n� x  y means that for the

smallest j for which xj�yj �� �� we have xj�yj � ��

PosfA�� � � � � Akg If A�� � � � � Ak are vectors in Rn then PosfA�� � � � �

Akg � fy � y � ��A��� � ���kAk� �� �� �� � � �� �k ��
�g� It is the cone in Rn which is the nonnegative

hull of the set of vectors fA�� � � � � Akg�

Pos�A� If A is a matrix� Pos�A� � fx � x � Ay for some

y �� �g� It is the cone which is the nonnegative hull

of the column vectors of the matrix A�

n� n factorial� De�ned only for nonnegative integers�

�� � �� And n� is the product of all the positive

integers from � to n� whenever n is a positive inte�

ger��
n
r

�
De�ned only for positive integers n �

� r� It is the

number of distinct subsets of r objects from a set

of n distinct objects� It is equal to n�
r��n�r�� �

hv�� � � � � vri When v�� � � � � vr are all column vectors from the

space Rn� say� and satisfy the property that the

set of column vectors

���� �
v�

��� � � � � �

��� �
vr

���� is

linearly independent� then v�� � � � � vr are the ver�

tices of an �r � ���dimensional simplex� which is

their convex hull� this simplex is denoted by the

symbol hv�� � � � � vri� See Section 
�����

C�M� The class of 
n complementary cones associated

with the square matrix M of order n�

K�M� The union of all complementary cones in C�M�� It

is the set of all vectors q for which the LCP �q�M�

has at least one solution�

Z�y�� W�y� If y � �y�� � � � � yn�
T is a complementary vector for

the LCP �q�M� of order n� then Z�y� � fj � yj �

zjg and W�y� � fj � yj � wjg� See Section ����



Notation xix

Miminumf g The minimum number among the set of numbers

appearing inside the set brackets� Maximumf g

has a similar meaning� If the set is empty we will

adopt the convention that the minimum in it is ��

and the maximum in it is ���

In�mum minimum�

Supremum maximum

Let ��� be a subset of Rn and let f�x� be a real

valued function de�ned on ���� The in�mum for

f�x� on ��� is de�ned to be the largest number �

satisfying� f�x� �
� � for all x � ���� If �� is the

in�mum for f�x� on ���� and there exists an �x �

��� satisfying f��x� � ��� then �� is said to be the

minimum value of f�x� on ��� and �x is the point

which attains it� As an example let ��� 	 R� be the

open interval � � x � �� and let f�x� � x� The

in�mum of f�x� on ��� in this example is �� it is not

a minimum since � �� ���� and there exists no point

x in ��� where f�x� � �� As another example let

��� 	 R� be the unbounded set � �� x � � and let

f�x� � �
x
� In this example� the in�mum of f�x�

on ��� is �� and again this is not a minimum� In the

same manner� the supremum in ��� of a real valued

function f�x� de�ned on ��� 	 Rn� is the smallest

number � satisfying� f�x� �� � for all x � ���� If ��
is the supremum of f�x� on ���� and there exists an

 x � ��� satisfying f� x� � ��� then �� is said to be

the maximum value of f�x� on ���� and  x is the

point which attains it�



xx Notation

Local minimum

global minimum

Consider an optimization problem in which an ob�

jective function ��x�� which is a real valued function

de�ned over Rn� is required to be minimized� sub�

ject to possibly some constraints on the decision

variables x� Let K 	 Rn denote the set of feasible

solutions for this problem� A point  x � K is said

to be a global minimum for this problem if there

exists no x � K satisfying ��x� � �� x�� A point

�x � K is said to be a local minimum for this prob�

lem if there exists an 	 � � such that the following

system has no feasible solution

x � K

��x� � ���x�

jjx� �xjj � 	

that is� �x is a local minimum for this problem i	 �x is

a global minimum for ��x� over K�fx � jjx� �xjj �

	g� See Section ���
�

Cardinality De�ned only for sets� The cardinality of a set is

the number of distinct elements in it�

Principal Submatrix FJJ
of square matrix F

Let F � �fij� be a given square matrix of order

n� Let J 	 f�� � � � � ng� The principal subma�

trix of F determined by the subset J is the matrix

FJJ � �fij � i � J� j � J�� See Section ������ The

determinant of FJJ is known as the principal sub�

determinant of F corresponding to the subset J�

BFGS updating formula The Broyden�Fletcher�Goldfarb�Shanno formula for

updating a positive de�nite symmetric approxima�

tion to the Hessian �or its inverse� of a twice con�

tinuously real valued function ��x� de�ned on Rn�

as the algorithm moves from one point to next� See

Sections ����� and �������

LCP Linear complementarity problem�

NLCP Nonlinear complementarity problem�

LP Linear program�

BFS Basic feasible solution�
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NLP Nonlinear program�

PD Positive de�nite� A square matrix M of order n is

said to be PD if yTMy � � for all y � Rn� y �� ��

PSD Positive semide�nite� A square matrix M of order

n is said to be PSD if yTMy �� � for all y � Rn�

ND Negative de�nite� A square matrix of order n is

said to be ND if yTMy � � for all y � Rn� y �� ��

NSD Negative semide�nite� A square matrix of order n

is said to be NSD if yTMy �� � for all y � Rn�

PPT Principal pivot transform� See Section ��
�

�i�j� This refer to the jth equation in the ith chapter�

Equations are numbered serially in each chapter�

Section i�j� i�j�k The sections are numbered serially in each chapter�

�i�j� refers to section j in Chapter i� �i�j�k� refers

to subsection k in section i�j�

Figure i�j The jth �gure in Chapter i� The �gures are num�

bered serially in this manner in each chapter�

Reference �i�j� The jth reference in the list of references given at

the end of the Chapter i� References given at the

end of each chapter are numbered serially�

Exercise i�j The jth exercise in Chapter i� Exercises are num�

bered serially in each chapter�

Figure i Exercise i

Theorem i Reference i

Example i

In the appendices� �gures� examples� exercises� the�

orems� references� etc� are numbered serially using

a single number for each� So any �gure� example�

exercise� theorem or reference with a single number

like this must be in the appendix�
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Linear Function

a�ne function

The real valued function f�x� de�ned over x � Rn

is called a linear function if f�x� � c�x� � � � ��

cnxn where c�� � � � � cn are constants� it satis�es the

property� f��x� � 
x�� � �f�x�� � 
f�x�� for all

x�� x� � Rn and for all real numbers �� 
� The real

valued function g�x� de�ned over x � Rn is said to

be an a�ne function if g�x� � �� � ��x� � � � ��

�nxn where ��� ��� � � � � �n are constants� it satis�es

the property� g��x� � 
x�� � �g�x�� � 
g�x�� for

all x�� x� � Rn and for all real numbers �� 
 satis�

fying �� 
 � �� Every a�ne function de�ned over

Rn in a linear function plus a constant�

Basis basic vector

basic solution

basic feasible solution

See Section 
���

Bounded set A subset S 	 Rn is bounded if there exists a �nite

real number � such that jjxjj �� �� for all x � S�

Proper subset If E is a subset of a set ���� E is said to be a proper

subset of ��� if E �� ���� that is� if ��� nE �� ��

Feasible solution A numerical vector that satis�es all the constraints

and restrictions in the problem�

Optimum solution or

Optimum feasible

solution

A feasible solution that optimizes �i� e�� either max�

imizes or minimizes as required� the objective value

among all feasible solutions�

Algorithm The word from the last name of the Persian scholar

Abu Ja�far Mohammed ibn M us a alkhow arizm !

whose textbook on arithmetic �about A�D� �
��

had a signi�cant in"uence on the development of

these methods� An algorithm is a set of rules for

getting a required output from a speci�c input� in

which each step is so precisely de�ned that it can

be translated into computer language and executed

by machine�
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Size The size of an optimization problem is a parameter

that measures how large the problem is� Usually

it is the number of digits in the data in the op�

timization problem� when it is encoded in binary

form�

O�nr� A �nitely terminating algorithm for solving an opti�

mization problem is said to be of order nr or O�nr��

if the computational e	ort required by the algo�

rithm in the worst case� to solve a version of the

problem of size n� grows as �nr� where �� r are

numbers that are independent of the size n and

the data in the problem�

Polynomially bounded

algorithm

An algorithm is said to be polynomially bounded

if it can be proved that the computational e	fort

required by it is bounded above by a �xed polyno�

mially in the size of the problem�

The class P of problems This is the class of all problems for solving which

there exists a polynomially bounded algorithm�



xxiv Notation

NP�complete class

of problems

A decision problem is one for which the answer is

�yes� or �no�� For example� given an integer square

matrix D of Rn� the problem �is there an x � Rn

satisfying xTDx � �#� is a decision problem� Also�

given a square matrix M of order n and a column

vector q � Rn� the problem �does the LCP �q�M�

have a solution#� is a decision problem� Often�

optimization problems can be handled by study�

ing decision problem versions of them� For exam�

ple� consider the problem of minimizing ��x� over

x � K� where K represents the set of feasible solu�

tions of this problem� The decision problem version

of this optimization problem is �is there an x � K

satisfying ��x� �� �#� where � is a speci�ed real

number� Clearly� by examining this decision prob�

lem with varying values of �� we can narrow down

the solution of the optimization problem�

The NP�complete class is a class of decision prob�

lems in discrete optimization� satisfying the prop�

erty that if a polynomially bound algorithm exists

for any one problem in the classs� then polynomi�

ally bounded algorithms exist for every problem in

the class� So far no polynomially bounded algo�

rithm is known for any problem in theNP�complete

class� and it is believed that all these problems

are hard problems �in the worst case� the compu�

tational e	ort required for solving an instance of

any problem in the class by any known algorithm�

grows asymptotically� faster than any polynomial

in the size of the problem�� See reference ����
� for

a complete discussion of NP�completeness�

Necessary conditions

su�cient conditions

necessary and su�cient

conditions

When studying a property of a system� a condi�

tion is said to be a necessary condition for that

property if that condition is satis�ed whenever the

property holds� A condition is said to be a su��

cient condition for the property if the property

holds whenever the condition is satis�ed� A neces�

sary and su�cient condition for the property

is a condition that is both necessary condition and

a su�cient condition for that property�
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Active or tight

constraint

An inequality constraint gp�x� �
� � is said to be

active or tight� at a point �x satisfying it� if gp��x� �

�� The equality constraint hi�x� � � is always an

active constraint at any point �x satifying it�

Infeasible system A system of constraints in the variables x � �xj�

is said to be infeasible� if there exists no vector x

satisfying all the constraints�

Complementary pair A pair of variables in an LCP� at least one of which

is required to be zero� Each variable in a comple�

mentary pair is said to be the complement of the

other� A pair of column vectors corresponding to

a complementary pair of variables in an LCP is a

complementary pair of column vectors� Each col�

umn vector in a complementary pair is the comple�

ment of the other� In an LCP of order n� there are

n complementary pairs� numbered � to n�

Complementary set

of vectors

A vector of n variables in an LCP of order n is

a complementary vector if the jth variable in the

vector is from the jth complementary pair of vari�

ables� for each j� A complementary set of column

vectors is an ordered set in which the jth vector is

from the jth complementary pair for each j�

Complementary matrix In an LCP of order n� this is a square matrix of

order n whose jth column vector is from the jth

complementary pair� for each j�

Complementary cone In an LCP of order n� this is Pos�A� where A is a

complementary matrix of this problem�

Complemetary basis It is a complementary matrix which is nonsingular�

Complementary basic

vector

It is a complementary vector of variables associated

with a complementary basis�

Complementary feasible

basis

It is a complementary basis which is a feasible basis

for the problem�
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Complementary feasible

basic vector

It is a complementary basic vector which is feasible

to the problem�

�z leads to a solution

of the LCP �q�M�

We say that the vector �z leads to a solution of the

LCP �q�M� if �w � M �z � q� �z� is a solution of the

LCP �q�M��

To process an LCP When an algorithm for solving LCPs is applied on

an LCP� it may either obtain a solution of the LCP�

or terminate without obtaining a solution� It is pos�

sible that some algorithms may terminate without

a solution even though the LCP may have a so�

lution� An algorithm for solving LCPs is said to

process a speci�ed class of LCPs if� when the

algorithm is applied on any LCP from this class

and it terminates without obtaining a solution� we

can prove that the LCP in fact has no solution�

In other words� an algorithm is said to process a

class of LCPs i	 for every LCP in this class� the al�

gorithm either produces a solution or conclusively

establishes that the LCP cannot have a solution�

Secondary ray

or terminal ray

This is the half�line or ray obtained at the end of

executing the complementary pivot algorithm on

an LCP� if the algorithm terminates in ray termi�

nation� This secondary ray� if it is obtained� is dis�

tinct from the initial ray with which the algorithm

is initiated� See Section 
�
���

Subcomplementary set

vector

It is a complementary set or vector with one ele�

ment missing�

Almost complementary

vector

It is a vector that is complementary except for one

violation which is set up appropriately� See Sec�

tions 
�
�� 
��

Copositive matrix A square matrix M of order n is said to be copos�

itive if yTMy �� � for all y �� � in Rn�

Strictly copositive

matrix

A square matrix M of order n is said to be strictly

copositive if yTMy � � for all y � � in Rn�
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Copositive plus matrix A square matrix M of order n is said to be copos�

itive plus if it is copositive� and for y �� � in Rn if

yTMy � � then �M �MT �y � ��

P��matrix A square matrix is a P��matrix if all its principal

subdeterminants are �� ��

P �matrix A square matrix is said to be a P �matrix if all its

principal subdeterminants are strictly positive�

Q�matrix A square matrix M of order n is said to be a Q�

matrix if the LCP �q�M� has a solution for all q �

Rn�

Z�matrix A square matrix M � �mij� is a Z�matrix if mij ��
� for all i �� j�

Q��matrix The square matrix M is said to be a Q��matrix if

K�M� is a convex cone�

�Q�matrix or

Completely Q�matrix

A square matrix M such that M and all its princi�

pal submatrices are Q�matrices�

�Q��matrix or

Completely Q��matrix

A square matrix M such that M and all its princi�

pal submatrices are Q��matrices�
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Faces Facets Let K 	 Rn be a convex polyhedron� H � fx �

ax � a�g where a �� � is a given row vector in

Rn� H is a hyperplane in Rn� H is said to have

K on one of its sides if either ax �
� a� for all x �

K� or ax �
� a� for all x � K� If H has K on

one of its sides and H � K �� �� H is said to be

a supporting hyperplane for K� A face of K

is either the empty set �� or the set K itself� or

H � K for some supporting hyperplane H for K�

See reference �
�
��� For example� extreme points

of K are its faces of dimension zero� Edges of K

are its faces of dimension �� etc�

A face of K is said to be a facet if its dimension is

one less than the dimension of K�

For some special convex polyhedra� simplicial cones

or simplexes� it is possible to characterize all faces

easily� If fB��� � � � � B�ng is a linearly independent

set of column vectors in Rn� then� for the simpli�

cial cone PosfB��� � � � � B�ng� the cone PosfB��� � � � �

B�j��� B�j��� � � � � B�ng is a facet for any j� and the

cone PosfB�j � j � Jg is a face for any subset

J 	 f�� � � � � ng �this face is de�ned to be f�g� if

J � ��� If fv�� � � � � vng are the set of vertices of an

n�dimensonal simplex inRn� the convex hull of fv��

� � � � vj��� vj��� � � � � vng is a facet of this simplex for

all j� and the convex hull of fvj � j � Jg is a face

of this simplex for all subsets J 	 f�� � � � � ng �this

face is de�ned to be the empty set if J � ���

Principally degenerate

principally

nondegenerate matrices

A square matrix A is said to be principally non�

degenerate if all its principal subdeterminantes

are nonzero� principally degenerate if at least

one of its principal subdeterminantes has value zero�

In this book we are usually concerned only with

principal degeneracy or nondegeneracy of square

matrices� and hence we usually omit the adjective

�principally� and refer to the matrices as being de�

generate or nondegenerate�

Degenerate or

nondegenerate

complementary cone

A complementary cone is nondegenerate if its inte�

rior is nonempty� degenerate otherwise�
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Strongly degenerate

or weakly degenerate

complementary cone

A degenerate complementary cone Pos�A��� � � � �

A�n� is said to be strongly degenerate if there

exists ���� � � � � �n� � � such that � � ��A��� � � ��

�nA�n� that is� if the zero vector can be expressed

as a semipositive linear combination of the com�

plementary set of column vectors fA��� � � � � A�ng�

weakly degenerate otherwise�

Degenerate or

nondegenerate

basic solutions vectors

systems of linear

equations

Consider the system of linear constraints �Ax � b�

where A is a matrix of order m�n and rank m� A

basic solution �x for this system is said to be non�

degenerate if the number of nonzero variables in

�x is m� degenerate if this number is � m� The

right hand side constants vector b in the system

is said to be degenerate if the system has at least

one degenerate basic solution� b is said to be non�

degenerate if the system has no degenerate basic

solution� Thus b is degenerate in the system if it

can expressed as a linar combination of m � � or

less column vectors of A� nondegenerate otherwise�

The system of constraints is itself said to be degen�

erate or nondegenerate depending on whether b is

degenerate or nondegenerate�

Lipschitz continuous Let f�x� be a continuous real valued function de�

�ned onK 	 Rn� It is said to be Lipschitz continu�

ous �or Lipschitzian� on K if there exists a nonneg�

ative number � such that jf�x�� f�y�j �� �jjx� yjj

for all x� y � K� The number � is known as the

Lipschitz constant for this function�

Principal subproblem Consider the LCP �q�M� with variables �w�� � � � �

wn�
T � �z�� � � � � zn�

T � Let J 	 f�� � � � � ng� J �� ��

Let qJ � �qi � i � J�T � MJJ � �mij � i � J�

j � J�� The LCP �qJ�MJJ� in variables wJ� zJ
is called the principal subproblem of the LCP

�q�M� corresponding to the subset J�

Simplex See Section 
���

r���x� The row vector of partial derivatives
����x�

�x�
� � � � �

���x�
�xn

�
� gradient vector� evaluated at x � �x�
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�f�x� The subdi	erential set of the function f�x� at the

point x� See Appendix � and Section 
�����

Di�erentiable function A real valued function ��x� de�ned on an open sub�

set ��� 	 Rn is said to be di�erentiable at a point

�x � ���� if all the partial derivatives ���	x�
�xj

� j � � to

n exist� and for any y � Rn� ����x � �y� � ���x� �

�r���x�y��� tends to zero as � tends to zero� If it

is di	erentiable at every point �x � ���� it is said to

be di	erentiable in ����

Continuously

di�erentiable function

A real�valued function ��x� de�ned on an open sub�

set ��� � Rn is said to be continuously di�eren�

tiable at a point �x � ��� if it is di	erentiable at ���

and r��x� is contiuous at �x� If it is continuously

di	erentiable at every point �x � ���� it is said to be

continuoulsy di	erentiable in ����

H����x�� The Hessian matrix of ��x� at �x� It is the square

matrix of second partial derivatives
� ����x�
�xi�xj

�
eval�

uated at �x�

Twice di�erentiable

function

A real valued function ��x� de�ned over an open set

��� � Rn is said to be twice di�erentiable at �x � ���

if r���x� and H����x�� exist� and for all y � Rn�

����x��y�����x����r���x��y� ��

� y
TH����x��y����

tends to zero as � tends to zero� ��x� is said to be

twice di	erentiable in ��� if it is twice di	erentiable

at every point in ����

Twice continuously

di�erentiable function

A real valued function ��x� de�ned over an open set

��� � Rn is said to be twice continuously di�er�

entiable at �x � ��� if it is twice di	erentiable at �x

and H���x�� is continuous at �x� It is twice contin�

uously di	erentiable in ��� if it is twice continuously

di	erentiable at every point in ����
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Smooth function Mathematically� a real valued function de�ned on

Rn is said to be a smooth function if it has deriva�

tives of all orders� Many of the algorithms dis�

cussed in this book use only derivatives of the �rst

or at most second orders� So� for our purpose� we

will consider a smooth function to be one which is

continuously di	erentiable� or twice continuously

di	erentiable if the method under consideration

uses second order derivatives�

Optimization problems

in minimization form

Whenever a function f�x� has to be maximized

subject to some conditions� we can look at the

equivalent problem of minimizing �f�x� subject to

the same conditions� Both problems have the same

set of optimum solutions and the maximum value

of f�x� � �minimum value of ��f�x��� Because of

this� we discuss only minimization problems�

rh�x� when

h�x� � �h��x�� � � � � hm�x��T
Let h�x� denote the column vector of m di	eren�

tiable functions hi�x�� i � � to m� de�ned over Rn�

Then rh�x� �
��hi�x�

�xj
� i � � to m� j � � to n

�
is the Jacobian matrix in which the ith row vec�

tor is the gradient vector of hi�x� written as a row

vector�

Nonlinear programming

problem

This refers to an optimization problem of the fol�

lowing general form �

minimize ��x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t

where all the functions ��x�� hi�x�� gp�x� are real

valued continuous functions of x � �x�� � � � � xn�
T �

Rn� The problem is said to be a smooth non�

linear program if all the functions are in fact

continuously di	erentiable functions� In this book

we only consider smooth nonlinear programs� See

Chapter ���
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Quadratic forms in

matrix notations

Consider the quadratic form in n variables x �

�x�� � � � � xn�
T � f�x� �

nP
i��

giix
�
i�

nP
i��

nP
j�i��

gijxixj �

An example for n � � is h�x� � ��x�� � �x�� �

�x�x�� �x�x
���x�x
� Let F � �fij� be a square

matrix of order n satisfying

fii � gii� i � � to n

fij � fji � gij� for i �� j and j � i�

Then it can be veri�ed that f�x� � xTFx� In par�

ticular� if we de�ne the symmetric matrixD � �dij�

of order n� where

dii � gii� i � � to n

dij � dji �
�



gij � for i �� j and j � i

then f�x� � xTDx� For the quadratic form h�x�

in � variables� x � �x�� x�� x
�
T � given above� the

matrix D turns out to be

D �

������� �� �
� ��

�
� �� �

�� � �

�������
and h�x� � xTDx�
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Quadratic programming

problem�

convex or nonconvex

quadratic programs

An optimization problem in which a quadratic func�

tion of x � �x�� � � � � xn�
T � Rn is to be optimized

subject to linear constraints on the variables� is

called a quadratic programming problem� Its gen�

eral form is�

minimize Q�x� � cx� �
�
xTDx

subject to Ax �� b

Ex � d

where D is a square symmetric matrix of order n�

The inequality constraints here include any non�

negativity restrictions or the lower or upper bound

restrictions on the variables�

This problem is called a convex quadratic pro�

gram if D is a PSD matrix �in this case the objec�

tive function to be minimized� Q�x�� is convex�� a

nonconvex quadratic program otherwise�

QP Quadratic Programming Problem�

Complemetary basis It is a complementary matrix which is nonsingular�

rx�f�x� ��� Hx�f�x� �� These are respectively the row vector of the partial

deri�vates� and the square matrix of the second or�

der partial derivates� of the function f�x� �� with

respect to the variables in the vector x� at �x� ��
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Karush�Kuhn�Tucker

�or KKT� necessary

optimality conditions

Let ��x�� hi�x�� gp�x�� be real valued continuously

di	erentiable functions de�ned on Rn for all i� p�

Consider the following mathematical program�

minimize ��x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t

The Karush�Kuhn�Tucker �KKT� Lagrangian for

this problem is� L�x� � �� � ��x� �
Pm

i�� ihi�x�

�
Pt

p�� �pgp�x� where i� �p are the Lagrange

multipliers associated with the constraints� The

Karush�Kuhn�Tucker �KKT� necessary optimality

condition for this problem are �

�

�x
L�x� � �� � r��x��

mX
i��

irhi�x��

�
tX

p��

�prgp�x� � �

hi�x� � �� i � � to m

gp�x� �� �� p � � to t

�p �� �� p � � to t

�pgp�x� � �� p � � to t

where r��x� etc� are the vectors of partial deriva�

tives� If �x is a local minimum for this problem� un�

der fairly general conditions �see Appendix � it can

be shown that there exist multiplier vectors �� ��

such that �x� �� �� together satisfy these KKT condi�

tions� In the literature these conditions are usually

called �rst�order necessary optimality condi�

tions or Kuhn�Tucker conditions� But it has been

found recently that Karush was the �rst to discuss

them� Hence� nowadays� the name Karush�Kuhn�

Tucker necessary optimality conditions is coming

into Vogue�

A feasible solution �x satisfying the property that

there exist Lagrange multiplier vectors ��� � such

that �x� �� �� together satisfy the KKT conditions�

is called a KKT point for the problem�
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Stationary point

for an NLP

Given an NLP� a stationary point for it usually

refers to any feasible solution satisfying a neces�

sary optimality condition for it� Every optimum

solution is a stationary point� but� in general� there

may be stationary points which are not even locally

optimal to the problem�

Direction half�line Any point y � Rn� y �� � de�nes a direction in

Rn� Given �x � Rn� points �x � �y� � �
� � are

obtained when you move from �x in the direction y�

The set of all these points fx � x � �x� �y� � �
� �g

is the half�line or ray through �x in the direction

of y� See Section ������

Step length Given �x � Rn� y � Rn� y �� �� for � � �� the point

�x��y is obtained by taking a step of length � from

�x in the direction of y� In this process � is the step

length�

Feasible direction Given a set ��� 	 Rn� and a point �x � ���� the direc�

tion y � Rn� y �� �� is called a feasible direction

at �x for ��� if there exists a positive number �� such

that �x� �y � ��� for all � �� � �
� ��� Thus the direc�

tion y is a feasible direction at �x for ��� i	 an initial

segment of positive length on the half�line through

�x in the direction y is contained in ����

Given an optimization problem� and a feasible solu�

tion x for it� the direction y �in the x�space� is said

to be a feasible direction at x for this optimization

problem if there exists an � � � such that x��y is

a feasible solution to the problem for all � �� � �
� ��

Descent direction Let ��x� be a real valued function de�ned over x �

Rn� The direction y � Rn� y �� �� is said to be a

descent direction for ��x� at �x if ���x��y� � ���x�

whenever � is positive and su�ciently small� So by

moving from �x a small but positive step length in

a descent direction� ��x� is guaranteed to strictly

decrease in value�

A descent direction for a minimization problem at

a feasible solution x� is a feasible direction for the

problem at x� which is a descent direction at x for

the objective function being minimized�



xxxvi Notation

Line search problem

line search method

Let ��x� be a real valued function de�ned on Rn�

Let �x � Rn be a given point and y � Rn� y �� �

a given direction� The problem of minimizing

���x � �y� over a �
� � �

� b where a� b are given

bounds on �� is called a line search problem or

a line minimization problem� and any method

for solving such a problem is called a line search

method� Since �x� y are given� ���x� �y� is purely

a function of the single variable �� if we denote

���x � �y� � f���� the line search problem is the

one dimensional minimization problem of �nding

the minimum of f��� over a �
� � �

� b� Typi�

cally� in most line search problems encountered in

applications� we will have a � � and b is either

a �nite positive number� or ��� When b is ��

nite� the problem is often called a constrained

line search problem� Several line search meth�

ods are discussed in Section ����� Many nonlinear

programming algorithms use line search methods

repeatedly in combination with special subroutines

for generating feasible descent directions�

Hereditary symmetry

hereditary PD

Many algorithms for nonlinear programming �for

example those discussed in Section ����� or Chapter

��� are iterative methods which maintain a square

matrix B of order n and update it in each step� Let

Bt denote this matrix in the tth step� The updating

formula in this method provides Bt�� as a function

of Bt and other quantities which are computed in

the tth step or earlier� This updating procedure is

said to possess the hereditary symmetry prop�

erty if for any t� the fact that Bt is symmetric

implies that Bt�� is also symmetric� Similarly� the

updating procedure possesses the hereditary PD

property if for any t the fact that Bt is PD implies

that Bt�� is also PD� Thus� if the updating proce�

dure has the hereditary symmetry and PD proper�

ties� and the initial matrix B used in the method is

both symmetric and PD� the matrices Bt obtained

in all the steps of the method will also be symmet�

ric and PD�



Notation xxxvii

Active set method Any method for solving an NLP which partitions

the set of inequality constraints into two groups $

the active set consisting of those inequalities which

are to be treated as active� that is� as equality

constraints� and the inactive set� Inequality con�

straints in the inactive set are presumed to hold

as strict inequalities at the optimum solution and

are essentially ignored� The remaining problem is

solved �treating all the constraints as equality con�

straints� by any method for solving equality con�

strained optimization problems� Active set meth�

ods also have procedures for revising the active set

�either deleting inequality constraints from it� or

adding inequality constraints from the inactive set

into it� in each step� based on information accumu�

lated in the method so far�

Convex programming

problem nonconvex

programming problem

A problem in which a convex objective function is

to be minimized over a convex set �usually of the

form� minimize ��x�� subject to gi�x� �� �� i � � to

m and ht�x� � �� t � � to p� where all the functions

are given and ��x� is convex� gi�x� are concave for

all i� and ht�x� is a�ne for all t� is said to be a

convex programming problem� A nonconvex

programming problem is one which is not con�

vex� that is� does not belong to the above class� For

a convex programming problem every local mini�

mum is a global minimum� In general� it is very

hard to �nd the global minimum in a nonconvex

programming problem� Necessary and su�cient

conditions for optimality are available for convex

programming problems� For nonconvex program�

ming problems we have some necessary conditions

for a point to be a local minimum� and su�cient

conditions for a given point to be a local minimum�

No simple set of conditions which are both neces�

sary and su�cient for a given point to be a local

minimum� are known for general nonconvex pro�

gramming problems�
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Merit function In a nonlinear program where an objective function

de�ned on Rn is to be minimized subject to con�

straints� amerit function is a real valued function

de�ned on Rn� it consists of the objective function

plus penalty terms for constraint violations� Usu�

ally the penalty

terms come from either the absolute�value penalty

function �L��penalty function� or the quadratic penalty

function� Minimizing the merit function balances

the two competing goals which result from the de�

sire to decrease the objective function while reduc�

ing the amount by which the constraints fail to be

satis�ed� See Section ������

Cauchy�Schwartz

inequality
Let x� y be two column vectors in Rn� Then jxT yj
�
� jjxjj�jjyjj� this inequality is known as the

Cauchy�Schwartz inequality� To prove it con�

sider the quadratic equation in one variable �� f���

� ��x� y�T ��x� y� � ��jjxjj� � 
�xT y � jjyjj� �

�� Since f��� � jj�x� yjj�� it is always �� �� This

implies that the equation f��� � � can have at

most one real solution in �� It is well known that

the quadratic equation a�� � b� � c � � has at

most one real solution i	 b� � ac �
� �� applying

this to the equation f��� � �� we conclude that

�xT y�� �
� jjxjj��jjyjj�� that is� jxT yj �� jjxjj�jjyjj�

Also� the quadratic equation a�� � b�� c � � has

exactly one real solution if b� � ac � �� Apply�

ing this to f��� � �� we conclude that f��� � �

has a real solution if jxT yj � jjxjj�jjyjj� in this case

since f��� � jj�x � yjj� � � for some real �� we

must have �x� y � �� or y is scalar multiple of the

vector x� Thus� if the Cauchy�Schwartz inequality

holds as an equation for two vectors x� y � Rn� one

of these vectors must be a scalar multiple of the

other�
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Cholesky factor If M is a square matrix of order n which is sym�

metric and positive de�nite� there exists a lower

triangular matrix F of order n with positive diag�

onal elements� satisfying M � FFT � This matrix

F is known as the Cholesky factor of M � For

e�cient methods for computing Cholesky factors�

see books on computational linear algebra� or ���
��


�
���

Homotopy method To solve a system by a homotopy method� we

continuously deform a simple system with a known

solution� into the system we are trying to solve� For

example� consider the problem of solving a smooth

system of n equations in n unknowns �g�x� � ���

Let a be an initial point from Rn� consider the

simple system of equations �x � a� with a known

solution� Let F �x� �� � �g�x� � ��� ���x� a�� on

� �� � �
� �� x � Rn� F �x� �� is continuous in x and

�� The system �F �x� �� � ��� treated as a sys�

tem of equations in x� with � as a parameter with

given value between � and �� is the simple system

when � � �� and the system we want to solve when

� � �� As the parameter � varies from � to �� the

system �F �x� �� � �� provides a homotopy �con�

tiuous deformation� of the simple system �x � a�

into the system �g�x� � ��� The method for solving

�g�x� � �� based on the homotopy F �x� ��� would

follow the curve x��� �where x��� is a solution of

F �x� �� � � as a function of the homotopy param�

eter �� beginning with x��� � a� until � assumes

the value � at which point we have a solution for

�g�x� � ���
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Principal rearrangement

of a square matrix

Let M be a given square matrix of order n� Let

p � �i�� � � � � in� be a permutation of ��� � � � � n�� The

square matrix P of order n whose rows are Ii���

Ii��� � � � � Iin� in that order is the permutation ma�

trix corresponding to p� P is obtained by essen�

tially permuting the rows of the unit matrix I of

order n using the permutation p� The matrixM � �

PMPT is known as the principal rearrangement of

M according to the permutation p� Clearly M �

is obtained by �rst rearranging the rows of M ac�

cording to the permutation p� and in the resulting

matrix� rearranging the columns again accordng to

the same permutation p� See Section ��
���

Euclidean distance

rectilinear distance

Let x � �xj�� y � �yj� be two point in Rn� The

Euclidean distance between x and y is jjx� yjj �s
nP

j��
�xj � yj��� The rectilinear distance between

x and y is
nP

j��
jxj � yj j�
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Steepest descent

direction at a feasible

solution in a continuous

minimization problem�

First� consider an unconstrained minimization prob�

lem

minimize ��x� over x � Rn �i�

where ��x� is a real valued continuous function de�

�ned over Rn�

Given any direction y � Rn� y �� �� the directional

derivative of ��x� at a point x in the direction y is

de�ned to be

limit
��x� �y�� ��x�

�

as �� ��� and denoted by ���x� y�� when it exists�

If ��x� is di	erentiable at x� then ���x� y� � r��x�y�

In general� ���x� y� may exist even if ��x� is not dif�

ferentiable at x�

���x� y� measures the rate of change in ��x� at x �

x� when moving in the direction y�

The direction y is said to be a descent direction at

x for problem �i�� if ���x� y� � ��

If x is a local minimum for �i�� there is no descent

direction for �i� at x� and hence no steepest descent

direction� Unfortunately� the converse of this state�

ment may not always be true� that is� the absence of

a descent direction at a point x does not imply that

x is a local minimum� See Exercise 
� in Appendix

�� This just means that descent methods are not

always guaranteed to �nd a local minimum�

If x is not a local minimum for �i�� an optimum

solution of

minimize ���x� y� subject to norm �y� � � �ii�

is called a steepest descent direction at x for �i��

under the particular norm used� if it is a descent

direction at x for �i�� In �ii�� norm �y� is a function

which measures the distance between the points �

and y is Rn� Di	erent norms may lead to di	erent

steepest descent directions�

In optimization literature� usually norm �y� is taken

as yTAy where A is some speci�ed symmetric PD

matrix of order n �taking A � I� the unit matrix

of order n� leads to the Euclidean norm��
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Now consider a constrained continuous minimiza�

tion

problem� Let K 	 Rn denote its set of feasible

solutions� Then this problem is of the form

minimize ��x� subject to x � K �iii�

where the objective function ��x� is a real valued

continuous function de�ned over Rn� Let x � K

be a given feasible solution�

Again� if x is a local minimum for �iii�� there is

no descent direction and hence no steepest descent

direction for �iii� at x� If x is not a local minimum

for �iii�� any optimum solution of

minimize ���x� y�

subject to norm of �y� � ��

and y is a feasible direction

at x for K� and a descent

direction for ��x� at x

�iv�

is known as a steepest descent direction for �iii� at

the feasible solution x�
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Descent methods Descent methods for smooth minimization prob�

lems

have the following features� They are initiated with

a feasible solution� x�� for the problem� and gen�

erate a sequence fxr � r � �� �� 
� � � �g of feasible

points� For each r� the objective value at xr�� is

strictly less than the objective value at xr� For

r �
� �� step r � � of the method consists of the

following two substeps�

�� Generate a feasible direction� yr� for the problem

at the present feasible point xr� which is a descent

direction for the objective function�


� Carry out a line search on the half�line fx � x �

xr � �yr� � �
� �g for improving the objective value�

For this� one has to determine the maximum value

of �� say �� such that xr � �yr remains feasible

to the problem for all � �
� � �

� � and then solve

the line minimization problem of minimizing the

objective function over fx � x � xr � �yr� � �� � �
�

�g� the output of which is the next point in the

sequence� xr���

If there exists no feasible descent direction at xr�

the method terminates with xr while carrying out

substep � �unfortunately� this does not guarantee

that xr is even a local minimum for the problem�

it just means that we are unable to improve on

the point xr using descent methods�� If subsetp �

does produce a direction yr� from the de�nition of

feasible descent directions� � is guaranteed to be

positive in substep 
 �it may happen that � � ���

Di	erent descent methods use di	erent procedures

for carrying out substeps �� 
�

Therefore� the important feature of descent meth�

ods is that each move is made along a straight line�

and results in a strict improvement in objective

value� Since the objective value strictly improves

in each step �assuming that the method does not

terminate in that step�� the sequence of points gen�

erated by a descent method is called a descent

sequence�
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Karmarkar�s algorithm

for LP and an intuitive

justi�cation for it

A detailed description of Karmarkar�s algorithm�

including complete proofs of its polynomial bound�

edness are provided in Section ���� Here we give a

statement of this algorithm� with an intuitive jus�

ti�cation� for someone interested in an overview

without all the technical details and the proofs�

Consider the problem of minimizing a linear func�

tion on a convex polytope�

x

x

0

1

One can improve the current solution substantially

by moving in the steepest descent direction� if the

current solution is near the center of the feasible

region� as in x� in the �gure given above� but not

so if it is near the boundary� as in x��

The main ideas behind Karmarkar�s algorithm are

the following�

i� If the current feasible solution is near the center

of the feasible region� it makes sense to move in the

steepest descent direction�

ii� If it is possible to transform the problem without

changing it in an essential way� that moves the cur�

rent feasible solution near the center of the feasible

region� do it� Karmarkar uses a projective scaling

transformation to do exactly this�

A �relative� interior feasible solution to an LP is one

which satis�es all inequality constraints as strict

inequalities� The basic strategy of Karmarkar�s al�

gorithm is to start at a �relative� interior feasible

solution� and to carry out a projective scaling trans�

formation to move the current solution to the cen�

ter�
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In the transformed problem� move in the steepest

descent direction from this center� but not all the

way to the �relative� boundary� Repeat as often as

necessary�

Karmarkar considers linear programming problems

in the following form

minimize cx

subject to Ax� �

eTx� �

x�� �

�P�

where A is a given matrix of order m � n� and eT

is the row vector of all ��s in Rn� The set S � fx �

x � Rn and eTx � �� x �� �g is the standard �n���

dimensional simplex in Rn� The problem �P� is

assumed to satisfy the following assumptions�

��� The point a� � ���n�e � ���n� � � � � ��n�T � the

center of S� is feasible to �P��

�
� The problem �P� has an optimum solution� and

the optimum objective value in �P� is zero�

Methods for transforming any LP into the form

�P� satisfying conditions ���� �
�� are discussed in

Section ���� This is the initialization work before

applying Karmarkar�s algorithm on an LP� While

these initialization methods are simple and math�

ematically correct� they can ruin the practical ef�

�ciency unless done in a clever way� Practically

e�cient initialization techniques in implementing

Karmarkar�s algorithm� are the object of intense

research investigations at the moment�

Let us now consider the LP �P� satisfying ��� and

�
�� Karmarkar�s method generates a sequence of

feasible solutions for �P�� x� � a�� x�� x�� � � � � all of

them in the relative interior of S �i� e�� xr � � for

all r�� with cxr monotonic decreasing� The method

is terminated when we reach a t such that the ob�

jective value cxt is su�ciently close to the optimum

objective value of �� So the terminal solution xt is

a near optimum solution to �P�� A pivotal method

�needing at most n pivot steps� that leads to an

optimum extreme point solution of �P� from a near

optimum solution� is discussed in Section ���� it
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can be used in a �nal step if necessary� We now

provide the general step�

General step r�� in Karmarkar�s algorithm�

Let xr � a � �a�� � � � � an�
T � � be the current fea�

sible solution of �P�� De�ne D as the n�n diagonal

matrix with diagonal entries a�� � � � � an� that is

D �

	
 a� �
� � �

� an

�A �

Since the matrix D depends on the current solu�

tion� you get a di	erent D in each step� Use the

projective transformation T � S� S� de�ning new

variables y � �y�� � � � � yn� by

y � T �x� �
D��x

eTD��x
�

Since D is a diagonal matrix with positive diagonal

entries� D�� is the diagonal matrix whose ith di�

agonal entry is ���ai�� For every x � S� T �x� � S�

Also� points in the relative interior of S in the x�

space map into points in the relative interior of S

in the y�space� The current feasible solution a of

�P� in the x�space� maps into the solution a� �

���n� � � � � ��n�� the center of the simplex S in the

y�space� under this transformation�

To transform the problem �P�� we use the inverse

transformation

x � T���y� �
Dy

eTDy
�

It can be veri�ed that this transforms the original

LP into

minimize
cDy

eTDy
� ��y�

subject to ADy� �

eT y� �

y �� ��

�Q�

The constraints remain linear and essentially in the
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same form as those in �P�� but the objective func�

tion in �Q� is nonlinear�

Since the current solution for �Q� is a�� the center

of S� it makes sense to move from a�� in the steep�

est descent direction in �Q� at a�� Since a� � ��

the set of feasible directions for �Q� at a� is f� �

� � Rn� AD� � �� eT � � �g� Let

B �

	
AD
� � �
eT

�A �

At a�� the denominator in ��y�� eTDy� is equal to

���n�� and it remains quite constant in a small

neighborhood of a�� So� the steepest descent di�

rection for �Q� at the current point a� can be ap�

proximated by the steepest descent direction for

the objective function cDy subject to the same con�

straints as in �Q�� this is the solution of

minimize cD�

subject to B�� �

k�k� ��

The optimum solution of this problem is  cp�k cpk�

where

 cp � cD�I � BT �BBT ���B�

 cp is the orthogonal projection of cD onto the sub�

space f� � B� � �g� So� the next point for �Q� is of

the form

y� � a� � 
 cp�k cpk

where 
 is a positive step length� 
 can be chosen

as large as possible� but keeping y� � �� This leads

to the new solution xr�� for the original problem

�P�� where

xr�� �
Dy�

eTDy�
�

If cxr�� is su�ciently close to �� terminate with

cxr�� as a near optimum solution for �P�� other�

wise� go to the next step with xr�� as the current

solution�
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LINEAR COMPLEMENTARITY
PROBLEM� ITS GEOMETRY�

AND APPLICATIONS

��� THE LINEAR COMPLEMENTARITY

PROBLEM AND ITS GEOMETRY

The Linear Complementarity Problem �abbreviated as LCP� is a general problem

which uni�es linear and quadratic programs and bimatrix games� The study of LCP

has led to many far reaching bene�ts� For example� an algorithm known as the com�

plementary pivot algorithm �rst developed for solving LCPs� has been generalized

in a direct manner to yield e�cient algorithms for computing Brouwer and Kakutani

�xed points� for computing economic equilibria� and for solving systems of nonlinear

equations and nonlinear programming problems� Also� iterative methods developed for

solving LCPs hold great promise for handling very large scale linear programs which

cannot be tackled with the well known simplex method because of their large size and

the consequent numerical di�culties� For these reasons the study of LCP o�ers rich

rewards for people learning or doing research in optimization or engaged in practical

applications of optimization� In this book we discuss the LCP in all its depth�

Let M be a given square matrix of order n and q a column vector in Rn� Through�

out this book we will use the symbols w�� � � � � wn� z�� � � � � zn to denote the variables in

the problem� In an LCP there is no objective function to be optimized� The

problem is	 �nd w 
 �w�� � � � � wn�
T � z 
 �z�� � � � � zn�

T satisfying

w �Mz 
 q

w �

 �� z �
 � and wizi 
 � for all i

�����



� Chapter �� Linear Complementarity Problem� Its Geometry� and Applications

The only data in the problem is the column vector q and the square matrix M � So we

will denote the LCP of �nding w � Rn� z � Rn satisfying ����� by the symbol �q�M��

It is said to be an LCP of order n� In an LCP of order n there are n variables� As

a speci�c example� let n 
 � M 


���  �
� 

���� q 


�����
��
���� This leads to the LCP

w� � z�� z� 
 ��
w� � z��z� 
 ���

w�� w�� z�� z� �
 � and w�z� 
 w�z� 
 ��
����

The problem ���� can be expressed in the form of a vector equation as

w�

��� �
�

���� w�

��� �
�

���� z�

����
��
���� z�

�����
�
��� 


�����
��
��� �����

w�� w�� z�� z� �
 � and w�z� 
 w�z� 
 � �����

In any solution satisfying ������ at least one of the variables in each pair �wj � zj��

has to equal zero� One approach for solving this problem is to pick one variable from

each of the pairs �w�� z��� �w�� z�� and to �x them at zero value in ������ The remaining

variables in the system may be called usable variables� After eliminating the zero

variables from ������ if the remaining system has a solution in which the usable variables

are nonnegative� that would provide a solution to ����� and ������

Pick w�� w� as the zero�valued variables� After setting w�� w� equal to � in ������

the remaining system is

z�

����
��
���� z�

�����
�
��� 


�����
��
��� 


��� q�
q�

��� 
 q

z� �
 �� z� �
 �
�����

q

1q

2

( )-2
-1

(  )-1
-2

Figure ��� A Complementary Cone

Equation ����� has a solution i� the vector q can be expressed as a nonnegative

linear combination of the vectors ������T and ������T � The set of all nonnegative
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linear combinations of ������T and ������T is a cone in the q�� q��space as in

Figure ���� Only if the given vector q 
 �������T lies in this cone� does the LCP

���� have a solution in which the usable variables are z�� z�� We verify that the point

�������T does lie in the cone� that the solution of ����� is �z�� z�� 
 ����� ���� and�

hence� a solution for ���� is �w�� w�� z�� z�� 
 ��� �� ���� ����� The cone in Figure ���

is known as a complementary cone associated with the LCP ����� Complementary

cones are generalizations of the well�known class of quadrants or orthants�

����� Notation

The symbol I usually denotes the unit matrix� If we want to emphasize its order� we

denote the unit matrix of order n by the symbol In�

We will use the abbreviation LP for �Linear Program� and BFS for �Basic Feasible

Solution�� See ����� ���� LCP is the abbreviation for �Linear Complementarity

Problem� and NLP is the abbreviation for �Nonlinear Program��

Column and Row Vectors of a Matrix

If A 
 �aij� is a matrix of order m � n say� we will denote its jth column vector

�a�j� � � � � amj�
T by the symbol A�j � and its ith row vector �ai�� � � � � ain� by Ai��

Nonnegative� Semipositive� Positive Vectors

Let x 
 �x�� � � � � xn�
T � Rn� x �


 �� that is nonnegative� if xj �
 � for all j� Clearly�

� �
 �� x is said to be semipositive� denoted by x � �� if xj �
 � for all j and at least

one xj � �� Notice the distinction in the symbols for denoting nonnegative ��
 with

two lines under the �� and semipositive �� with only a single line under the ��� � �� ��

the zero vector is the only nonnegative vector which is not semipositive� Also� if x � ��Pn
j�� xj � �� The vector x � �� strictly positive� if xj � � for all j� Given two vectors

x� y � Rn� we write x �
 y� if x� y �
 �� x � y if x� y � �� and x � y if x� y � ��

Pos Cones

If fx�� � � � � xrg � Rn� the cone fx 	 x 
 ��x
� � � � �� �rx

r� ��� � � � � �r �
 �g is denoted

by Posfx�� � � � � xrg� Given the matrix A of order m � n� Pos�A� denotes the cone

PosfA��� � � � � A�ng 
 fx 	 x 
 A� for � 
 ���� � � � � �n�
T �

 �g�

Directions� Rays� Half�Lines� and Step Length

Any point y � Rn� y �
 �� de�nes a direction in Rn� Given the direction y� it�s ray

is the half�line obtained by joining the origin � to y and continuing inde�nitely in the
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same direction� it is the set of points f�y 	 � �

 �g� Given x � Rn� by moving from

x in the direction y we get points of the form x � �y where � �

 �� and the set of all

such points fx� �y 	 � �

 �g is the hal�ine or ray through x in the direction y� The

point x��y for � � � is said to have been obtained by moving from x in the direction

y a step length of �� As an example� if y 
 ��� ��T � Rn� the ray of y is the set of all

points of the form f��� ��T 	 � �

 �g� In addition� if� x 
 ������T � the hal�ine through

x in the direction y is the set of all points of the form f�� � ����� ��T 	 � �

 �g� See

Figure ��� In this half�line� letting � 
 �� we get the point ���� ��T � and this point is

obtained by taking a step of length � from x 
 ������T in the direction y 
 ��� ��T �

y

Ray
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y
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Figure ��� Rays and Half�Lines

����� Complementary Cones

In the LCP �q�M�� the complementary cones are de�ned by the matrix M � The point

q does not play any role in the de�nition of complementary cones�

Let M be a given square matrix of order n� For obtaining C�M�� the class of

complementary cones corresponding to M � the pair of column vectors �I�j ��M�j� is
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known as the jth complementary pair of vectors� � �
 j �
 n� Pick a vector from

the pair �I�j ��M�j� and denote it by A�j � The ordered set of vectors �A��� � � � � A�n� is

known as a complementary set of vectors� The cone Pos�A��� � � � � A�n� 
 fy 	 y 


��A��� � � ���nA�n��� �
 �� � � � � �n �
 �g is known as a complementary cone in the

class C�M�� Clearly there are n complementary cones�

Example ���

Let n 
  and M 
 I� In this case� the class C�I� is just the class of orthants in R�� In

general for any n� C�I� is the class of orthants in Rn� Thus the class of complementary

cones is a generalization of the class of orthants� See Figure ���� Figures ��� and ���

provide some more examples of complementary cones� In the example in Figure ���

since fI����M��g is a linearly dependent set� the cone Pos�I����M��� has an empty

interior� It consists of all the points on the horizontal axis in Figure ��� �the thick

axis�� The remaining three complementary cones have nonempty interiors�

1I 2IPos( ),M 1

2I

1I M 2Pos( , )

1I 1I

2I

2I

2II 1 , )Pos( 1I 2IPos( ),

1I2I 2I M 2

M 1 M 2, )Pos(

M 1

)Pos( 2, I

1I

Pos( ,)1IPos( , )

Figure ��� When M 
 I� the Complementarity Cones are the Orthants�

Figure ��� Complementary Cones when M 


���  ��
� �

����
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Degenerate� Nondegenerate Complementary Cones

Let Pos�A��� � � � � A�n� be a complementary cone in C�M�� This cone is said to be a non�

degenerate complementary cone if it has a nonempty interior� that is if fA��� � � � � A�ng
is a linearly independent set� degenerate complementary cone if its interior is empty�

which happens when fA��� � � � � A�ng is a linearly dependent set� As examples� all the

complementary cones in Figures ���� ���� ���� are nondegenerate� In Figure ��� the

complementary cone Pos�I����M��� is degenerate� the remaining three complemen�

tary cones are nondegenerate�

M 2

2I

1I

M 1

2I

1I

M 2

M 1

Figure ��� Complementary Cones when M 


���� �
� �

����

Figure ��� Complementary Cones when M 


��� � �
 �

����

����� The Linear Complementary Problem

Given the square matrixM of order n and the column vector q � Rn� the LCP �q�M��

is equivalent to the problem of �nding a complementary cone in C�M� that contains

the point q� that is� to �nd a complementary set of column vectors �A��� � � � � A�n� such

that

�i� A�j � fI�j ��M�jg for � �
 j �
 n

�ii� q can be expressed as a nonnegative linear combination of �A��� � � � � A�n�
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where I is the identity matrix of order n and I�j is its jth column vector� This is

equivalent to �nding w � Rn� z � Rn satisfying
Pn

j�� I�jwj�
Pn

j��M�jzj 
 q� wj �
 ��

zj �
 � for all j� and either wj 
 � or zj 
 � for all j� In matrix notation this is

w �Mz 
 q �����

w �

 � z �
 � �����

wjzj 
 � for all j� �����

Because of ������ the condition ����� is equivalent to
Pn

j��wjzj 
 wT z 
 �� this con�

dition is known as the complementarity constraint� In any solution of the LCP

�q�M�� if one of the variables in the pair �wj � zj� is positive� the other should be zero�

Hence� the pair �wj � zj� is known as the jth complementary pair of variables and

each variable in this pair is the complement of the other� In ����� the column vector

corresponding to wj is I�j � and the column vector corresponding to zj is �M�j � For

j 
 � to n� the pair �I�j ��M�j� is the jth complementary pair of column vectors in

the LCP �q�M�� For j 
 � to n� let yj � fwj � zjg and let A�j be the column vector

corresponding to yj in ������ So A�j � fI�j �M�jg� Then y 
 �y�� � � � � yn� is a com�

plementary vector of variables in this LCP� the ordered set �A��� � � � � A�n� is the

complementary set of column vectors corresponding to it and the matrix A

with its column vectors as A��� � � � � A�n in that order is known as the complemen�

tary matrix corresponding to it� If fA��� � � � � A�ng is linearly independent� y is a

complementary basic vector of variables in this LCP� and the complementary

matrix A whose column vectors are A��� � � � � A�n in that order� is known as the com�

plementary basis for ����� corresponding to the complementary basic vector y� The

cone Pos�A��� � � � � A�n� 
 fx 	 x 
 ��A�� � � � � � �nA�n� �� �
 �� � � � � �n �

 �g is the

complementary cone in the class C�M� corresponding to the complementary set of

column vectors �A��� � � � � A�n�� or the associated complementary vector of variables y�

A solution of the LCP �q�M�� always means a �w� z� satisfying all the constraints

������ ������ ������

A complementary feasible basic vector for this LCP is a complementary basic

vector satisfying the property that q can be expressed as a nonnegative combination of

column vectors in the corresponding complementary basis� Thus each complementary

feasible basic vector leads to a solution of the LCP�

The union of all the complementary cones associated with the square matrix M

is denoted by the symbol K�M�� K�M� is clearly the set of all vectors q for which the

LCP �q�M� has at least one solution�

We will say that the vector z leads to a solution of the LCP �q�M� i� �w 


Mz � q� z� is a solution of this LCP�

As an illustration� here are all the complementary vectors of variables and the

corresponding complementary matrices for ����� an LCP of order �
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Complementary The corresponding

vector of variables complementary matrix

�w�� w��

��� � �
� �

���
�w�� z��

��� � ��
� �

���
�z�� w��

���� �
�� �

���
�z�� z��

���� ��
�� �

���
Since each of these complementary matrices is nonsingular� all the complemen�

tary vectors are complementary basic vectors� and all the complementary matrices are

complementary bases� in this LCP� Since q 
 �������T in ���� can be expressed

as a nonnegative combination of the complementary matrix corresponding to �z�� z���

�z�� z�� is a complementary feasible basic vector for this LCP� The reader should draw

all the complementary cones corresponding to this LCP on the two dimensional Carte�

sian plane� and verify that for this LCP� their union� the set K�M� 
 R��

The Total Enumeration Method for the LCP

Consider the LCP �q�M� of order n� The complementarity constraint ����� implies

that in any solution �w� z� of this LCP� for each j 
 � to n� we must have

either wj 
 �

or zj 
 ��

This gives the LCP a combinatorial� rather than nonlinear �avour� It automatically

leads to an enumeration method for the LCP�

There are exactly n complementary vectors of variables� Let

yr 
 �yr�� � � � � y
r
n�� r 
 � to n

where yrj � fwj � zjg for each j 
 � to n� be all the complementary vectors of variables�

Let Ar be the complementary matrix corresponding to yr� r 
 � to n� Solve the

following system �Pr��
Ary

r 
 q

yr �
 � �
�Pr�

This system can be solved by Phase I of the simplex method for LP� or by other methods

for solving linear equality and inequality systems� If this system has a feasible solution�

yr� say� then

yr 
 yr

all variables not in yr� equal to zero
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is a solution of LCP �q�M�� If the complementary matrix Ar is singular� the system

�Pr� may have no feasible solution� or have one or an in�nite number of feasible solu�

tions� Each feasible solution of �Pr� leads to a solution of the LCP �q�M� as discussed

above� When this is repeated for r 
 � to n� all solutions of the LCP �q�M� can be

obtained� The method discussed at the beginning of Section ��� to solve an LCP of

order  is exactly this enumeration method�

This enumeration method is convenient to use only when n 
 � since � 
 � is

small� and to check whether the system �Pr� has a solution for any r� we can draw the

corresponding complementary cone in the two dimensional Cartesian plane and check

whether it contains q� When n � � particularly for large n� this enumeration method

becomes impractical since n grows very rapidly� In Chapter  and later chapters we

discuss e�cient pivotal and other methods for solving special classes of LCPs that arise

in several practical applications� In Section ��� we show that the general LCP is a hard

problem� At the moment� the only known algorithms which are guaranteed to solve

the general LCP are enumerative methods� see Section �����

��� APPLICATION TO

LINEAR PROGRAMMING

In a general LP there may be some inequality constraints� equality constraints� sign

restricted variables and unrestricted variables� Transform each lower bounded variable�

say xj �
 lj � into a nonnegative variable by substituting xj 
 lj � yj where yj �
 ��

Transform each sign restricted variable of the form xj �
 � into a nonnegative variable

by substituting xj 
 �yj where yj �

 �� Eliminate the unrestricted variables one

after the other� using the equality constraints �see Chapter  of ���� or ����� In the

resulting system� if there is still an equality constraint left� eliminate a nonnegative

variable from the system using it� thereby transforming the constraint into an inequality

constraint in the remaining variables� Repeat this process until there are no more

equality constraints� In the resulting system� transform any inequality constraint of

the ��
� form into one of ��
� form� by multiplying both sides of it by ����� If the objetive

function is to be maximized� replace it by its negative which should be minimized� and

eliminate any constant terms in it� When all this work is completed� the original LP

is transformed into	
Minimize cx

Subject to Ax �
 b

x �
 �
�����

which is in symmetric form� Here� suppose A is of order m�N � If x is an optimum

feasible solution of ������ by the results of the duality theory of linear programming

�see ����� ���� there exists a dual vector y � Rm� primal slack vector v � Rm� and

dual slack vector u � RN which together satisfy
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���u
v

����
��� � �AT

A �

������x
y

��� 


��� cT

�b
������u

v

��� �

 �

���x
y

��� �

 � and

���u
v

���T ���x
y

��� 
 � �

������

Conversely� if u� v� x� y together satisfy all the conditions in ������� x is an optimum

solution of ������ In ������ all the vectors and matrices are written in partitioned

form� For example�
�
u
v

�
is the vector �u�� � � � � uN � v�� � � � � vm�T � If n 
 m�N �

w 


���u
v

��� � z 


���x
y

��� � M 


��� � �AT

A �

��� � q 


��� cT

�b
��� �

������ is seen to be an LCP of order n of the type ����� to ������ Solving the LP �����

can be achieved by solving the LCP �������

Also� the various complementary pairs of variables in the LCP ������ are exactly

those in the pair of primal� dual LPs ����� and its dual� As an example consider the

following LP�
Minimize ���x���x�
Subject to �x�� x�� �x� �
 ���

� �x�� x�� ��x� �
 �

xj �
 �� j 
 �� � ��

Let �v�� y��� �v�� y�� denote the nonnegative slack variable� dual variable respectively�

associated with the two primal constraints in that order� Let u�� u�� u� denote the

nonnegative dual slack variable associated with the dual constraint corresponding to

the primal variable x�� x�� x�� in that order� Then the primal and dual systems

together with the complementary slackness conditions for optimality are

�x�� x�� �x� � v� 
���
��x�� x�� ��x� � v� 
 �

�y�� �y� �u� 
���
� y�� y� �u� 
 �

�y�� ��y� �u� 
 ��

xj � uj � yi� vi �
 � for all i� j�

xjuj 
 yivi 
 � for all i� j�
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This is exactly the following LCP�

u� u� u� v� v� x� x� x� y� y�

� � � � � � � � � �� ���
� � � � � � � � ��  �

� � � � � � � � � ��� �

� � � � � �� � �� � � ��

� � � � � � � �� � � ��
All variables �
 �� u�x� 
 u�x� 
 u�x� 
 v�y� 
 v�y� 
 ��

��� QUADRATIC PROGRAMMING

Using the methods discussed in Section �� any problem in which a quadratic objective

function has to be optimized subject to linear equality and inequality constraints can

be transformed into a problem of the form

Minimize Q�x� 
 cx� �
�x

TDx

Subject to Ax�
 b

x�
 �

������

where A is a matrix of order m�N � and D is a square symmetric matrix of order

N � There is no loss of generality in assuming that D is a symmetric matrix� because if

it is not symmetric replacing D by �D �DT �� �which is a symmetric matrix� leaves

Q�x� unchanged� We assume that D is symmetric�

����� Review on Positive Semide�nite Matrices

A square matrix F 
 �fij� of order n� whether it is symmetric or not� is said to be a

positive semidenite matrix if yTFy �
 � for all y � Rn� It is said to be a positive

denite matrix if yTFy � � for all y �
 �� We will use the abbreviations PSD� PD

for �positive semide�nite� and �positive de�nite�� respectively�

Principal Submatrices� Principal Subdeterminants

Let F 
 �fij� be a square matrix of order n� Let fi�� � � � � irg � f�� � � � � ng with its

elements arranged in increasing order� Erase all the entries in F in row i and column

i for each i �� fi�� � � � � irg� What remains is a square submatrix of F of order r	
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���������
fi��i� � � � fi��ir
���

���
fir�i� � � � fir�ir

��������� �

This submatrix is known as the principal submatrix of F determined by the subset

fi�� � � � � irg� Denoting the subset fi�� � � � � irg by J� we denote this principal submatrix

by the symbol FJJ� It is �fij 	 i � J� j � J�� The determinant of this principal

submatrix is called the principal subdeterminant of F determined by the subset J� The

principal submatrix of F determined by �� the empty set� is the empty matrix which

has no entries� Its determinant is de�ned by convention to be equal to �� The principal

submatrix of F determined by f�� � � � � ng is F itself� The principal submatrices of F

determined by nonempty subsets of f�� � � � � ng are nonempty principal submatrices
of F � Since the number of distinct nonempty subsets of f�� � � � � ng is n � �� there are

n�� nonempty principal submatrices of F � The principal submatrices of F determined

by proper subsets of f�� � � � � ng are known as proper principal submatrices of F �

So each proper principal submatrix of F is of order �
 n� ��

Example ���

Let

F 


������� � �� 
� � �
� � ��

������� �

The principal submatrix corresponding to the subset f�� �g is

��� � 
� ��

���� The princi�

pal submatrix corresponding to the subset fg is �� the second element in the principal

diagonal of F �

Several results useful in studying P�S�D matrices will now be discussed�

Results on P�S�D Matrices

Result ��� If B 
 �b��� is a matrix of order � � �� it is PD i� b�� � �� and it is

PSD i� b�� �
 ��

Proof� Let y 
 �y�� � R�� Then yTBy 
 b��y
�
� � So yTBy � � for all y � R�� y �
 ��

i� b�� � �� and hence B is PD i� b�� � �� Also yTBy �
 � for all y � R�� i� b�� �
 ��

and hence B is PSD i� b�� �
 ��

Result ��� If F is a PD matrix all its principal submatrices must also be PD�

Proof� Consider the principal submatrix� G� generated by the subset f�� g�

G 


��� f�� f��
f�� f��

��� � Let t 


��� y�
y�

��� �
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Pick y 
 �y�� y�� �� �� � � � � ��
T � Then yTFy 
 tTGt� However� since F is PD� yTFy � �

for all y �
 �� So tTGt � � for all t �
 �� Hence� G is PD too� A similar argument can

be used to prove that every principal submatrix of F is also PD�

Result ��� If F is PD� fii � � for all i� This follows as a corollary of Result ���

Result ��� If F is a PSD matrix� all principal submatrices of F are also PSD� This

is proved using arguments similar to those in Result ���

Result ��� If F is PSD matrix� fii �
 � for all i� This follows from Result ����

Result ��� Suppose F is a PSD matrix� If fii 
 �� then fij � fji 
 � for all j�

Proof� To be speci�c let f�� be � and suppose that f�� � f�� �
 �� By Result ��� the

principal submatrix ��� f�� f��
f�� f��

��� 


��� � f��
f�� f��

���
must be PSD� Hence f��y

�
� � �f�� � f���y�y� �
 � for all y�� y�� Since f�� � f�� �
 ��

take y� 
 ��f�� � ����f�� � f��� and y� 
 �� The above inequality is violated since

the left�hand side becomes equal to ��� leading to a contradiction�

Result ��	 If D is a symmetric PSD matrix and dii 
 �� then D�i 
 Di� 
 �� This

follows from Result ����

Denition� The Gaussian Pivot Step

Let A 
 �aij� be a matrix of order m� n� A Gaussian pivot step on A� with row r as

the pivot row and column s as the pivot column can only be carried out if the element

lying in both of them� ars� is nonzero� This element ars is known as the pivot element

for this pivot step� The pivot step subtracts suitable multiples of the pivot row from

each row i for i � r so as to transform the entry in this row and the pivot column into

zero� Thus this pivot step transforms

A 


����������������������

a�� � � � a�s � � � a�n
���

���
���

ar� � � � ars � � � arn
ar���� � � � ar���s � � � ar��� n

���
���

���
am� � � � ams � � � amn

����������������������

into

�����������������������

a�� � � � a�s � � � a�n
���

���
���

ar� � � � ars � � � arn
a�r���� � � � � � � � a�r��� n

���
���

���
a�m� � � � � � � � a�mn

�����������������������
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where a�ij 
 aij � �arjais��ars� for i 
 r� � to m� j 
 � to n� As an example consider

the Gaussian pivot step in the following matrix with row  as the pivot row and column

� as the pivot column� The pivot element is inside a box������������
� � �� �� ��
� �  �� ��

�� � � �  �
� ��  � �

�����������
This Gaussian pivot step transforms this matrix into����������

� �  �� � � ��
� �  � � ��

�� � � �  �
�� ��� � �� �

����������
Result ��
 Let D be a square symmetric matrix of order n �


 � Suppose D is PD�

Subtract suitable multiples of row � from each of the other rows so that all the entries

in column � except the �rst is transformed into zero� That is� transform

D 


���	
d�� � � � d�n
d�� � � � d�n
���

���
dn� � � � dnn


��� into D� 


���	
d�� � � � d�n
� �d�� � � � �d�n
���

���
���

� �dn� � � � �dnn


���
by a Gaussian pivot step with row � as pivot row and column � as pivot column� clearly
�dij 
 dij � d�jdi��d�� for all i� j �
 � E�� the matrix obtained by striking o� the �rst

row and the �rst column from D�� is also symmetric and PD�

Also� if D is an arbitrary square symmetric matrix� it is PD i� d�� � � and the

matrix E� obtained as above is PD�

Proof� Since D is symmetric dij 
 dji for all i� j� Therefore�

yTDy 

nX
i��

nX
j��

yiyjdij 
 d��y
�

� � y�

nX
j��

d�jyj �
X
i�j�

�
�

yiyjdij


 d��

y� �

 nX
j��

d�jyj
�
�d��

��
�
X
i�j�

�
�

yi �dijyj �

Letting y� 
 ��Pn
j�� d�jyj��d��� we verify that if D is PD� then

P
i�j�

�
� yi

�dijyj � � for

all �y�� � � � � yn� �
 �� which implies that E� is PD� The fact that E� is also symmetric

is clear since �dij 
 dij � d�jdi��d�� 
 �dji by the symmetry of D� If D is an arbitrary

symmetric matrix� the above equation clearly implies that D is PD i� d�� � � and E�

is PD�
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Result ��� A square matrix F is PD �or PSD� i� F � FT is PD �or PSD��

Proof� This follows because xT �F � FT �x 
 xTFx�

Result ���� Let F be a square matrix of order n and E a matrix of order m� n�

The square matrix A 


���F �ET

E �

��� of order �m� n� is PSD i� F is PSD�

Proof� Let � 
 �y�� � � � � yn� t�� � � � � tm�T � Rn�m and y 
 �y�� � � � � yn�
T � For all �� we

have �TA� 
 yTFy� So �TA� �
 � for all � � Rn�m i� yTFy �
 � for all y � Rn� That

is� A is PSD i� F is PSD�

Result ���� If B is a square nonsingular matrix of order n� D 
 BTB is PD and

symmetric�

Proof� The symmetry follows because DT 
 D� For any y � Rn� y �
 �� yTDy 


yTBTBy 
 kyBk� � � since yB �
 � �because B is nonsingular� y �
 � implies yB �
 ���

So D is PD�

Result ���� If A is any matrix of order m� n� ATA is PSD and symmetric�

Proof� Similar to the proof of Result �����

Principal Subdeterminants of PD� PSD Matrices

We will need the following theorem from elementary calculus�

Theorem ��� Intermediate value theorem	 Let f��� be a continuous real valued

function de�ned on the closed interval �� �
 � �

 �� where �� � ��� Let f be a real

number strictly between f���� and f����� Then there exists a � satisfying �� � � � ���

and f��� 
 f �

For a proof of Theorem ��� see books on calculus� for example� W� Rudin� Prin�

ciples of Mathematical Analysis� McGraw�Hill� second edition� ����� p� ��� Theorem

��� states that a continuous real valued function de�ned on a closed interval� assumes

all intermediate values between its initial and �nal values in this interval�

Now we will resume our discussion of PD� PSD matrices�

Theorem ��� If F is a PD matrix� whether it is symmetric or not� the determinant

of F is strictly positive�

Proof� Let F be of order n� Let I be the identity matrix of order n� If the determinant

of F is zero� F is singular� and hence there exists a nonzero column vector x � Rn such

that xTF 
 �� which implies that xTFx 
 �� a contradiction to the hypothesis that F
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is PD� So the determinant of F is nonzero� In a similar manner we conclude that the

determinant of any PD�matrix is nonzero� For � � � � �� de�ne F ��� 
 �F ������I�

and f��� 
 determinant of F ����

Obviously f��� is a polynomial in �� and hence f��� is a real valued continuous

function de�ned on the interval � �

 � �


 �� Given a column vector x � Rn� x �
 ��

xTF ���x 
 �xTFx � �� � ��xTx � � for all � �

 � �


 � because F is PD� So F ���

is a PD matrix for all � �

 � �


 �� So from the above argument f��� �
 � for any �

satisfying � �

 � �


 �� Clearly� f��� 
 �� and f��� 
 determinant of F � If f��� � �

by Theorem ��� there exists a � satisfying � � � � � and f��� 
 �� a contradiction�

Hence f��� �� �� Hence the determinant of F cannot be negative� Also it is nonzero�

Hence the determinant of F is strictly positive�

Theorem ��� If F is a PD matrix� whether it is symmetric or not� all principal

subdeterminants of F are strictly positive�

Proof� This follows from Result �� and Theorem ���

Theorem ��� If F is a PSD matrix� whether it is symmetric or not� its determinant

is nonnegative�

Proof� For � �

 � �


 �� de�ne F ���� f��� as in the proof of Theorem ��� Since I is

PD� and F is PSD� F ��� is a PD matrix for � �

 � � �� f��� 
 �� and f��� is the

determinant of F � If f��� � �� there exists a � satisfying � � � � �� and f��� 
 �� a

contradiction since F ��� is a PD matrix� Hence f��� �� �� So the determinant of F is

nonnegative�

Theorem ��� If F is a PSD matrix� whether it is symmetric or not� all its principal

subdeterminants are nonnegative�

Proof� Follows from Result ��� and Theorem ����

Theorem ��� Let

H 


������������
d�� � � � d�n d��n��
���

���
���

dn� � � � dnn dn�n��
dn���� � � � dn���n dn���n��

������������ � D 


��������
d�� � � � d�n
���

���
dn� � � � dnn

��������
be symmetric matrices� H is of order n � � and D is a principal submatrix of H�

So dij 
 dji for all i� j 
 � to n � �� Let x � Rn� d 
 �d��n��� � � � � dn�n���
T � and

Q�x� 
 xTDx�dTx�dn���n��� Suppose D is a PD matrix� Let x� 
 �D��d� Then

x� is the point which minimizes Q�x� over x � Rn� and

Q�x�� 
 �determinant of H� � �determinant of D�� �����
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Also for any x � Rn

Q�x� 
 Q�x�� � �x� x��TD�x� x��� ������

Proof� Since H is symmetric �Q�x�
�x


 �Dx � d�� Hence x� is the only point in Rn

which satis�es �Q�x�
�x 
 �� Also Dx� 
 �d implies

Q�x�� 
 x�
T

Dx� � dTx� � dn���n��


 dTx� � dn���n�� �
������

For i 
 � to n � �� if gi�n�� 
 di�n�� �
Pn

j�� dijx
�

j � and if g 
 �g��n��� � � � � gn�n���
T �

then g 
 d�Dx� 
 �� Also gn���n�� 
 dn���n�� � dTx� 
 Q�x�� from ������� Now�

from the properties of determinants� it is well known that the value of a determinant

is unaltered if a constant multiple of one of its columns is added to another� For j 
 �

to n� multiply the jth column of H by x�j and add the result to column n � � of H�

This leads to

Determinant of H 
 determinant of

������������
d�� � � � d�n g��n��
���

���
���

dn� � � � dnn gn�n��
dn���� � � � dn���n gn���n��

������������


 determinant of

������������
d�� � � � d�n �
���

���
���

dn� � � � dnn �
dn���� � � � dn���n Q�x��

������������

 �Q�x��� �determinant of D�

which yields ������ ������ can be veri�ed by straight forward expansion of its right

hand side� or it also follows from Taylor expansion of Q�x� around x�� since ��Q�x�
�x�




D and x� satis�es �Q�x�
�x


 �� Since D is a PD matrix� we have �x�x��TD�x�x�� � ��

for all x � Rn� x �
 x�� This and ������ together imply that	 Q�x� � Q�x��� for all

x � Rn� x �
 x�� Hence x� is the point which minimizes Q�x� over x � Rn�

Theorem ��	 Let H� D be square� symmetric matrices de�ned as in Theorem ����

H is PD i	 D is PD and the determinant of H is strictly positive�

Proof� Suppose H is PD� By Theorem �� the determinant of H is strictly positive�

and by Result �� its principal submatrix D is also PD�

Suppose that D is PD and the determinant of H is strictly positive� Let x 
 �x��

� � � � xn�
T and � 
 �x�� � � � � xn� xn���

T � De�ne d� Q�x� as in Theorem ���� If xn�� 
 ��

but � �
 � �i� e�� x �
 ��� �TH� 
 xTDx � �� since D is PD� Now suppose xn�� �
 ��

Let 	 
 ���xn���x� Then �TH� 
 xTDx � xn��d
Tx � dn���n��x

�
n�� 
 x�n��Q�	��
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So� when xn�� �
 �� �TH� 
 x�n��Q�	� �
 x�n�� �minimum value of Q�	� over 	 � Rn�


 x�n�� ��determinant of H��determinant of D�� � �� So under our hypothesis that D

is PD and the determinant of H is strictly positive� we have �TH� � � for all � � Rn���

� �
 �� that is H is PD�

Theorem ��
 Let H be the square symmetric matrix de�ned in Theorem ���� H

is PD i	 the determinants of these n� � principal submatrices of H�

�d����

��� d�� d��
d�� d��

��� �

������� d�� d�� d��
d�� d�� d��
d�� d�� d��

������� � � � � � D�H

are strictly positive�

Proof� Proof is by induction on the order of the matrix� Clearly� the statement of the

theorem is true if H is of order �� Now suppose the statement of the theorem is true

for all square symmetric matrices of order n� By this and the hypothesis� we know that

the matrix D is PD� So D is PD and the determinant of H is strictly positive by the

hypothesis� By Theorem ��� these facts imply that H is PD too� Hence� by induction�

the statement of the theorem is true in general�

Theorem ��� A square symmetric matrix is PD i	 all its principal subdeterminants

are strictly positive�

Proof� Let the matrix be H de�ned as in Theorem ���� If H is PD� all its principal

subdeterminants are strictly positive by Theorem ���� On the other hand� if all the

principal subdeterminants ofH are strictly positive� the n�� principal subdeterminants

of H discussed in Theorem ��� are strictly positive� and by Theorem ��� this implies

that H is PD�

Denition� P �matrix

A square matrix� whether symmetric or not� is said to be a P �matrix i� all its principal

subdeterminants are strictly positive�

As examples� the matrices I�

���  �
� 

����

���  �
 

��� are P �matrices� The matrices��� � �
� �

����

����� �
� ��

����

���  
 

��� are not P �matrices�

Theorem ���� A symmetric P �matrix is always PD� If a P �matrix is not symmetric�

it may not be PD�

Proof� By Theorem ��� B� a symmetric matrix is PD i� it is a P �matrix� Consider

the matrix B�

B 


��� � �
� �

��� � B � BT 


���  �
� 

��� �
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Since all its principal subdeterminants are �� B is a P �matrix� However� the determi�

nant of �B � BT � is strictly negative� and hence it is not a PD matrix by Theorem

���� and by Result ��� this implies that B is not PD� Actually� it can be veri�ed that�

������B������T 
 �� � ��

Note ��� The interesting thing to note is that if H is a symmetric matrix� and if

the n�� principal subdeterminants of H discussed in Theorem ��� are strictly positive�

by Theorems ���� and ��� all principal subdeterminants of H are positive� This result

may not be true if H is not symmetric�

Exercises

��� If H is a square symmetric PSD matrix� and its determinant is strictly positive�

then prove that H is a PD matrix� Construct a numerical example to show that this

result is not necessarily true if H is not symmetric�

��� Is the following statement true� �H is PSD i� its �n��� principal subdeterminants

discussed in Theorem ��� are all nonnegative�� Why� Illustrate with a numerical

example�

By Theorem ��� the class of PD matrices is a subset of the class of P �matrices�

By Theorem ���� when restricted to symmetric matrices� the property of being a PD

matrix is the same as the property of being a P �matrix� An asymmetric P �matrix may

not be PD� it may be a PSD matrix as the matrix fM�n� below is� or it may not even

be a PSD matrix� Let

fM�n� 


��������������������

� � � � � � � �
 � � � � � � �
  � � � � � �
���

���
���

� � �
���

���
   � � � � �
   � � �  �

��������������������
� ������

fM�n� is a lower triangular matrix in which all the diagonal entries are �� and all entries

below the diagonal are � All the principal subdeterminants of fM�n� are clearly equal

to �� and hence fM�n� is a P �matrix� However� fM�n���fM�n��T is the matrix in which

all the entries are � and it can be veri�ed that it is a PSD matrix and not a PD matrix�

Theorem ���� Let F be a square PSD matrix of order n� whether it is symmetric

or not� If x � Rn is such that xTFx 
 �� then �F � FT �x 
 ��
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Proof� Let D 
 F�FT � D is symmetric and by Result ���� D is PSD� For all x � Rn�

xTDx 
 xTFx� So xTDx 
 � too� We wish to prove that Dx 
 �� Let x � Rn� For

all real numbers �� �x� �x�T D�x� �x� �
 �� that is

��xTDx� �xTDx �
 � ������

since xTDx 
 �� If xTDx 
 �� by taking � 
 � and then �� in ������� we conclude

that xTDx 
 �� If xTDx �
 �� since D is PSD� xTDx � �� In this case� from ������

we conclude that xTDx �

 ��xTDx for � � �� and xTDx �


 ��xTDx for � � ��

Taking � to be a real number of very small absolute value� from these we conclude

that xTDx must be equal to zero in this case� Thus whether xTDx 
 �� or xTDx � ��

we have xTDx 
 �� Since this holds for all x � Rn� we must have xTD 
 �� that is

Dx 
 ��

Algorithm for Testing Positive De�niteness

Let F 
 �fij� be a given square matrix of order n� Find D 
 F � FT � F is PD i�

D is� To test whether F is PD� we can compute the n principal subdeterminants of

D determined by the subsets f�g� f�� g� � � � � f�� � � � � � ng� F is PD i� each of these n

determinants are positive� by Theorem ���� However� this is not an e�cient method

unless n is very small� since the computation of these separate determinants is time

consuming�

We now describe a method for testing positive de�niteness of F which requires at

most n Gaussian pivot steps on D along its main diagonal� hence the computational

e�ort required by this method is O�n��� This method is based on Result ����

�i� If any of the principal diagonal elements in D are nonpositive� D is not PD�

Terminate�

�ii� Subtract suitable multiples of row � from all the other rows� so that all the entries

in column � and rows  to n of D are transformed into zero� That is� transform

D into D� as in Result ���� If any diagonal element in the transformed matrix�

D�� is nonpositive� D is not PD� Terminate�

�iii� In general� after r steps we will have a matrix Dr of the form	����������	

d�� d�� � � � d�n
� �d�� � � � �d�n

�
�� �

���
drr � � � drn
�  dr���r�� � � �  dr���n

���
���

���
���

���
� � �  dn�r�� � � �  dnn


����������
�

Subtract suitable multiples of row r � � in Dr from rows i for i � r � �� so that

all the entries in column r � � and rows i for i � r � � are transformed into ��
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This transforms Dr into Dr��� If any element in the principle diagonal of Dr��

is nonpositive� D is not PD� Terminate� Otherwise continue the algorithm in the

same manner for n� � steps� until Dn�� is obtained� which is of the form�����	
d�� d�� � � � d�n
� �d�� � � � �d�n

�
���

���
���

� � � � � dnn


����� �

Dn�� is upper triangular� That�s why this algorithm is called the superdiago�

nalization algorithm� If no termination has occured earlier and all the diagonal

elements of Dn�� are positive� D� and hence� F is PD�

Example ���

Test whether

F 


��	
� �  

��  � 
� � � �

�
� � ���

� �


�� is PD� D 
 F � FT 


��	
� �  
� � � �
 � � � 	

�
 � � 	

� �


�� �

All the entries in the principal diagonal of D �i� e�� the entries dii for all i� are strictly

positive� So apply the �rst step in superdiagonalization getting D�� Since all elements

in the principal diagonal of D� are strictly positive� continue� The matrices obtained

in the order are	

D� 


���	
� �  
� � � �
� � ��

� ���
�

� � ���
�

�

�


��� � D� 


���	
� �  
� � � �
� � ��

� ���
�

� � ���
�

�

�


��� �

D� 


���	
� �  
� � � �
� � ��

� ���
�

� � � �


��� �
The algorithm terminates now� Since all diagonal entries in D� are strictly positive�

conclude that D and� hence� F is PD�

Example ���

Test whether D 


����������
� �  �
�  � �
 � � �
� � � �

���������� is PD�
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D is already symmetric� and all its diagonal elements are positive� The �rst step of

the algorithm requires performing the operation	 �row �� ! �row �� on D� This leads

to

D� 


����������
� �  �
�  � �
� � � �
� � � �

���������� �

Since the third diagonal element in D� is not strictly positive� D is not PD�

Algorithm for Testing Positive Semide�niteness

Let F 
 �fij� be the given square matrix� Obtain D 
 F � FT � If any diagonal

element of D is �� all the entries in the row and column of the zero diagonal entry

must be zero� Otherwise D �and hence F � is not PSD and we terminate� Also� if any

diagonal entries in D are negative� D cannot be PSD and we terminate� If termination

has not occurred� reduce the matrix D by striking o� the rows and columns of zero

diagonal entries�

Start o� by performing the row operations as in �ii� above� that is� transform D

into D�� If any diagonal element in D� is negative� D is not PSD� Let E� be the

submatrix of D� obtained by striking o� the �rst row and column of D�� Also� if a

diagonal element in E� is zero� all entries in its row and column in E� must be zero�

Otherwise D is not PSD� Terminate� Continue if termination does not occur�

In general� after r steps we will have a matrix Dr as in �iii� above� Let Er be the

square submatrix of Dr obtained by striking o� the �rst r rows and columns of Dr�

If any diagonal element in Er is negative� D cannot be PSD� If any diagonal element

of Er is zero� all the entries in its row and column in Er must be zero� otherwise D is

not PSD� Terminate� If termination does not occur� continue�

Let dss be the �rst nonzero �and� hence� positive� diagonal element in Er� Subtract

suitable multiples of row s in Dr from rows i� i � s� so that all the entries in column

s and rows i� i � s in Dr� are transformed into �� This transforms Dr into Ds and

we repeat the same operations with Ds� If termination does not occur until Dn�� is

obtained and� if the diagonal entries in Dn�� are nonnegative� D and hence F are

PSD�

In the process of obtaining Dn��� if all the diagonal elements in all the matrices

obtained during the algorithm are strictly positive� D and hence F is not only PSD

but actually PD�

Example ���

Is the matrix

F 


����	
� � �� �� �
 � � � �
� � � � �
� � � � �

�� � � � 


���� PSD� D 
 F � FT 


����	
� � � � �
� � � � �
� � � � �
� � � �� �
� � � � �


���� �
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D�� and D�� are both zero vectors� So we eliminate them� but we will call the remaining

matrix by the same name D� All the diagonal entries in D are nonnegative� Thus we

apply the �rst step in superdiagonalization� This leads to

D� 


����������
� � � �
� � � �
� � �� �
� � � �

���������� E� 


������� � � �
� �� �
� � �

������� �

The �rst diagonal entry in E� is �� but the �rst column and row of E� are both zero

vectors� Also all the remaining diagonal entries in D� are strictly positive� So continue

with superdiagonalization� Since the second diagonal element in D� is zero� move to

the third diagonal element of D�� This step leads to

D� 


����������
� � � �
� � � �
� � �� �
� � � �

���������� �

All the diagonal entries in D� are nonnegative� D and hence F is PSD but not PD�

Example ���

Is the matrix D in Example ��� PSD� Referring to Example ��� after the �rst step in

superdiagonalization� we have

E� 


�������  � �
� � �
� � �

������� �

The second diagonal entry in E� is �� but the second row and column of E� are not

zero vectors� So D is not PSD�

����� Relationship of Positive Semide�niteness

to the Convexity of Quadratic Functions

Let """ be a convex subset of Rn� and let g�x� be a real valued function de�ned on """�

g�x� is said to be a convex function on """� if

g��x� � ��� ��x�� �
 �g�x�� � ��� ��g�x�� ������
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for every pair of points x�� x� in """� and for all � �
 � �

 �� g�x� is said to be a strictly

convex function on """ if ������ holds as a strict inequality for every pair of distinct

points x�� x� in """ �i� e�� x� �
 x�� and for all � � � � �� See Appendix ��

Let F be a given square matrix of order n and c a row vector in Rn� Let

f�x� 
 cx� xTFx� Here we discuss conditions under which f�x� is convex� or strictly

convex� Let D 
 �����F � FT �� If F is symmetric then F 
 D� otherwise D is

the symmetrized form of F � Clearly f�x� 
 cx � xTDx� It can be veri�ed that
�f�x�
�x



��f�x�

�x�
� � � � � �f�x�

�xn

�T

 cT � �F � FT �x 
 cT � Dx� and that ��f�x�

�x�

 the

Hessian of f�x� 
 F � FT 
 D� Let x�� x� be two arbitrary column vectors in Rn

and let � 
 x� � x�� Let � be a number between � and �� By expanding both sides it

can be veri�ed that �f�x��������f�x���f��x�������x�� 
 �������TD� where

� 
 x� � x�� So �f�x�� � ��� ��f�x�� � f��x� � ��� ��x�� �
 � for all x�� x� � Rn

and � �
 � �

 �� i� �TD� �
 � for all � � Rn� that is i� D �or equivalently F � is PSD�

Hence f�x� is convex on Rn i� F �or equivalently D� is PSD�

Also by the above argument we see that �f�x��������f�x���f��x�������x��
� � for all x� �
 x� in Rn and � � � � �� i� �TD� � � for all � � Rn� � �
 ��

Hence f�x� is strictly convex on Rn i� �TD� � � for all � �
 �� that is i� D �or

equivalently F � is PD� These are the conditions for the convexity or strict convexity

of the quadratic function f�x� over the whole space Rn� It is possible for f�x� to

be convex on a lower dimensional convex subset of Rn �for example� a subspace of

Rn� even though the matrix F is not PSD� For example� the quadratic form f�x� 


�x�� x��

����� �
� �

��� �x�� x��
T is convex over the subspace f�x�� x�� 	 x� 
 �g but not

over the whole of R��

Exercise

��� Let K � Rn be a convex set and Q�x� 
 cx� �
�x

TDx� If Q�x� is convex over K

and K has a nonempty interior� prove that Q�x� is convex over the whole space Rn�

����� Necessary Optimality Conditions

for Quadratic Programming

We will now resume our discussion of the quadratic program �������

Theorem ���� If x is an optimum solution of ������� x is also an optimum solution

of the LP
minimize �c� xTD�x

subject to Ax �
 b

x �
 � �
������
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Proof� Notice that the vector of decision variables in ������ is x� x is a given point

and the cost coe�cients in the LP ������ depend on x� The constraints in both ������

and ������ are the same� The set of feasible solutions is a convex polyhedron� Let  x be

any feasible solution� By convexity of the set of feasible solutions x� 
 � x������x 


x � �� x � x� is also a feasible solution for any � � � � �� Since x is an optimum

feasible solution of ������� Q�x�� � Q�x� �

 �� that is ��c � xTD�� x � x� � ����

��� x�x�TD� x�x� �
 � for all � � � � �� Dividing both sides by � leads to �c�xTD�

� x�x� �
 ������ x�x�TD� x�x� for all � � � � �� This obviously implies �c�xTD�

� x� x� �
 �� that is� �c� xTD� x �
 �c� xTD�x� Since this must hold for an arbitrary

feasible solution  x� x must be an optimum feasible solution of �������

Corollary ��� If x is an optimum feasible solution of ������� there exist vectors

y � Rm and slack vectors u � RN � v � Rm such that x� y� u� v together satisfy���u
v

��� �
���D �AT

A �

��� ���x
y

��� 


��� cT

�b
������u

v

��� �

 �

���x
y

��� �

 � and

���u
v

���T ���x
y

��� 
 � �

������

Proof� #From the above theorem x must be an optimum solution of the LP �������

The corollary follows by using the results of Section �� on this fact�

Necessary and Su�cient Optimality Conditions

for Convex Quadratic Programs

The quadratic minimization problem ������ is said to be a convex quadratic pro�

gram if Q�x� is convex� that is� if D is a PSD matrix �by the results in Section

����� or Theorem �� of Appendix ��� If D is not PSD� ������ is said to be a non�

convex quadratic program� Associate a Lagrange multiplier yi to the ith constraint

�Ai�x �

 bi� i 
 � to m� and a Lagrange multiplier uj to the sign restriction on xj in

������� j 
 � to N � Let y 
 �y�� � � � � ym�T � u 
 �u�� � � � � uN �T � Then the Lagrangian

corresponding to the quadratic program ������ is L�x� y� u� 
 Q�x��yT �Ax�b��uTx�
The Karush�Kuhn�Tucker necessary optimality conditions for ������ are


L


x
�x� y� u� 
 cT �Dx� AT y � u 
 �

y �
 �� u �
 �

yT �Ax� b� 
 �� uTx 
 �

Ax� b �
 �� x �
 � �

�����

Denoting the slack variables Ax � b by v� the conditions ����� can be veri�ed to

be exactly those in ������� written out in the form of an LCP� A feasible solution x
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for ������� is said to be a Karush�Kuhn�Tucker point �or abbreviated as a KKT

point� if there exist Lagrange multiplier vectors y� u� such that x� y� u together satisfy

����� or the equivalent ������� So the LCP ������ is the problem of �nding a KKT

point for ������� We now have the following results�

Theorem ���� If x is an optimum solution for ������� x must be a KKT point for

it� whether Q�x� is convex or not�

Proof� Follows from Theorem ��� and Corollary ����

Thus ����� or equivalently ������ provide the necessary optimality conditions for a

feasible solution x of ������ to be optimal� Or� in other words� every optimum solution

for ������ must be a KKT point for it� However� given a KKT point for ������ we

cannot guarantee that it is optimal to ������ in general� In the special case when D

is PSD� every KKT point for ������ is optimal to ������� this is proved in Theorem

���� below� Thus for convex quadratic programs� ����� or equivalently ������ provide

necessary and su�cient optimality conditions�

Theorem ���� If D is PSD and x is a KKT point of ������� x is an optimum

feasible solution of �������

Proof� #From the de�nition of a KKT point and the results in Section ��� if x is a

KKT point for ������� it must be an optimum feasible solution of the LP ������� Let x

be any feasible solution of �������

Q�x��Q�x� 
 �c� xTD��x� x� �
�


�x� x�TD�x� x� �

The �rst term on the right�hand side expression is nonnegative since x is an optimal

feasible solution of ������� The second term in that expression is also nonnegative since

D is PSD� Hence� Q�x��Q�x� �
 � for all feasible solutions� x� of ������� This implies

that x is an optimum feasible solution of �������

Clearly ������ is an LCP� An optimum solution of ������ must be a KKT point for

it� Solving ������ provides a KKT point for ������ and if D is PSD� this KKT point is

an optimum solution of ������� �If D is not PSD and if a KKT point is obtained when

������ is solved� it may not be an optimum solution of ��������

Example ��	 Minimum Distance Problem�

Let K denote the shaded convex polyhedral region in Figure ���� Let P� be the point

������� Find the point in K that is closest to P� �in terms of the usual Euclidean

distance�� Such problems appear very often in operations research applications�
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Every point in K can be expressed as a convex combination of its extreme points �or

corner points� P�� P�� P�� P
� That is� the coordinates of a general point in K are	

��������������
� �������������
� where the �i satisfy ����������
 
 �

and �i �
 � for all i� Hence� the problem of �nding the point in K closest to P� is

equivalent to solving	

Minimize ��� � ��� � ��� � ��
 � ����� � ���� � �� � ��
 � ������
Subject to �� � �� � �� � �
 
 �

�i �
 � for all i �

�
 can be eliminated from this problem by substituting the expression �
 
 ��������
�� for it� Doing this and simplifying� leads to the quadratic program

Minimize ��������������
�


�
�T

������� �� �� �
�� �� ��
� �� �

������� �

Subject to ��� � �� � �� �
 ��
� �
 �

where � 
 ���� ��� ���
T � Solving this quadratic program is equivalent to solving the

LCP ����������
u�
u�
u�
v�

���������� �

����������
�� �� � �
�� �� �� �
� �� � �

� � � � � � �

����������
����������
��
��
��
y�

���������� 


����������
���
���
��

�

���������� �
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All variables u�� u�� u�� v�� ��� ��� ��� y� �
 �

and u��� 
 u��� 
 u��� 
 v�y� 
 � �

Let ��u�� �u�� �u�� �v�� ���� ���� ���� �y�� be a solution to this LCP� Let ��
 
 �� ��� � ��� � ����

Then �x 
 ���� � ���� � ���� � ���
� ���� � ��� � ���
� is the point in K that is closest to

P��

����� Convex Quadratic Programs and LCPs

Associated with PSD Matrices

Consider the LCP �q�M�� which is ����� ! ������ in which the matrix M is PSD�

Consider also the quadratic program

Minimize zT �Mz � q�

Subject to Mz � q �
 �

z �
 � �

This is a convex quadratic programming problem since M is PSD� If the optimum

objective value in this quadratic program is� �� clearly the LCP �q�M� has no solution�

If the optimum objective value in this quadratic program is zero� and z is any optimum

solution for it� then �w 
 Mz � q� z� is a solution of the LCP� Conversely if � �w� �z� is

any solution of the LCP �q�M�� the optimum objective value in the above quadratic

program must be zero� and �z is an optimum solution for it� Thus every LCP associated

with a PSD matrix can be posed as a convex quadratic program�

Now� consider a convex quadratic program in which Q�x� 
 cx� �
�x

TDx �where D

is a symmetric PSD matrix� has to be minimized subject to linear constraints� Replace

each equality constraint by a pair of opposing inequality constraints �for example�

Ax 
 b is replaced by Ax �

 b and Ax �


 b�� Now the problem is one of minimizing

Q�x� subject to a system of linear inequality constraints� This can be transformed into

an LCP as discussed in Section ������ The matrix M in the corresponding LCP will

be PSD by Result ����� since D is PSD� Thus every convex quadratic programming

problem can be posed as an LCP associated with a PSD matrix�
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����� Applications of Quadratic Programming

The Portfolio Problem

A big investment �rm has a total of $ a to invest� It has a list of n stocks in which this

money can be invested� The problem is to determine how much of the available money

should be invested in each stock� The solution of this problem is called a portfolio� In

this problem� it is well known that �one should never put all of their eggs in one basket��

So after a thorough study� the manager of the company has determined a lower bound

$ lj and an upper bound $ kj for the amount to be invested in stock j� j 
 � to n�

The yield from each stock varies randomly from year to year� By the analysis of past

data� �j � the expected �or average� yield per dollar invested in stock j per year has

been estimated� The yields from various stocks are not mutually independent� and the

analysis of past data has also provided an estimate of the variance�covariance matrix�

D� for the annual yields from the various stocks per dollar invested� D is a symmetric

positive de�nite matrix of order n� If $ xj is the amount invested in stock j� j 
 � to n�

the portfolio is x 
 �x�� � � � � xn�
T � the expected annual yield from it is

Pn
j�� �jxj and

the variance of the yield is xTDx� The variance is a measure of the random �uctuation

in the annual yield and hence it should be minimized� The company would� of course�

like to see its expected yield maximized� One way of achieving both of these objectives

is to specify a target or lower bound� say �� on the expected yield and to minimize the

variance subject to this constraint� This leads to the problem	

Minimize xTDx

Subject to
Pn

j�� �jxj �
 �P
xj �
 a

lj �
 xj �
 kj � j 
 � to n

which is a quadratic programming problem�

Constrained Linear Regression

We will illustrate this application with an example of eggs and chickens due to C� Mar�

molinero ����� The �rst step in chicken farming is hatching� carried out by specialized

hatcheries� When hatched� a day�old�chicken is born� It needs no food for the �rst

two days� at the end of which it is called a growing pullet and moved out of the

hatchery� Pullets have to grow over a period of approximately �� weeks before they

start producing eggs� and this is done by specialized growing units under optimum

conditions of diet� heating� lighting etc� After �� weeks of age� pullets are moved into

the laying �ock and are then called hens� Consider a geographical region� say a State�

Data on the number of chickens hatched by hatcheries in the state during each month

is available from published state government statistics� But� day�old�chickens may be
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bought from� or sold to �rms outside the state� statistics on which are not available�

De�ne

yt 
 number �in millions� of growing pullets in the state� on the �rst day of

month t�
dt 
 number �in millions� of day�old�chickens hatched by hatcheries in the

state in month t �from government statistics��

Here dt are not variables� but are the given data� People in the business of producing

chicken feed are very much interested in getting estimates of yt from dt� This provides

useful information to them in their production planning� etc� Not all the day�old�

chickens placed by hatcheries in a month may be alive in a future month� Also� after

�ve months of age� they are recorded as hens and do not form part of the population of

growing pullets� So the appropriate linear regression model for yt as a function of the

dt�s seems to be yt 
 �� �
P�

i�� �idt�i� where �� is the number of pullets in census�

which are not registered as being hatched �pullets imported into the State� or chickens

exported from the State�� and �i is a survival rate �the proportion of chickens placed in

month t� i that are alive in month t� i 
 � to ��� We� of course� expect the parameters

�i to satisfy the constraints

� �
 �� �
 �
 �
 �� �
 �� �
 �� �
 � � �����

To get the best estimates for the parameters � 
 ���� ��� ��� ��� �
� ���
T from past

data� the least squares method could be used� Given data on yt� dt over a period of

time �say for the last �� years�� de�ne L���� 

P

t�yt����
P�

i�� �idt�i�
�� Under the

least squares method the best values for � are taken to be those that minimize L����

subject to the constraints ������ This is clearly a quadratic programming problem�

One may be tempted to simplify this problem by ignoring the constraints �����

on the parameters �� The unconstrained minimum of L���� can be found very easily

by solving the system of equations �L����
��


 ��

There are two main di�culties with this approach� The �rst is that the solution of

this system of equations requires the handling of a square matrix �aij� with aij 
 ���i�

j � ��� known as the Hilbert matrix� which is di�cult to use in actual computation

because of ill�conditioning� It magni�es the uncertainty in the data by very large

factors� We will illustrate this using the Hilbert matrix of order � This matrix is

H� 


��� � �
�

�
�

�
�

��� �

Consider the following system of linear equations with H� as the coe�cient matrix�

x� x�

� �
� b�

�
�

�
� b�
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It can be veri�ed that the solution of this system of linear equations is x 
 ��b�� �b��

��b� � �b��
T � Suppose we have the exact value for b� but only an approximate

value for b�� In the solution x� errors in b� are magni�ed by � times in x�� and �

times in x�� This is only in a small system involving the Hilbert matrix of order �

The error magni�cation grows very rapidly in systems of linear equations involving

Hilbert matrices of higher orders� In real world applications� the coe�cients in the

system of linear equations �constants corresponding to b�� b� in the above system�

are constructed using observed data� which are always likely to have small errors�

These errors are magni�ed in the solution obtained by solving the system of equations�

making that solution very unreliable� See reference ������� The second di�culty is

that even if we are able to obtain a reasonable accurate solution  � for the system of

equations �L����
��


 ��  � may violate the constraints ����� that the parameter vector

� is required to satisfy� For example� when this approach was applied on our problem

with actual data over a ���year horizon from a State� it led to the estimated parameter

vector  � 
 ��� �� ���� ���� ���� ����T � We have  �
 � � and  �� � �� these values are

not admissible for survival rates� So � 
  � does not make any sense in the problem�

For the same problem� when L���� was minimized subject to the constraints ������

using a quadratic programming algorithm it gave an estimate for the parameter vector

which was quite good�

Parameter estimation in linear regression using the least squares method is a very

common problem in many statistical applications� and in almost all branches of sci�

enti�c research� In a large proportion of these applications� the parameter values are

known to satisfy one or more constraints �which are usually linear�� The parameter es�

timation problem in constrained linear regression is a quadratic programming problem

when the constraints on the parameters are linear�

����� Application of Quadratic Programming

in Algorithms for NLP� Recursive Quadratic

Programming Methods for NLP

Recently� algorithms for solving general nonlinear programs� through the solution

of a series of quadratic subproblems have been developed ����� to ������ These methods

are called recursive quadratic programming methods� or sequential quadratic

programming methods� or successive quadratic programming methods in the

literature� Computational tests have shown that these methods are especially e�cient

in terms of the number of function and gradient evaluations required� Implementation

of these methods requires e�cient algorithms for quadratic programming� We provide

here a brief description of this approach for nonlinear programming� Consider the

nonlinear program	
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Minimize �x�

Subject to gi�x� 
 �� i 
 � to k

gi�x� �
 �� i 
 k � � to m
����

where �x� and gi�x� are real valued twice continuously di�erentiable functions de�ned

over Rn� Let g�x� 
 �g��x�� � � � � gm�x��T � Given the Lagrange multiplier vector � 


���� � � � � �k� �k��� � � � � �m�� the Lagrangian corresponding to ���� is L�x� �� 
 �x��
�g�x�� The �rst order �or Karush�Kuhn�Tucker� necessary optimality conditions for

this problem are
rxL�x� �� 
 r�x���rg�x� 
 �

�i �
 � i 
 k � � to m

�igi�x� 
 � i 
 k � � to m

gi�x� 
 � i 
 � to k

gi�x� �
 � i 
 k � � to m�

�����

The methods described here for tackling ���� try to obtain a solution x and a La�

grange multiplier vector �� which together satisfy ������ through an iterative process�

In each iteration� a quadratic programming problem is solved� the solution of which

provides revised estimates of the Lagrange multipliers and also determines a search

direction for a merit function� The merit function is an absolute value penalty func�

tion �L��penalty function� that balances the two competing goals of decreasing �x�

and reducing the amounts by which the constraints are violated� The merit function

is then minimized in the descent direction by using a line minimization procedure�

The solution of this line minimization problem produces a revised point x� With the

revised x and �� the method goes to the next iteration� The �rst iteration begins with

an initial point x and Lagrange multiplier vector � satisfying �i �
 �� i 
 k � � to m�

At the beginning of an iteration� let  x�  � be the current vectors� De�ne

Q�d� 
 L� x�  �� �
�rxL� x�  ��

�
d�

�


dT


�L� x�  ��


x�
d �����

where d 
 x� x� Q�d� is the Taylor series approximation for L�x�  �� around the current

point  x up to the second order� Clearly ��L��x����
�x� changes in each iteration� Since this

is an n � n matrix� recomputing it in each iteration can be very expensive computa�

tionally� So in computer implementations of this method� ��L��x����
�x� is approximated by

a matrix B which is revised from iteration to iteration using the BFGS Quasi�Newton

update formula that is widely used for unconstrained minimization� In the initial step�

approximate ��L
�x� by B� 
 I� the unit matrix of order n� Let xt� �t� Bt� denote the

initial point� the initial Lagrange multiplier vector� and the approximation for ��L
�x�

in

the t�th iteration� Let xt�� be the point and �t�� the Lagrange multiplier vector at

the end of this iteration� De�ne

�t�� 
 xt�� � xt

qt�� 

�rxL�x

t��� �t����rxL�x
t� �t���

�T
pt�� 
 rt��q

t�� � ��� rt���Bt�
t��
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where

rt��

���

 � if ��t���T qt�� �
 ������t���TBt�

t��



��������t���TBt�

t���

��t���TBt�t�� � ��t���T qt��
� if ��t���T qt�� � ������t���TBt�

t�� �

Then update ��L
�x� by the formula

Bt�� 
 Bt �
pt���pt���T

��t���T pt��
� �Bt�

t����Bt�
t���T

��t���TBt�t��
� �����

This updating formula is a slight modi�cation of the BFGS �Broyden�Fletcher�Gold�

farb�Shanno� formula for updating the Hessian �the BFGS updating formula discussed

in Section ������ is for updating the inverse of the Hessian� the one given here is for

updating the actual Hessian itself��

If rt�� 
 �� then pt�� 
 qt�� and the updating formula reduces to the standard

BFGS formula for the approximation of the Hessian� The de�nition of pt�� using rt��
is introduced to assure that ��t���T pt�� � �� which guarantees the hereditary positive

de�niteness of the updates Bt� The quantities ��� ��� are choosen from numerical ex�

periments� they can be changed� This updating formula provides a symmetric positive

de�nite approximation for ��L
�x� � Also� in actual implementation� the second term in

Q�d� in ����� is replaced by �r� x��d�
Therefore� the quadratic program solved in this iteration is	 �nd d that

minimizes �r� x��d� ����dT  Bd

subject to gi� x� � �rgi� x��d
�

 �� i 
 � to k

�

 �� i 
 k � � to m

�����

where  B is the current approximation for ��L
�x� �

Let �d denote the optimum solution of the quadratic program ������ and let �� 


����� � � � � ��m� denote the associated Lagrange multiplier vector corresponding to the

constraints in ������ If �d 
 �� from the optimality conditions for the quadratic program

������ it can be veri�ed that � x� ��� together satisfy ����� and we terminate� If �d �
 ��

it will be a descent direction for the merit function at  x� In the quadratic programm

������ to make sure that the Taylor series approximations remain reasonable� one

could add additional bound conditions of the form ��j �
 dj �
 �j � j 
 � to n� where

�j are suitably choosen small positive numbers�

The form of the function that is minimized in the line search in this iteration is

the merit function which is a L��penalty function

S�x� 
 �x� �
kX
i��

 �ijgi�x�j�
mX

i�k��

 �ijminimum f�� gi�x�gj �����

where the last two terms are weighted sums of the absolute constraint violations� The

weights  �i used in ����� satisfy �i � j��ij� they are usually obtained from

 �i 
 maximum fj��ij� ������i � j��ij�g � i 
 � to m�
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where �i are the weights used in the previous iteration� In Theorem ���� given below

we prove that if �d �
 �� it is a descent direction at the current point  x� for the specially

choosen merit functions S�x� de�ned in ����� �this means that for � � � and small

S� x�� �d� � S� x�� i� e�� that S�x� strictly decreases as we move from  x in the direction
�d�� The merit function S�x� is minimized on the half�line fx 	 x 
  x � � �d� � �


 �g�
For this we de�ne f��� 
 S� x � � �d� and minimize f��� over � �


 � by using some

one dimensional line search algorithm �see Chapter ���� If �� is the value of � that

minimizes f��� over � �

 �� let �x 
  x� �� �d� The point �x is the new point� it is obtained

by moving a step length of �� from  x in the direction �d�

If �x� �� satisfy ����� to a reasonalbe degree of approximation� the method termi�

nates� otherwise it moves to the next iteration with them�

The Descent Property

Theorem ���� Suppose  B is symmetric and PD� Let �d� �� be the optimum solution

and the associated Lagrange multiplier vector for the quadratic program ���
��� If
�d �
 �� it is a descent direction for the merit function S�x� at  x�

Proof� By the �rst order necessary optimality conditions for the quadratic program

����� we have

r� x� � �  B �d�T � ��rg� x� 
 �

��i�gi� x� � �rgi� x�� �d� 
 � � i 
 � to m�
�����

So� for � positive and su�ciently small� since all the functions are continuously di�er�

entiable� we have

f��� 
 S� x� � �d� 
 � x� � ��r� x�� �d�
kX
i��

 �ijgi� x� � ��rgi� x�� �dj

�
mX

i�k��

 �i�minf�� gi� x� � ��rgi� x�� �dg� � o���

�����

where o��� is a function of � satisfying the property that the limit �o������ as �� �

is � �the reason for the minus sign in the last line of ����� is the following� Since

minf�� gi�x�g �
 �� jminf�� gi�x�gj 
 �minf�� gi�x�g��
Let J 
 fi 	 k � � �
 i �
 m� gi� x� � �g� the index set of inequality constraints in

the original problem ���� violated by the current point  x� For k � � �
 i �
 m� i �� J�
if gi� x� 
 �� then �rgi� x�� �d �
 �� from the constraints in ������ So� when � is positive

but su�ciently small� for k � � �

 i �
 m� i �� J� minf�� gi� x� � ��rgi� x�� �dg 
 ��

Therefore�

mX
i�k��

 �i�minf�� gi� x� � ��rgi� x�� �dg� 

X
i�J

 �i�gi� x� � ��rgi� x�� �d� � ������
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Also� for � �
 i �
 k� �rgi� x�� �d 
 �gi� x� by the constraints in ������ Therefore

kX
i��

 �ijgi� x� � ��rgi� x�� �dj 
 ��� ��
kX
i��

 �ijgi� x�j � ������

#From ����� we have �r� x�� �d 
 � �dT  B �d����rg� x�� �d 
 � �dT  B �d�
Pm

i�� ��i�rgi� x�� �d 


� �dT  B �d�Pm
i�� ��igi� x�� Using this and ������� ������ in ������ we get

f��� 
 � x� �
kX
i��

 �ijgi� x�j �
X
i�J

 �igi� x�

� ��� �dT  B �d�
kX
i��

 �ijgi� x�j �
mX
i��

��igi� x��
X
i�J

 �i�rgi� x�� �d� � o���


 f��� � ��� �dT  B �d�
kX
i��

� �ijgi� x�j�  �igi� x��

�
X
i�J

��igi� x��
X
i�J

� �i�rgi� x�� �d� ��igi� x��� � o��� �

�����

where J 
 fk � �� � � � �mg n J� Now �dT  B �d � � since  B is PD and �d �
 �� Also�Pk
i��� �ijgi� x�j���igi� x�� �
 �� since  �i �
 j��ij for all i 
 � to k� Again

P
i�J ��igi� x� �
 �

since ��i �
 � and gi� x� �
 � for all i � J 
 fk � �� � � � �mg n J� Further� for i � J�

gi� x� � �� the constraints in the quadratic program imply �rgi� x�� �d �

 �gi� x� � ��

therefore�
P

i�J� �i�rgi� x�� �d � ��igi� x�� �

P

i�J jgi� x�j� �i � ��i� �
 �� All this implies

that the coe�cient of � on the right hand side of ����� is strictly negative� that is�

f���� f��� � � when � is su�ciently small and positive�

It is possible that even though the original problem is feasible and has a KKT

point� the quadratic program ����� may be infeasible in some steps� See Example

���� In such steps� it is possible to de�ne an alternate quadratic program of higher

dimension which is always feasible� whose solution again provides a descent direction

for the merit function S�x�� One such modi�cation is given by the following quadratic

programming problem

minimize �r� x��d� ����dT  Bd� �
 mX
i��

ui �
kX
i��

vi
�

subject to gi� x� � �rgi� x��d� ui � vi 
 � � i 
 � to k

gi� x� � �rgi� x��d� ui �
 � � i 
 k � � to m

ui� vi �
 �� for all i

������

where � is a positive penalty parameter�
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The quadratic program ������ is always feasible� since� d 
 � leads to a feasible

solution to it� Let �d� �� be an optimum solution and the associated Lagrange multiplier

vector for ������� If �d �
 �� it can be shown that it provides a descent direction for

the merit function S�x� at the current point  x using arguments similar to those in the

proof of Theorem ����� and the method proceeds as usual� If ����� is infeasible and
�d 
 � is an optimum solution of ������� we cannot conclude that  x is a KKT point for

the original problem ����� and the method breaks down� however� the possibility of

this occurrence can be discounted in practice�

Example ��


Consider the following nonlinear program from the paper of K� Tone �������

Minimize �x� 
 x���x
�
�

Subject to g��x� 
 x���x
�
���� 
 �

g��x� 
 x� � � �
 �

g��x� 
 x�� � �
 � �

������

The set of feasible solutions for this problem is the thick chord of the circle in R� in

Figure ���� It can be veri�ed that x 
 ��� ��T is an optimum solution of this problem�

1

0 1

Figure ��
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We have	
r�x� 
 ��x�� � x��

rg��x� 
 �x�� x��

rg��x� 
 ��� ��

rg��x� 
 ��� �� �

We try to solve this problem by the recursive quadratic programming method using

x� 
 ���������T as the initial point� The constraints for the initial quadratic pro�

gramming subproblem are

g��x
�� � �rg��x���d 
 �����d���d� 
 �

g��x
�� � �rg��x���d 
 � ��� d� �


 �

g��x
�� � �rg��x���d 
 � �� � d� �
 � �

Even though the original NLP is feasible and has an optimum solution� it can be

veri�ed that this quadratic subproblem is infeasible� So� we use the quadratic pro�

gramming subproblem as in ������� Taking the initial approximation to the Hessian

of the Lagrangian to be B� 
 I�� this leads to the following quadratic programming

problem�

minimize ���d���d�������d�� � d���

���u� � u� � u� � v��

subject to �d���d� �u��v�
 ���

d� �u� �

 ��

d� �u��
 ��

u�� v�� u�� u� �

 � �

������

Taking the penalty parameter � 
 ����� this quadratic program has �d 
 ������ ���T
as the optimum solution with �� 
 ���� � ��� ����� �� � �� as the associated Lagrange

multiplier vector corresponding to the constraints�

If we take penalty parameter vector � 
 ������ ����� ����� for constructing the

merit function� we get the merit function

S�x� 
 x�� � x�� � ����jx�� � x�� � ��j� ����jminf�� x� � �gj� ����jminf�� x� � �gj �

We minimize S�x� on the half�line fx��� �d 
 ����� � � �����������T � � �
 �g� This
problem can be solved using some of the line minimization algorithms discussed in

Chapter ��� If the output of this problem is x�� we update the Hessian approximation

B� and with x�� �� move over to the next quadratic programming subproblem and

continue in the same way�

Under the assumptions	

�i� the quadratic program has an optimum solution in each step�

�ii� if �x� �� satis�es the KKT optimality conditions ������ then letting J�x� 
 fi 	
� �
 i �
 m� gi�x� 
 �g� we have frgi�x� 	 i � J�x�g is linearly independent� �i � �
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for all i � J�x� � fk � �� � � � �mg� and for any y �
 �� y � fy 	 �rgi�x�� y 
 �� i �
J�x�g� yT ���L�x����x�

�
y � ��

�iii� the initial point x� is su�ciently close to a KKT point for �����

it has been proved �see references ������ ������ that the sequence �xr� �r� generated by

the algorithm converges superlinearly to �x� �� which together satisfy ������

These recursive quadratic programming methods have given outstanding numer�

ical performance and thereby attracted a lot of attention� However� as pointed out

above� one di�culty with this approach is that the quadratic programming problem

����� may be infeasible in some steps� even if the original nonlinear program has an

optimum solution� in addition the modi�ed quadratic program ������ may have the

optimum solution �d 
 �� in which case the method breaks down� Another di�culty is

that constraint gradients need to be computed for each constraint in each step� even for

constraints which are inactive� Yet another di�culty is the function f��� minimized

in the line search routine in each step� which is a non�di�erentiable L��penalty func�

tion� To avoid these and other di�culties� the following modi�ed sequential quadratic

programming method has been proposed for solving ���� by K� Schittkowski ������

������

Choose the initial point x�� multiplier vector ��� B� 
 I or some PD symmetric

approximation for ��L�x�����
�x� � �� � R�� �� � Rm ��� � �� �� � �� and constants � � ��

� � �� � � � � �� The choice of � 
 ����� � 
 ���� � 
 ���� and suitable positive

values for ��� �
� is reported to work well by K� Schittkowski ������� Evaluate �x���

gi�x
��� rgi�x��� i 
 � to m and go to stage ��

General Stage r��	 Let xr� �r denote the current solution and Lagrange multiplier

vector� De�ne

J� 
 f�� � � � � kg 	 fi 	 k � � �
 i �
 m� and either gi�x
r� �
 � or �ri � �g

J� 
 f�� � � � �mg n J� �

The constraints in ���� corresponding to i � J� are treated as the active set of

constraints at this stage� constraints in ���� corresponding to i � J� are the current

inactive constraints�

Let Br be the present matrix which is a PD symmetric approximation for ��L�xr ��r�
�x� �

this matrix is updated from step to step using the BFGS quasi�Newton update formula

discussed earlier� The quadratic programming subproblem to be solved at this stage

contains an additional variable� xn��� to make sure it is feasible� It is the following

minimize P �d� 

�


dTBrd� �r�xr��d� �



�
�rx

�

n��

�
subject to �rgi�xr��d� ��� xn���gi�x

r�

�

 �� i 
 � to k
�

 �� i � J� � fk � �� � � � �mg

�rgi�xsi��d� gi�x
r� �
 �� i � J�

� �
 xn�� �
 �

������
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where� for each i � J�� x
si denotes the most recent point in the sequence of points

obtained under the method� at which rgi�x� was evaluated� and �r is a positive penalty
parameter which is updated in each step using the formula

�r 
 maximum

�
�� �

����dr���TAr��u
r�����

�� xr��n��

��
�dr���TBr��dr��

�
������

where xr��n�� u
r��� dr�� are the value of xn�� in the optimum solution� the optimum

Lagrange multiplier vector� and the optimum d�vector� associated with the quadratic

programming problem in the previous stage� �� � � is a constant� and Ar�� is the

n�m matrix� whose jth column is the gradient vector of gi�x� computed at the most

recent point� written as a column vector�

By de�nition of the set J�� the vector �d 
 �� xn�� 
 �� is feasible to this quadratic

program� and hence� when Br is PD� this quadratic program ������ has a �nite unique

optimum solution� One could also add additional bound constraints on the variables

of the form �j �
 dj �
 �j � j 
 � to n� where �j are suitable chosen positive numbers�

to the quadratic programming subproblem ������� as discussed earlier�

Let �dr� xrn���� u
r� be the optimum solution and the optimum Lagrange multiplier

vector� for the quadratic program ������� The solution of the quadratic programming

subproblem ������ gives us the search direction dr� for conducting a line search for a

merit function or line search function corresponding to the original nonlinear program

����� If xrn�� � �� change �r into ��r in ������ and solve ������ after this change� If

this fails to lead to a solution with the value of xn�� within the upper bound� de�ne

dr 
 �B��
r

�rx���r �x
r� �r��

�T
ur 
 �r �r����r �x

r� �r��
������

where ��r �x
r� �r� is the line search function or the merit function de�ned later on in

�������

The new point in this stage is of the form

xr�� 
 xr � �rd
r

�r�� 
 �r � �r�u
r � �r�

where �r is a step length obtained by solving the line search problem

minimize h��� 
 ��r���x
r � �dr� �r � ��ur � �r��

over � � R�� where

���x� �� 
 �x��
X
i��

��igi�x�� �


�i�gi�x��

��� �



X
i�

��i ��i ������

where � 
 f�� � � � � kg 	 fi 	 k � i �
 m� gi�x� �
 �i��ig� � 
 f�� � � � �mg n �� and the

penalty parameters �i are updated using the formula

�r��i 
 maximum

�
�ri �

r
i �

m�uri � �ri �
�

��� xrn����d
r�TBrdr

�
� i 
 � to m� ������



�� Chapter �� Linear Complementarity Problem� Its Geometry� and Applications

The sequence f�ri 	 r 
 �� �� � � �g is a bounded sequence with �ri �
 � for all r� and it

allows the possibility of decreasing the penalty parameters �i� A possible choice for

updating these parameters �r from stage to stage is by the formula

�ri 
 minimum
n
��

rp
�ri

o
� r 
 �� � � � � � i 
 � to m�

The function ���x� �� is a di�erentiable augmented Lagrangian function� If �dr� ur�

are obtained from the solution of the quadratic program ������� let �r�� be obtained

using ������� On the other hand� if �dr� ur� are obtained from ������� let �r�� 
 �r�

If d h���
d�

�

 �� replace �r by ��r� and go back to solving the modi�ed quadratic

subproblem ������� Otherwise� perform a line search to minimize h��� with respect

to �� over � �

 �� and let �r be the optimum value of � for this line minimization

problem� De�ne
xr�� 
 xr � �rd

r

�r�� 
 �r � �r�u
r � �r�

update the matrix Br by the BFGS updating formula ����� and go to the next stage

with these new quantities�

The algorithm can be terminated in the rth stage� if the following conditions are

satis�ed
�dr�TBrd

r �

 ��

mX
i��

juri gi�xr�j �
 �

krxL�x
r� ur��k� �
 �

kX
i��

jgi�xr�j�
mX

i�k��

j minimum ��� gi�x
r��j �


p
� �

For a global convergence analysis of this algorithm under suitable constraint quali�ca�

tion assumptions� see �������

Algorithms for Quadratic Programming Problems

In this book we will discuss algorithms for quadratic programming problems which

are based on its transformation to an LCP as discussed above� Since the quadratic

program is a special case of a nonlinear program� it can also be solved by the reduced

gradient methods� linearly constrained nonlinear programming algorithms� and various

other methods for solving nonlinear programs� For a survey of all these nonlinear

programming algorithms� see Chapter ���

��� TWO PERSON GAMES

Consider a game where in each play of the game� player I picks one out of a possible

set of his m choices and independently player II picks one out of a possible set of his
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N choices� In a play� if player I has picked his choice� i� and player II has picked his

choice j� then player I loses an amount a�ij dollars and player II loses an amount b�ij
dollars� where A� 
 �a�ij� and B� 
 �b�ij� are given loss matrices�

If a�ij � b�ij 
 � for all i and j� the game is known as a zero sum game� in

this case it is possible to develop the concept of an optimum strategy for playing

the game using Von Neumann�s Minimax theorem� Games that are not zero sum

games are called nonzero sum games or bimatrix games� In bimatrix games it is

di�cult to de�ne an optimum strategy� However� in this case� an equilibrium pair

of strategies can be de�ned �see next paragraph� and the problem of computing an

equilibrium pair of strategies can be transformed into an LCP�

Suppose player I picks his choice i with a probability of xi� The column vector

x 
 �xi� � Rm completely de�nes player I�s strategy� Similarly let the probability

vector y 
 �yj� � RN be player II�s strategy� If player I adopts strategy x and player

II adopts strategy y� the expected loss of player I is obviously xTA�y and that of player

II is xTB�y�

The strategy pair �x� y� is said to be an equilibrium pair if no player bene�ts

by unilaterally changing his own strategy while the other player keeps his strategy in

the pair �x� y� unchanged� that is� if

xTA�y �
 xTA�y for all probability vectors x � Rm

and

xTB�y �
 xTB�y for all probability vectors y � RN �

Let �� � be arbitrary positive numbers such that aij 
 a�ij�� � � and bij 
 b�ij�

� � � for all i� j� Let A 
 �aij�� B 
 �bij�� Since xTA�y 
 xTAy � � and xTB�y 


xTBy � � for all probability vectors x � Rm and y � RN � if �x� y� is an equilibrium

pair of strategies for the game with loss matrices A�� B�� then �x� y� is an equilibrium

pair of strategies for the game with loss matrices A� B� and vice versa� So without any

loss of generality� consider the game in which the loss matrices are A� B�

Since x is a probability vector� the condition xTAy �

 xTAy for all probability

vectors x � Rm is equivalent to the system of constraints

xTAy �
 Ai�y for all i 
 � to m�

Let er denote the column vector in Rr in which all the elements are equal to �� In

matrix notation the above system of constraints can be written as �xTAy�em �

 Ay�

In a similar way the condition xTBy �

 xTBy for all probability vectors y � RN is

equivalent to �xTBy�eN �

 BTx� Hence the strategy pair �x� y� is an equilibrium pair

of strategies for the game with loss matrices A� B i�

Ay �
 �xTAy�em

BTx �
 �xTBy�eN �
������
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Since A� B are strictly positive matrices� xTAy and xTBy are strictly positive numbers�

Let � 
 x��xTBy� and 	 
 y��xTAy�� Introducing slack variables corresponding to

the inequality constraints� ������ is equivalent to���u
v

����
��� � A
BT �

������ �
	

��� 


����em
�eN

������u
v

��� �

 ��

��� �
	

��� �

 ��

���u
v

���T ��� �
	

��� 
 � �

�����

Conversely� it can easily be shown that if �u� v� �� 	� is a solution of the LCP ����� then

an equilibrium pair of strategies for the original game is �x� y� where x 
 ���
P

�i� and

y 
 	��
P

	j�� Thus an equilibrium pair of strategies can be computed by solving the

LCP ������

Example ���

Consider the game in which the loss matrices are

A� 


��� � � �
� � �

��� B� 


����� � �
� �� �

��� �

Player I�s strategy is a probability vector x 
 �x�� x��
T and player II�s strategy is a

probability vector y 
 �y�� y�� y��
T � Add � to all the elements in A� and  to all the

elements in B�� to make all the elements in the loss matrices strictly positive� This

leads to

A 


���   �
�  

��� B 


��� � � 
 � �

��� �

The LCP corresponding to this game problem is����	
u�
u�
v�
v�
v�


�����
����	
� �   �
� � �  
�  � � �
� � � � �
 � � � �


����
����	
��
��
	�
	�
	�


���� 


����	
��
��
��
��
��


���� ������

u� v� �� 	 �
 � and u��� 
 u��� 
 v�	� 
 v�	� 
 v�	� 
 � �

Example ����

The Prisoner�s Dilemma�

Here is an illustration of a bimatrix game problem from ������� Two well known

criminals were caught� During plea bargaining their Judge urged them both to confess

and plead guilty� He explained that if one of them confesses and the other does not�

the one who confesses will be acquitted and the other one given a sentence of �� years
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in prison� If both of them confess� each will get a � year prison sentence� Both of

them know very well that the prosecution�s case against them is not strong� and the

established evidence against them rather weak� However� the Judge said that if both

of them decide not to confess� he will book both of them on some tra�c violations for

a year�s prison term each� For each prisoner� let � refer to his choice of confessing and

 to the choice of pleading not guilty� Measuring the loss in years in prison� their loss

matrices are	

A B

Player II�s Choice � �  � 

� � � � ��

Player I�s Choice

 �� � � �

In this game it can be veri�ed that the probability vectors �x 
 ��� ��T � y 
 ��� ��T �

provide the unique equilibrium pair for this game� resulting in a loss of a �ve year prison

term for each player� But if both player�s collude and agree to use the probability

vectors � x 
 ��� ��T �  y 
 ��� ��T �� the result� loss of a year�s prison term for each

player� is much better for both� The trouble with the strategy � x�  y� is that each can

gain by double�crossing the other�

Example ����

The Battle of the Sexes�

Here is another illustration of a bimatrix game from ������� A newly married couple

have to decide how they will spend Friday evening� The husband �player II� proposes

to go to a boxing match and the wife �player I� proposes to go to a musical concert�

The man rates the pleasure �or gain� or negative loss� he derives by going to the concert

and the boxing match to be � and � units respectively on a scale from � to �� and the

corresponding �gure for the woman are � and � units respectively� For each player let

��  refer to the choices of insisting on going to concert� boxing match respectively� If

their choices disagree� there is a �ght� and neither gains any pleasure from going out

that evening� Treating loss as negative pleasure� here are the loss matrices�

A B

Player II�s Choice � �  � 

� �� � �� �

Player I�s Choice

 � �� � ��
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For this game� it can be veri�ed that the probability vectors �x 
 ��� ��T � y 
 ��� ��T ��

� x 
 ��� ��T �  y 
 ��� ��T � are both equilibrium pairs� The losses from the two equi�

librium pairs �x� y�� � x�  y� are distinct� �x� y� will be preferred by player I� whereas II

will prefer � x�  y�� Because of this� these equilibrium pairs are unstable� Even if player

I knows that II will use the strategy  y� she may insist on using strategy x rather than

 x� hoping that this will induce II to switch to y� So� in this game� it is di�cult to

foresee what will happen� The probability vectors ��x 
 ����� ����� �y 
 ����� ����T � is

another equilibrium pair� In this problem� knowledge of these equilibrium pairs seems

to have contributed very little towards the development of any �optimum� strategy�

Even though the theory of equilibrium strategies is mathematically elegant� and

algorithms for computing them �through the LCP formulation� are practically e�cient�

they have not found many real world applications because of the problems with them

illustrated in the above examples�

��� OTHER APPLICATIONS

Besides these applications� LCP has important applications in the nonlinear analysis of

certain elastic�plastic structures such as reinforced concrete beams� in the free bound�

ary problems for journal bearings� in the study of �nance models� and in several other

areas� See references ���� to ���� ���� ���� ����� ����� ���� ���� ���� ������

��� THE NONLINEAR

COMPLEMENTARITY PROBLEM

For each j 
 � to n� let fj�z� be a real valued function de�ned on Rn� Let f�z� 


�f��z�� � � � � fn�z��
T � The problem of �nding z � Rn satisfying

z �
 �� f�z� �
 �

zjfj�z� 
 �� for each j 
 � to n
������

is known as a nonlinear complementarity problem �abbreviated as NLCP�� If we de�ne

fj�z� 
 Mj�z � qj for j 
 � to n� it can be veri�ed that ������ becomes the LCP

������ Thus the LCP is a special case of the NLCP� Often� it is possible to transform

the necessary optimality conditions for a nonlinear program into that of an NLCP and

thereby solve the nonlinear program using algorithms for NLCP� The NLCP can be

transformed into a �xed point computing problem� as discussed in Section ����� and

solved by the piecewise linear simplicial methods presented in Section ��� Other than

this� we will not discuss any detailed results on NLCP� but the references ����� to �����

���� ���� ����� can be consulted by the interested reader�
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��� Exercises

��� Consider the two person game with loss matrices A� B� Suppose A � B 
 ��

Then the game is said to be a zero sum game �see references ����� ������� In this

case prove that every equilibrium pair of strategies for this game is an optimal pair

of strategies in the minimax sense �that is� it minimizes the maximum loss that each

player may incur� See references ����� ������� Show that the same results continue to

hold as long as aij � bij is a constant independent of i and j�

��� Consider the bimatrix game problem with given loss matrices A� B� Let x 


�x�� � � � � xm�T and y 
 �y�� � � � � yn�
T be the probability vectors of the two players� Let

X 
 �x�� � � � � xm� xm���
T and Y 
 �y�� � � � � yn� yn���

T � Let er be the column vector in

Rr all of whose entries are �� Let S 
 fX 	 BTx� eTnxm�� �
 �� eTmx 
 �� x �
 �g and

T 
 fY 	 Ay�eTmyn�� �
 �� eTny 
 �� y �
 �g� Let Q�X�Y � 
 xT �A�B�y�xm���yn���
If �x� y� is an equilibrium pair of strategies for the game and xm�� 
 xTBy� yn�� 


xTAy� prove that �X�Y � minimizes Q�X�Y � over S�T 
 f�X�Y � 	 X � S� Y � Tg�
�O� L� Mangasarian�

��� Consider the quadratic program	

Minimize Q�x� 
 cx� �
�x

TDx

Subject to Ax �
 b

x �
 �

where D is a symmetric matrix� K is the set of feasible solutions for this problem� x

is an interior point of K �i� e�� Ax � b and x � ���

�a� What are the necessary conditions for x to be an optimum solution of the problem�

�b� Using the above conditions� prove that if D is not PSD� x could not be an optimum

solution of the problem�

��	 For the following quadratic program write down the corresponding LCP�

Minimize ��x� � �x� � x� ��x�� � x�� �
�
�x

�
�

Subject to x� � x� � x� �
 �

xj �
 � for allj �

If it is known that this LCP has a solution in which all the variables x�� x�� x� are

positive� �nd it�
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��
 Write down the LCP corresponding to

Minimize cx� �
�x

TDx

Subject to x �
 � �

��� Let

M 


���� �
� �

��� � q 


��� �
�

��� �

Show that the LCP �q�M� has four distinct solutions� For n 
 �� construct a square

matrix M of order � and a q � R� such that �q�M� has eight distinct solutions�

Hint� Try �M 


�������  �� ��
�� � ��
�� �� �

������� q 


������� �
�
�

������� � or try M 
 �I� q � � �

���� Let

M 


������� � � �
� � �
� � �

������� q 


������� �
��
�

������� �

Find out a solution of the LCP �q�M� by inspection� However� prove that there exists

no complementary feasible basis for this problem�

�L� Watson�

���� Test whether the following matrices are PD� PSD� or not PSD by using the

algorithms described in Section ������������ � � ��
� � �
�  �

������� �

������� � � ��
� � �
� � �

������� �

������� � ��� 
�  ��
� � �

������� �

������� � � �
� � �
� � �

������� �

���� Let Q�x� 
 ����xTDx� cx� If D is PD� prove that Q�x� is bounded below�

���� Let K be a nonempty closed convex polytope in Rn� Let f�x� be a real valued

function de�ned on Rn� If f�x� is a concave function� prove that there exists an

extreme point of K which minimizes f�x� on K�

���� Let D be an arbitrary square matrix of order n� Prove that� for every positive

and su�ciently large �� the function Q��x� 
 xT �D � �I�x� cx is a concave function

on Rn�
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���� Consider the following quadratic assignment problem�

minimize z�x� 

nX
i��

nX
j��

nX
p��

nX
q��

cijpqxijxpq

subject to
nX
j��

xij 
 �� for all i 
 � to n

nX
i��

xij 
 �� for all j 
 � to n

xij �
 �� for all i� j 
 � to n

������

and

xij integral for i� j 
 � to n � ������

Show that this discrete problem ������� ������ can be posed as another problem of the

same form as ������ without the integrality constraints �������

���� Consider an optimization problem of the following form

minimize
�xTDx����

dx� �

subject to Ax �
 b

x �
 �

where D is a given PSD matrix and it is known that dx � � � � on the set of fea�

sible solutions of this problem� Using the techniques of fractional programming �see

Section ��� in ������ show how this problem can be solved by solving a single con�

vex quadratic programming problem� Using this� develop an approach for solving this

problem e�ciently by algorithms for solving LCPs

�J� S� Pang� ��������

���	 Let D be a given square matrix of order n� Develop an e�cient algorithm which

either con�rms that D is PSD or produces a vector y � Rn satisfying yTDy � ��

���
 Consider the following quadratic programming problem

minimize Q�x�
 cx�
�


xTDx

subject to a�
 Ax �
 b

l�
 x �
 u

where A� D� c� a� b� l� u are given matrices of orders m � n� n � n� � � n� m � ��

m� �� n� �� n�� respectively� and D is symmetric� Express the necessary optimality

conditions for this problem in the form of an LCP� �R� W� H� Sargent� �������
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���� Suppose D is a symmetric matrix of order n� Show that the KKT necessary

optimality conditions for the quadratic program

minimize cx� ����xTDx

subject to � �
 x �
 b

where b � � is a given vector� are of the form	 �nd� x� y �

 � in Rn satisfying cT �

Dx� y �
 �� b� x �
 �� xT �cT �Dx� y� 
 yT �b� x� 
 �� Express these conditions in

the form of an LCP� Also prove that this is equivalent to �nding an x � Rn satisfying

� �
 x �

 b and �u� x�T �Dx� cT � �
 � for all � �
 u �


 b� Prove that this LCP always

has a solution and that the solution is unique if D is a P �matrix�

�B� H� Ahn ������ S� Karamardian �������

���� Weighted Min�Max Location Problem� Givenm points ai 
 �ai�� � � � � a
i
n�

T

� Rn� i 
 � to m� and positive weights �i� i 
 � to m associated with these points�

de�ne the function �x� 
 maximum f�i
p
�x� ai�T �x� ai� 	 i 
 � to mg over x �

Rn� The weighted min�max location problem is to �nd an x � Rn that minimizes

�x�� Show that this problem is equivalent to the problem

minimize �

subject to �� ��i �kaik� �
nX
j��

x�j � 
nX

j��

aijxj� �
 �� i 
 � to m ������

where � is treated as another variable in ������� Consider the following quadratic

program

minimize Q�X� 

nX

j��

x�j � xn��

subject to xn�� � 
nX
j��

aijxj �
 kaik� � �

��i
� i 
 � to m

������

where xn�� is an additional variable in ������� X 
 �x�� � � � � xn� xn���� Prove that

if �x� �� is feasible to ������� �x� �� xn��� where xn�� 

Pn

j�� x
�

j � is feasible to ������

with Q�X� 
 �� Conversely if � x�  �� is feasible to ������ with Q�  X� �
 �� then show

that � x 
 � x�� � � � �  xn��  �� is feasible to ������� Also� for each � � �� prove that the

optimum solution of ������ is unique� Treating � as a parameter� denote the optimum

solution of ������ as a function of � by X���� Let �� be the smallest value of � for

which Q�X���� �
 �� Prove that x���� is the optimum solution of the min�max location

problem� Use these results to develop an algorithm for the min�max location problem

based on solving a parametric right hand side LCP�

�R� Chandrasekaran and M� J� A� P� Pacca� �����

���� Let F be a square matrix of order n� In general there may be no relation

between determinant ��F � FT ��� and determinant �F �� Establish conditions under

which determinant ��F � FT ��� �
 determinant �F ��
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���� Let K � Rn convex and Q�x� 
 cx� �
�x

TDx� If Q�x� is convex over K and K

has nonempty interior� prove that Q�x� is convex over the whole space Rn�

���� Concave Regression Problem� Here� given a real valued function �t� de�

�ned on an interval� it is desired to �nd a convex �or concave� depending on the

application� function that approximates it as closely as possible� Speci�cally� suppose

we are given i 
 ��i�� i 
 � to n� where �� � �� � � � � � �n� So we are given the

values of �t� at the points t 
 ��� � � � � �n� It is required to �nd real values f�� � � � � fn
so that fi 
 f��i�� i 
 � to n where f is a convex function de�ned on the real line�

that minimizes the measure of deviation
Pn

i�� �i�i � fi�
� where �i� i 
 � to n are

given positive weights� Formulate this problem as an LCP�

���� K� and K� are two convex polyhedra in Rn� each of them provided as the set

of feasible solutions of a given system of linear inequalities� Develop an algorithm for

the problem

minimize kx� yk
x � K��y � K� �

���� Sylvester�s Problem� We are given a set of n points in Rm� fA��� � � � � A�ng�
where A�j 
 �a�j� � � � � amj�

T � j 
 � to n� It is required to �nd the smallest diameter

sphere in Rm containing all the points in the set fA��� � � � � A�ng� Transform this into a

quadratic program and discuss an algorithm for solving it� Apply your algorithm to �nd

the smallest diameter circle containing all the points in f��� ��� ���� �� ������� ��� ��g
in R��

�References ����� �����

���� Let K be any convex polyhedral subset of Rn �you can assume that K is the

set of feasible solutions of Ax �
 b where A� b are given�� Let x�� x� be given points in

Rn� Let �x�  x be respectively the nearest points in K �in terms of the usual Euclidean

distance� to x�� x� respectively� Prove that k�x�  xk �
 kx� � x�k�

���	 Let � 
 ���� � � � � �n� be a given row vector of Rn and let x� � Rn be another

given column vector� It is required to �nd the nearest point in K 
 fx 	 �x �
 �� x �
 �g
to x�� in terms of the usual Euclidean distance� For this� do the following� Let � be

a real valued parameter� Let �� be the smallest nonnegative value of � for which

the piecewise linear� monotonically decreasing function ��x� � ��T �� assumes a non�

positive value� Let x 
 �x� � ���
T ��� �For any vector y 
 �yj� � Rn� y� 
 �y�j �

where y�j 
 Maximum f�� yjg for each j�� Prove that x is the nearest point in K to

x��
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Extend this method into one for �nding the nearest point in � 
 fx 	 x �
 �� �x �

�g to x�� where � is a given number� assuming that � �
 
�
�W� Oettli �������

���
 Let M be a square matrix of order n and q � Rn� Let z � Rn be a vector of

variables� De�ne	 fi�z� 
 minimum fzi�Mi�z � qig� that is

fi�z� 
 Ii�z if �Mi� � Ii��z � qi �
 �


 Mi�z � qi if �Mi� � Ii��z � qi �
 �

for each i 
 � to n�

�a� Show that fi�z� is a piecewise linear concave function de�ned on Rn

�b� Consider the system of equations

fi�z� 
 � i 
 � to n �

Let z be a solution of this system� Let w 
 Mz � q� Prove that �w� z� is a

complementary feasible solution of the LCP �q�M��

�c� Using �b� show that every LCP is equivalent to solving a system of piecewise linear

equations�

�R� Saigal�

���� For j 
 � to n de�ne x�j 
 Maximum f�� xjg� x�j 
 � Minimum f�� xjg� Let

x 
 �xj� � Rn� x� 
 �x�j �� x
� 
 �x�j �� Given the square matrix M of order n� de�ne

the piecewise linear function

TM �x� 
 x� �Mx� �

Show that TM �x� is linear in each orthant of Rn� Prove that �w 
 x�� z 
 x�� solves

the LCP �q�M� i� q 
 TM �x��

�R� E� Stone �������

���� Let D be a given square matrix of order n� and f�x� 
 xTDx� Prove that there

exists a nonsingular linear transformation	 y 
 Ax �where A is a square nonsingular

matrix of order n� such that

f�x� 
 y�� � � � �� y�p � y�p�� � � � �� y�r

where � �
 p �
 r �
 n� Discuss an e�cient method for �nding such a matrix A� given

D�

Find such a transformation for the quadratic form f�x�� x�� x�� 
 x���x
�
��x

�
��x�x��

x�x� � x�x� �this dates back to Lagrange in ����� see D� E� Knuth ��������



���� Exercises ��

���� Sylvester�s Law of Inertia �dates from ����	 Let D be a given square

matrix of order n� and f�x� 
 xTDx� If there exist nonsingular linear transformations	

y 
 Ax� z 
 Bx �A� B are both square nonsingular matrices of order n� such that

f�x� 
 y�� � � � �� y�p � y�p�� � � � �� y�r 
 z�� � � � �� z�q � z�q�� � � � �� z�s

then prove that p 
 q and r 
 s�

This shows that the numbers p and r associated with a quadratic form� de�ned in

Exercise ���� are unique

�see D� E� Knuth ��������

���� Using the notation of Exercise ���� prove that r 
 n i� the matrix �D �DT ��

has no zero eigenvalues and that p is the number of positive eigenvalues of

�D �DT ���

Let D�� D� be two given square matrices of order n� and let D� 
 �� � ��D� �

�D�� Let r�D��� p�D�� be the numbers r� p� associated with the quadratic form f� 


xTD�x as de�ned in Exercise ����� If r�D�� 
 n for all � �
 � �

 �� prove that p�D�� 


p�D���

�See D� E� Knuth ��������

���� To Determine Optimum Mix of Ingredients for Moulding Sand in a

Foundry� In a heavy casting steel foundry� moulding sand is prepared by mixing

sand� resin �Phenol formaledhyde� and catalyst �Para toluene sulfonic acid�� In the

mixture the resin undergoes a condensation polymerization reaction resulting in a

phenol formaldehyde polymer that bonds and gives strength� The bench life of the

mixed sand is de�ned to be the length of the time interval between mixing and the

starting point of setting of the sand mix� In order to give the workers adequate time

to use the sand and for proper mould strength� the bench life should be at least ��

minutes� Another important characteristic of the mixed sand is the dry compression

strength which should be maximized� An important variable which in�uences these

characteristics is the resin percentage in the mix� extensive studies have shown that the

optimum level for this variable is  % of the weight of sand in the mix� so the company

has �xed this variable at this optimal level� The other process variables which in�uence

the output characteristics are	

x� 
 temperature of sand at mixing time

x� 
 % of catalyst� as a percent of resin added

x� 
 dilution of catalyst added at mixing �

The variable x� can be varied by adding water to the catalyst before it is mixed� An

experiment conducted yielded the following data�
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Dry Compression Strength

x� 
 � ��

x� x� 
 � �� �� �� � �� �� ��

�c ���� ��� ���� ���� ��� ���� ���� ����

��c ���� ���� ���� ��� ���� ���� ���� ���

��c ���� ���� ���� ��� ���� ��� ���� ����

Bench Life

x� 
 � ��

x� x� 
 � �� �� �� � �� �� ��

�c ���� ���� ���� ���� ���� ���� ��� ����

��c ���� ��� ��� ��� ��� ���� ���� ���

��c ��� ��� ��� ��� ���� ���� ��� ���

Bench life can be approximated very closely by an a�ne function in the variables x��

x�� x�� and dry compression strength can be approximated by a quadratic function in

the same variables� Find the functional forms for these characteristics that provide the

best approximation� Using them� formulate the problem of �nding the optimal values

of the variables in the region � �

 x� �


 ��� � �

 x� �


 ��� � �

 x� �


 ��� so as to

maximize the dry compression strength subject to the additional constraint that the

bench life should be at least ten� as a mathematical programming problem� Find an

optimum solution to this mathematical program� �Hint	 For curve �tting use either

the least squares method discussed in Section ������ or the minimum absolute deviation

methods based on linear programming discussed in ���� Section �������

�Bharat Heavy Electricals Ltd�� Hardwar� India��

���� Synchronous Motor Design Problem� There are �� important design vari�

ables �these are variables like the gauge of the copper wring used� etc� etc�� denoted by

x� to x�� and let x 
 �x�� � � � � x���
T � These variables e�ect the raw material cost for

this motor� denoted by f��x�� the e�ciency of the motor �
 �output energy���input

energy� measured as a percentage� denoted by f��x�� and the power factor �this mea�

sures leakage� it is a loss measured as a percentage� denoted by f��x�� Subroutines

are available for computing each of the functions f��x�� f��x�� f��x� for given x� The

problem is to �nd optimal values for the variables which minimizes f��x� subject to

f��x� �
 ���� and f��x� �
 �� and l �
 x �

 u� where l� u are speci�ed lower and upper

bound vectors for the variables� Discuss a method for solving this problem�
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���� Quadratic Programming Model to Determine State Taxes� It is re�

quired to determine optimum levels for various state government taxes that minimizes

instability while meeting constraints on growth rates over time� Seven di�erent taxes

are considered� sales� motor fuel� alcoholic beverages� tobacco� motor vehicle� personal

income� and corporate taxes� State government �nance is based on the assumption

of predictable and steady growth of each tax over time� Instability in tax revenue is

measured by the degree to which the actual revenue di�ers from predicted revenue�

Using past data� a regression equation can be determined to measure the growth

in tax revenue over time� Let s be the tax rate for a particular tax and St the expected

tax revenue from this tax in year t� Then the regression equation used is

logeSt 
 a� bt� cs

where a� b� c are parameters to be determined using past data to give the closest �t�

Data for the past �� years from a state is used for this parameter estimation� Clearly�

the parameter c can only be estimated� if the tax rate s for that tax has changed during

this period� this has happened only for the motor fuel and the tobacco taxes� The best

�t parameter values for the various taxes are given below �for all but the motor fuel

and tobacco taxes� the tax rate has remained the same over the �� years period for

which the tax data is available� and hence the parameter a given below for these taxes�

is actually the value of a� cs� as it was not possible to estimate a and c individually

from the data��

Table �	 Regression coe�cient values

j Tax j a b c

� Sales ���� ����

 Motor fuel ����� ��� ���

� Alcoholic beverages ����� ����

� Tobacco ���� ��� ���

� Motor vehicle ����� ����

� Personal income ����� ����

� Corporate ����� ���

The annual growth rate is simply the regression coe�cient b multiplied by ��� to

convert it to percent�

For ����� the tax revenue from each tax as a function of the tax rate can be

determined by estimating the tax base� This data� available with the state� is given

below�
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j Tax j Tax base �millions of dollars�

� Sales �����

 Motor fuel ����

� Alcoholic beverages ���

� Tobacco ��

� Motor vehicle ����

� Personal income ������

� Corporate ����

If sj is the tax rate for tax j in ���� as a fraction� xj 
 tax revenue to be collected in

���� in millions of dollars for the jth tax is expected to be	 �tax base for tax j� sj�

Choosing the decision variables to be xj for j 
 � to �� let x 
 �x�� � � � � x��
T �

The total tax revenue is
P�

j�� xj� Then the variability or instability in this revenue is

measured by the quadratic function Q�x� 
 xTV x where V � the variance�covariance

matrix estimated from past data is����������������������

������ ������� ������ ������ ������ ������ ������
������ ������ ������ ������ ������� ������

����� ������ ����� ����� ������
������ ������ ������� �������

������ ������ ������
����� ������

�����

����������������������
�

Since V is symmetric� only the upper half of V is recorded above�

The problem is to determine the vector x that minimizes Q�x�� subject to several

constraints� One of the constraints is that the total expected tax revenue for ����

should be T 
 ���� in millions of dollars� The second constraint is that a speci�ed

growth rate of � in the total tax revenue should be maintained� It can be assumed

that this overall growth rate is the function
P�

i��
xjbj
T which is a weighted average of

the growth rates of the various taxes� We would like to solve the problem treating �

as a nonnegative parameter� Of particular interest are values � 
 � % and �� %�

The other constraints are lower and upper bounds on tax revenues xj � these are

of the form � �
 xj �
 uj for each j� where uj is twice the ���� revenue from tax j� The

vector u 
 �uj� is ���� ���� ���� ���� ��� ���� ���� in millions of dollars�

Formulate this problem as an LCP and solve it using the complementary pivot al�

gorithm discussed in Chapter � Using the tax base information given above� determine

the optimal tax rates for ���� for each tax�

�F� C� White ������� my thanks to H� Bunch for bringing this paper to my attention��



���� Exercises ��

���� Consider the equality constrained nonlinear program

minimize �x�

subject to hi�x� 
 �� i 
 � to m�

The quadratic merit function for this problem is S�x� 
 �x� � ����
Pm

i���hi�x��
�

where � is a positive penalty parameter� Let x � Rn be an initial point and � 


���� � � � � �m� � Rm be a given Lagrange multiplier vector� Consider the equality

constrained quadratic program in variables d 
 �d�� � � � � dn�
T

minimize r�x�d� �
�d

TBd

subject to �h�x��T � �rh�x��d 
 ���

where B is a symmetric PD matrix of order n� If d �
 � is an optimum solution of this

quadratic program� and � 
 ���� � � � � �m� the associated Lagrange multiplier vector�

prove that d is a descent direction for S�x� at x�

���	 Let A 
 �aij� be a given square matrix of order n� Consider the usual assignment

problem

minimize z�x� 

nX
i��

nX
j��

aijxij

subject to
nX
i��

xij 
 �� j 
 � to n

subject to
nX
j��

xij 
 �� i 
 � to n

subject to xij �
 �� i� j 
 � to n �

i� Prove that if A is PD and symmetric� x 
 In 
 unit matrix of order n� is an

optimum solution for this problem� Is the symmetry of A important for this

result to be valid�

ii� Using the above� prove that if A is PD and symmetric� there exists a vector

u 
 �u�� � � � � un� satisfying

ui � uj �
 aij � ajj� i� j 
 � to n �

���
 Consider the problem of an investor having one dollar to invest in assets i 


�� � � � � n� If xi is invested in asset i� then �ixi is returned at the end of the investment

period� where ���� � � � � �n� are random variables independent of the choice of xis� with

the row�vector of means � 
 ���� � � � � �n� �� � �� and a positive de�nite symmetric

variance�covariance matrix D� In portfolio theory� under certain assumptions� it is

shown that optimal investment proportions� x 
 �x�� � � � � xn�
T � may be obtained by

maximizing the fractional objective function

g�x� 

�x

�xTDx����
�
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i� A real valued function f�x� de�ned on a convex set K � Rn is said to be pseudo�

concave on K if it is di�erentiable on K and for every x�� x� � K� rf�x���x� �
x�� �
 � implies f�x�� �
 f�x���

Prove that g�x� is pseudo�concave in fx 	 x � �g� even though it is not in general

concave on this set�

For the problem of maximizing a pseudo�concave function on a convex set� prove

that every local maximum is a global maximum�

Consider the problem

maximize g�x�

subject to
nX
j��

xj 
 �

xj �
 �� for all j �

Show that this problem has a unique optimum solution� Also� show that an optimum

solution of this problem can be obtained from the solution of the LCP ����D��

�W� T� Ziemba� C� Parkan and R� Brooks�Hill �������

���� In Section ������ the computational problems associated with the Hilbert matrix

were mentioned brie�y� Consider the following linear program

maximize cx

subject to Ax �
 b

where

A 


��������������
�
�

�
� � � � �

n��
�
�

�

 � � � �

n��

���
���

���
�

n��
�

n�� � � � �
�n

��������������
b 
 �bi 	 i 
 � to n�T 


 nX
j��

�

i� j

�
c 
 �cj 	 j 
 � to n� 


 

j � �
�

nX
i��

�

j � i

�
Clearly� this problem has the unique optimum solution x 
 ��� �� � � � � ��T and the dual

problem has the unique optimum solution � 
 �� �� �� � � � � ��� The coe�cient matrix

A is related to the Hilbert matrix of order n� Verify that when this problem is solved

by pivotal algorithms such as the simplex algorithm� or by the complementary pivot

algorithm through an LCP formulation� using �nite precision arithmetic� the results

obtained are very bad� if n exceeds ��� say�

�E� Bernarczuk� �On the results of solving some linear programming problems using

program packages of IBM and Robotron computers��
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���� Consider the LCP �q�M�� De�ne

f�z� 

nX
i��

�minimum f��Mi�z � qi � zig� zi��

Show that the LCP �q�M� is equivalent to the following concave minimization problem

minimize f�z�

subject to Mz�q�
 �

z �

 ��

�O� L� Mangasarian �������

���� Let n be a positive integer� Consider a square matrix x 
 �xij� of order n�

Order the entries xij in the matrix in the form of a vector in Rn� � in some order� Let

K � Rn� denote the set of all such vectors corresponding to PSD matrices x� Prove

that K is a convex cone� but not polyhedral� and has a nonempty interior�

���� Consider the LCP �q�M� ����� to ������ of order n� Now consider the following

mixed ��� integer programming problem �MIP�

maximize yn��
subject to � �
 My � qyn�� �
 e� x

� �
 y �
 x� � �
 yn�� �
 �

xi 
 � or � for all i 
 � to n

������

where y 
 �y�� � � � � yn�
T � x 
 �x�� � � � � xn�

T and e is the vector of all �s in Rn� Suppose

the optimum objective value in the MIP ������ is y�n���

If y�n�� 
 �� prove that the LCP �q�M� has no solution�

If y�n�� � � and �y�� x�� y�n��� is any optimum solution of the MIP ������� prove

that �w�� z�� is a solution of the LCP �q�M�� where

z� 
 ���y�n���y
�

w� 
 Mz� � q

�J� Ben Rosen� �Solution of general LCP by ��� Mixed integer programming��

Computer Science Tech� Report ����� University of Minnesota� Minneapolis� May�

������
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Chapter �

THE COMPLEMENTARY PIVOT
ALGORITHM AND ITS EXTENSION
TO FIXED POINT COMPUTING

LCPs of order � can be solved by drawing all the complementary cones in the q�� q��

plane as discussed in Chapter ��

Example ���

Let q �

��� �
��
���� M �

����� �
� ��

��� and consider the LCP �q�M�� The class of

complementary cones corresponding to this problem is shown in Figure ��	�

w� w� z� z� q

� 
 � �� �


 � �� � ��
w�� w�� z�� z� �� 
� w�z� � w�z� � 


q lies in two complementary cones Pos ��M��� I��� and Pos ��M����M���� This implies

that the sets of usable variables �z�� w�� and �z�� z�� lead to solutions of the LCP�

Putting w� � z� � 
 and solving the remaining system for the values of the

usable variables �z�� w�� lead to the solution �z�� w�� � ��� ��� Here �w�� w�� z�� z�� �

�
� �� �� 
� is a solution of this LCP� Similarly putting w� � w� � 
 and solving it for

the value of the usable variables �z�� z�� leads to the second solution �w�� w�� z�� z�� �

�
� 
� �� �
�
�� of this LCP�
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Example ���

Let q �

�����
��
��� and M �

����� �
� ��

��� and consider the LCP �q�M�� The class of

complementary cones corresponding to this problem is in Figure ��	� Verify that q is

not contained in any complementary cone� Hence this LCP has no solution�

This graphic method can be conveniently used only for LCPs of order �� In

LCPs of higher order� in contrast to the graphic method where all the complementary

cones were generated� we seek only one complementary cone in which q lies� In this

chapter we discuss the complementary pivot algorithm �which is also called the

complementary pivot method� for solving the LCP� In the LCP ����� if q �
� 
�

�w� z� � �q� 
� is a solution and we are done� So we assume q ��� 
� First we will brie�y

review some concepts from linear programming� See ����� for complete details�

��� BASES AND BASIC FEASIBLE SOLUTIONS

Consider the following system of linear equality constraints in nonnegative variables

Ax � b

x �� 

�����

where A is a given matrix of order m � n� Without any loss of generality we assume

that the rank of A is m �otherwise either ����� is inconsistent� or redundant equality

constraints in ����� can be eliminated one by one until the remaining system satis�es

this property� See ������� In this system� the variable xj is associated with the column

A�j � j � � to n� A basis B for ����� is a square matrix consisting of m columns of

A which is nonsingular� and the column vector of variables xB associated with the

columns in B� arranged in the same order� is the basic vector corresponding to it�

Let D be the matrix consisting of the n � m columns of A not in B� and let xD be

the vector of variables associated with these columns� When considering the basis B

for ������ columns in B� D� are called the basic� nonbasic columns respectively�

and the variables in xB� xD are called the basic� nonbasic variables respectively�

Rearranging the variables� ����� can be written in partitioned form as

BxB � DxD � b

xB �
� 
� xD �

� 
 �

The basic solution of ����� corresponding to the basis B is obtained by setting xD � 


and then solving the remaining system for the values of the basic variables� Clearly it

is �xB � B��b� xD � 
�� This solution is feasible to ����� i� B��b �� 
� and in this

case B is said to be a feasible basis for ����� and the solution �xB � B��b� xD � 
�
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is called the basic feasible solution �abbreviated as BFS� of ����� corresponding to

it� A basis B which is not feasible �i� e�� if at least one component of B��b is strictly

negative� is said to be an infeasible basis for ������ Thus each feasible basis B for

����� determines a unique BFS for it�

When referring to systems of type ������ the word solution refers to a vector x

satisfying the equality constraints �Ax � b�� that may or may not satisfy the nonneg�

ativity restrictions �x �
� 
�� A solution x of ����� is a feasible solution if it satis�es

x �� 
�

De�nition� Degeneracy� Nondegeneracy of Basic Solutions for 	���
� of 	���


itself� and of the b�Vector in 	���
 The basic solution associated with a given

basis B for ������ whether it is feasible or not� is said to be degenerate if at least one

component in the vector B��b is zero� nondegenerate otherwise�

A system of constraints of the form ����� is said to be nondegenerate if it has no

degenerate basic solutions �i� e�� i� in every solution of ������ at least m variables are

nonzero� when the rank of A is m�� degenerate otherwise� When A has full row rank�

the system ����� is therefore degenerate i� the column vector b can be expressed as a

linear combination of r columns of A� where r � m� nondegenerate otherwise� Thus

whether the system of constraints ����� is degenerate or nondegenerate depends on the

position of the right hand side constants vector b in Rm in relation to the columns of

A� and if the system is degenerate� it can be made into a nondegenerate system by just

perturbing the b�vector alone�

The right hand side constants vector b in the system of constraints ����� is said to

be degenerate or nondegenerate in ����� depending on whether ����� is degenerate or

nondegenerate� See Chapter �
 in ������

The de�nitions given here are standard de�nitions of degeneracy� nondegeneracy

that apply to either a system of constraints of the form ����� or the right hand con�

stants vector b in such a system� or a particular basic solution of such a system� This

should not be confused with the concepts of �principal� degeneracy or �principal� non�

degeneracy of square matrices de�ned later on in Section ���� or the degeneracy of

complementary cones de�ned in Chapter ��

As an example� consider the system of constraints given in Example ��� in Section

������ The BFS of this system associated with the basic vector �x�� x�� x�� x�� is �x �

��� 
� � 	� 
� 
� 
� 
�T and it is degenerate since the basic variable x� is zero in this

solution� The BFS of this system associated with the basic vector �x�� x�� x�� x�� can

be veri�ed to be x � �
� �� �� �� 
� 
� 
� ��T which is a nondegenerate BFS� Since the

system has a degenerate basic solution� this system itself is degenerate� also the b�

vector is degenerate in this system�

De�nition� Lexico Positive A vector a � �a�� � � � � ar� � Rr� is said to be lexico

positive� denoted by a � 
� if a �� 
 and the �rst nonzero component in a is strictly

positive� A vector a is lexico negative� denoted by a � 
� if �a � 
� Given two

vectors x� y � Rr� x � y i� x � y � 
� x � y i� x � y � 
� Given a set of vectors
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f a�� � � � � ak g � Rr� a lexico minimum in this set is a vector aj satisfying the property

that ai �� aj for each i � � to k� To �nd the lexico minimum in a given set of

vectors from Rr� compare the �rst component in each vector and discard all vectors

not corresponding to the minimum �rst component� from the set� Compare the second

component in each remaining vector and again discard all vectors not corresponding to

the minimum in this position� Repeat in the same manner with the third component�

and so on� At any stage if there is a single vector left� it is the lexico minimum� This

procedure terminates after at most r steps� At the end� if two or more vectors are left�

they are all equal to each other� and each of them is a lexico minimum in the set�

Example ���

The vector �
� 
� 
�

����


� is lexico positive� The vector �
���� �



� 	


� is

lexico negative� In the set of vectors f ���� 
���� 
�� ���� 
���� ��� ���� ����
���
��
�
���
���
��	
� g� the vector ���� 
���� 
� is the lexico minimum�

Perturbation of the Right Hand Side Constants Vector

in ����� to make it Nondegenerate�

If ����� is degenerate� it is possible to perturb the right hand side constants vector b

slightly� to make it nondegenerate� For example� let � be a parameter� positive and

su�ciently small� Let b��� � b� ��� ��� � � � � �m�T � It can be shown that if b in ����� is

replaced by b���� it becomes nondegenerate� for all � positive and su�ciently small

�this really means that there exists a positive number �� � 
 such that whenever


 � � � ��� the stated property holds�� This leads to the perturbed problem

Ax � b���

x �� 

�����

which is nondegenerate for all � positive and su�ciently small� See Chapter �
 in

����� for a proof of this fact� A basis B and the associated basic vector xB for �����

are said to be lexico feasible if they are feasible to ����� whenever � is positive and

su�ciently small� which can be veri�ed to hold i� each row vector of the m� �m� ��

matrix �B��b
��� B

��� is lexico positive� Thus lexico feasibility of a given basis for �����

can be determined by just checking the lexico positivity of each row of �B��b
��� B���

without giving a speci�c value to �� For example� if b �� 
� and A has the unit matrix

of order m as a submatrix� that unit matrix forms a lexico feasible basis for ������

Canonical Tableaus

Given a basis B� the canonical tableau of ����� with respect to it is obtained by mul�

tiplying the system of equality constraints in ����� on the left by B��� It is



�� Chapter �� The Complementary Pivot Algorithm

Tableau ��� � Canonical Tableau of ����� with

Respect to the Basis B

basic variables x

xB B��A B��b

Let D be the matrix consisting of the n � m columns of A not in B� and let xD be

the vector of variables associated with these columns� When the basic and nonbasic

columns are rearranged in proper order� the canonical Tableau ��� becomes

Tableau ���

basic variables xB xD

xB I B��D B��b � �b

�b is known as the updated right hand side constants vector in the canonical

tableau� The column of xj in the canonical tableau� B��A�j � �A�j is called the

update column of xj in the canonical tableau� The inverse tableau corresponding

to the basis B is

Tableau ��� � Inverse Tableau

basic variables Inverse basic values

xB B�� B��b

It just provides the basis inverse and the updated right�hand�side constants column�

From the information available in the inverse tableau� the update column corresponding

to any nonbasic variable in the canonical tableau can be computed using the formulas

given above�

��� THE COMPLEMENTARY PIVOT

ALGORITHM

We will now discuss a pivotal algorithm for the LCP introduced by C� E� Lemke�

known as the Complementary Pivot Algorithm �because it chooses the entering

variable by a complementary pivot rule� the entering variable in a step is always

the complement of the dropping variable in the previous step�� and also referred to as

Lemke�s Algorithm in the literature�
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����� The Original Tableau

An arti�cial variable z� associated with the column vector �en �en is the column

vector of all ��s in Rn� is introduced into ���� to get a feasible basis for starting the

algorithm� In detached coe�cient tableau form� ���� then becomes

w z z�

I �M �en q

w �
� 
� z �� 
� z� �� 


�����

����� Pivot Steps

The complementary pivot algorithm moves among feasible basic vectors for ������ The

primary computational step used in this algorithm is the pivot step �or the Gauss�

Jordan pivot step� or the Gauss�Jordan elimination pivot step�� which is also the

main step in the simplex algorithm for linear programs� In each stage of the algorithm�

the basis is changed by bringing into the basic vector exactly one nonbasic variable

known as the entering variable� Its updated column vector is the pivot column

for this basis change� The dropping variable has to be determined according to the

minimum ratio test to guarantee that the new basis obtained after the pivot step

will also be a feasible basis�

For example� assume that the present feasible basic vector is �y�� � � � � yn� with yr
as the rth basic variable� and let the entering variable be xs� �The variables in ����� are

w�� � � � � wn� z�� � � � � zn� z�� Exactly n of these variables are present basic variables� For

convenience in reference� we assume that these basic variables are called y�� � � � � yn��

After we rearrange the variables in ������ if necessary� the canonical form of ������ with

respect to the present basis is of the form �

Basic y�� � � � � yn xs Other Right�hand

variable variables constant vector

y� � � � � 
 �a�s � � � �q�

�� �� �� �� �� ��

yn 
 � � � � �ans � � � �qn

Keeping all the nonbasic variables other than xs� equal to zero� and giving the

value � to the entering variable� xs� leads to the new solutions �

xs � �

yi � �qi � ��ais� i � �� � � � � n

All other variables � 


�����
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There are two possibilities here�

�� The pivot column may be nonpositive� that is� �ais �� 
 for all � �� i �� n� In

this case� the solution in ����� remains nonnegative for all � �� 
� As � varies

from 
 to �� this solution traces an extreme half�line �or an unbounded

edge� of the set of feasible solutions of ������ In this case the minimum ratio�

�� in this pivot step is ��� See Example ����

�� There is at least one positive entry in the pivot column� In this case� if the

solution in ����� should remain nonnegative� the maximum value that � can

take is � � �qr
�ars

� minimum
�

�qi
�ais

� i such that �ais � 

�
� This � is known as

the minimum ratio in this pivot step� For any i that attains the minimum

here� the present ith basic variable yi is eligible to be the dropping variable

from the basic vector in this pivot step� The dropping basic variable can be

chosen arbitrarily among those eligible� suppose it is yr� yr drops from the

basic vector and xs becomes the rth basic variable in its place� The rth row

is the pivot row for this pivot step� The pivot step leads to the canonical

tableau with respect to the new basis�

If the pivot column ��a�s� � � � � �ams�
T is placed by the side of the present inverse

tableau and a pivot step performed with the element �ars in it in the pivot row as the

pivot element� the inverse tableau of the present basis gets transformed into the inverse

tableau for the new basis�

The purpose of choosing the pivot row� or the dropping variable� by the minimum

ratio test� is to guarantee that the basic vector obtained after this pivot step remains

feasible�

In this case �when there is at least one positive entry in the pivot column� the

pivot step is said to be a nondegenerate pivot step if the minimum ratio computed

above is � 
� degenerate pivot step if it is 
� See Examples ��	� ���

Let B be the basis for ����� corresponding to the basic vector �y�� � � � � yn�� As

discussed above� the basic vector �y�� � � � � yn� is lexico feasible for ����� if each row

vector of ��q
��� B��� is lexico positive� If the initial basic vector �y�� � � � � yn� is lexico

feasible� lexico feasibility can be maintained by choosing the pivot row according to the

lexico minimum ratio test� Here the pivot row is chosen as the rth row where r is

the i that attains the lexico minimum in
� ��qi��i�������in	

�ais
� i such that �ais � 


�
� where

� � ��ij� � B��� The lexico minimum ratio test identi�es the pivot row �and hence

the dropping basic variable� unambiguously� and guarantees that lexico feasibility is

maintained after this pivot step� In the simplex algorithm for linear programming�

the lexico minimum ratio test is used to guarantee that cycling will not occur under

degeneracy �see Chapter �
 of ������� The lexico minimum ratio test is one of the rules

that can be used to resolve degeneracy in the simplex algorithm� and thus guarantee

that it terminates in a �nite number of pivot steps�
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Example ��� Extreme Half�line

Consider the following canonical tableau with respect to the basic vector �x�� x�� x��

x���

basic x� x� x� x� x
 x� x� x� b

variables

x� � 
 
 
 � �� � � �

x� 
 � 
 
 � �� � �� 


x� 
 
 � 
 �� 
 	 � 

x� 
 
 
 � �� �� � � 	

xj �� 
 for all j�

Suppose x� is the entering variable� The present BFS is �x � ��� 
� � 	� 
� 
� 
� 
�T �

The pivot column ������� 
����T has no positive entry� Make the entering variable

equal to �� retain all other nonbasic variables equal to 
� this leads to the solution

x��� � ����� ��� � 	���� 
� �� 
� 
�T � �x��xh� where xh � ��� �� 
� �� 
� �� 
� 
�T � xh�

the coe�cient vector of � in x���� is obtained by making the entering variable equal

to �� all other nonbasic variables equal to zero� and each basic variable equal to the

negative of the entry in the pivot column in its basic row� Since the pivot column is

nonpositive here� xh �� 
� it can be veri�ed that xh satis�es the homogeneous system

obtained by replacing the right hand side constants vector by 
� Hence xh is known as

a homogeneous solution corresponding to the original system� Since xh �
� 
 here�

x��� remains �� 
 for all � �
� 
� The half�line f �x � �xh � � �

� 
 g is known as an

extreme half�line of the set of feasible solutions of the original system�

A half�line is said to be a feasible half�line to a system of linear constraints� if

every point on the half�line is feasible to the system�

Example �� Nondegenerate Pivot Step

See Tableau ��� in Example ��� of Section ���� a few pages ahead� This is the canonical

tableau with respect to the basic vector �w�� w�� z�� w�� and z� is the entering variable�

The minimum ratio occurs uniquely in row �� which is the pivot row in this step� and w�

is the dropping variable� Performing the pivot step leads to the canonical tableau with

respect to the new basic vector �w�� w�� z�� z�� in Tableau ��	� This is a nondegenerate

pivot step since the minimum ratio in it was � �� � � 
� As a result of this pivot step

the BFS has changed from �w�� w�� w�� w�� z�� z�� z�� z�� z�� � ���� ��� 
� �� 
� 
� 
� 
� ��

to �� �� 
� 
� 
� 
� �� 
� 	��
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Example ��� Degenerate Pivot Step

Consider the following canonical tableau �

Basic x� x� x� x� x
 x� �b Ratio

variable

x� � 
 
 � � �� � �
�

x� 
 � 
 � �� � 
 �
� Min�

x� 
 
 � �� � � 


xj �� 
 for all j�

Here the BFS is �x � ��� 
� 
� 
� 
� 
�T � It is degenerate� If x� is chosen as the entering

variable� it can be veri�ed that the minimum ratio of 
 occurs in row �� Hence row �

is the pivot row for this step� and x� is the dropping variable� Performing the pivot

step leads to the canonical tableau with respect to the new basic vector �x�� x�� x���

basic x� x� x� x� x
 x�

variable

x� � �� 
 
 � �� �

x� 
 � 
 � �� � 


x� 
 � � 
 �� � 


Eventhough the basic vector has changed� the BFS has remained unchanged through

this pivot step� A pivot step like this is called a degenerate pivot step�

A pivot step is degenerate� if the minimum ratio � in it is 
� nondegenerate

if the minimum ratio is positive and �nite� In every pivot step the basic vector changes

by one variable� In a degenerate pivot step there is no change in the correponding

BFS �the entering variable replaces a zero valued basic variable in the solution�� In a

nondegenerate pivot step the BFS changes�

Example ��� Ties for Minimum Ratio lead to Degenerate Solution

Consider the following canonical tableau�

basic x� x� x� x� x
 x� �b Ratio

variable

x� � 
 
 � �� � � �
�

x� 
 � 
 � � �  �
�

x� 
 
 � � � �� � ��
�
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The present BFS is �x � ��� � �� 
� 
� 
�T � Suppose x� is chosen as the entering variable�

There is a tie for the minimum ratio� Both x�� x� are eligible to be dropping variables�

Irrespective of which of them is chosen as the dropping variable� it can be veri�ed

that the other remains a basic variable with a value of 
 in the next BFS� So the BFS

obtained after this pivot step is degenerate�

In the same way it can be veri�ed that the BFS obtained after a pivot step is

always degenerate� if there is a tie for the minimum ratio in that step� Thus� if we

know that the right hand side constants vector q is nondegenerate in ������ in every

pivot step performed on ������ the minimum ratio test identi�es the dropping variable

uniquely and unambiguously�

����� Initialization

The arti�cial variable z� has been introduced into ����� for the sole purpose of obtaining

a feasible basis to start the algorithm�

Identify row t such that qt � minimum f qi � � �
� i �� n g� Break ties for t in

this equation arbitrarily� Since we assumed q ��� 
� qt � 
� When a pivot is made in

����� with the column vector of z� as the pivot column and the tth row as the pivot

row� the right�hand side constants vector becomes a nonnegative vector� The result is

the canonical tableau with respect to the basic vector �w�� � � � � wt��� z�� wt��� � � � � wn��

This is the initial basic vector for starting the algorithm�

����� Almost Complementary Feasible Basic Vectors

The initial basic vector satis�es the following properties �

�i� There is at most one basic variable from each complementary pair of variables

�wj � zj��

�ii� It constains exactly one basic variable from each of �n � �� complementary

pairs of variables� and both the variables in the remaining complementary

pair are nonbasic�

�iii� z� is a basic variable in it�

A feasible basic vector for ����� in which there is exactly one basic variable from

each complementary pair �wj � zj� is known as a complementary feasible basic

vector� A feasible basic vector for ����� satisfying properties �i�� �ii�� and �iii� above

is known as an almost complementary feasible basic vector� Given an almost

complementary feasible basic vector for ������ the complementary pair both of whose

variables are nonbasic� is known as the left�out complementary pair of variables

in it� All the basic vectors obtained in the algorithm with the possible exception of the
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�nal basic vector are almost complementary feasible basic vectors� If at some stage

of the algorithm� a complementary feasible basic vector is obtained� it is a �nal basic

vector and the algorithm terminates�

Adjacent Almost Complementary Feasible Basic Vectors

Let �y�� � � � � yj��� z�� yj��� � � � � yn� be an almost complementary feasible basic vector

for ������ where yi � fwi� zig for each i �� j� Both the variables in the complementary

pair �wj � zj� are not in this basic vector� Adjacent almost complementary feasible basic

vectors can only be obtained by picking as the entering variable either wj or zj � Thus

from each almost complementary feasible basic vector there are exactly two possible

ways of generating adjcent almost complementary feasible basic vectors�

In the initial almost complementary feasible basic vector� both wt and zt are

nonbasic variables� In the canonical tableau with respect to the initial basis� the

updated column vector of wt can be veri�ed to be �en� which is negative� Hence� if

wt is picked as the entering variable into the initial basic vector� an extreme half�line

is generated� Hence� the initial almost complementary BFS is at the end of an almost

complementary ray�

So there is a unique way of obtaining an adjacent almost complementary feasible

basic vector from the initial basic vector� and that is to pick zt as the entering variable�

����� Complementary Pivot Rule

In the subsequent stages of the algorithm there is a unique way to continue the algo�

rithm� which is to pick as the entering variable� the complement of the variable that

just dropped from the basic vector� This is known as the complementary pivot

rule�

The main property of the path generated by the algorithm is the following� Each

BFS obtained in the algorithm has two almost complementary edges containing it� We

arrive at this solution along one of these edges� And we leave it by the other edge� So

the algorithm continues in a unique manner� It is also clear that a basic vector that

was obtained in some stage of the algorithm can never reappear�

The path taken by the complementary pivot algorithm is illustrated in Figure ����

The initial BFS is that corresponding to the basic vector �w�� � � � � wt��� z�� wt��� � � � �

wn� for ������ In Figure ���� each BFS obtained during the algorithm is indicated by

a point� with the basic vector corresponding to it entered by its side� and consecutive

BFSs are joined by an edge� If wt is choosen as the entering variable into the initial

basic vector we get an extreme half�line �discussed above� and the initial BFS is at end

of this extreme half�line� When zt is choosen as the entering variable into the initial

basic vector� suppose wi is the dropping variable� Then its complement zi will be the

entering variable into the next basic vector �this is the complementary pivot rule��
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Figure ��� Path taken by the complementary pivot method� The 	 in�

dicates entering variable� 
 indicates dropping variable� The basic vector

corresponding to each point �BFS� is entered by its side� Finally if z� drops

from the basic vector� we get a complementary feasible basic vector�

The path continues in this unique manner� It can never return to a basic vector

visited earlier� since each BFS obtained in the algorithm has exactly two edges of the

path incident at it� through one of which we arrive at that BFS and through the other

we leave �if the path returns to a basic vector visited earlier� the BFS corresponding

to it has three edges in the path incident at it� a contradiction�� So the path must

terminate after a �nite number of steps either by going o� along another extreme half�

line at the end �ray termination� this happens when in some step� the pivot column�

the updated column of the entering variable� has no positive entries in it�� or by reaching

a complementary feasible basic vector of the LCP �which happens when z� becomes

the dropping variable�� If ray termination occurs the extreme half�line obtained at the

end� cannot be the same as the initial extreme half�line at the beginning of the path

�this follows from the properties of the path discussed above� namely� that it never

returns to a basic vector visited earlier��



�� Chapter �� The Complementary Pivot Algorithm

����� Termination

There are exactly two possible ways in which the algorithm can terminate�

�� At some stage of the algorithm� z� may drop out of the basic vector� or become

equal to zero in the BFS of ������ If � �w� �z� �z� � 
� is the BFS of ����� at that

stage� then � �w� �z� is a solution of the LCP ���� to ������

�� At some stage of the algorithm� z� may be strictly positive in the BFS of ������

and the pivot column in that stage may turn out to be nonpositive� and in this

case the algorithm terminates with another almost complementary extreme

half�line� referred to in some publications as the secondary ray �distinct

from the initial almost complementary extreme half�line or initial ray at the

beginning of the algorithm�� This is called ray termination�

When ray termination occurs� the algorithm is unable to solve the LCP� It is

possible that the LCP ���� to ����� may not have a solution� but if it does have a

solution� the algorithm is unable to �nd it� If ray termination occurs the algorithm

is also unable to determine whether a solution to the LCP exists in the general case�

However� when M satis�es some conditions� it can be proved that ray termination in

the algorithm will only occur� when the LCP has no solution� See Section ����

Problems Posed by Degeneracy of ������

De�nition� Nondegeneracy� or Degeneracy of q in the LCP �q�M� As de�ned

earlier� the LCP �q�M� is the problem of �nding w� z satisfying

w z

I �M q

w� z �� 
� wT z � 


This LCP is said to be nondegenerate �in this case q is said to be nondegenrate in

the LCP �q�M�� if in every solution �w� z� of the system of linear equations �w�Mz �

q�� at least n variables are non�zero� This condition holds i� q cannot be expressed as

a linear combination of �n� �� or less column vectors of �I
��� �M��

The LCP �q�M� is said to be degenerate �in this case q is said to be degenerate

in the LCP �q�M�� if q can be expressed as a linear combination of a set consisting of

�n� �� or less column vectors of �I
��� �M��

De�nition� Nondegeneracy� Degeneracy of q in the Complementary Pivot

Algorithm The system of contraints on which pivot operations are performed in the

complementary pivot algorithm is ������ This system is said to be degenerate �and q

is said to be degenerate in it� if q can be expressed as a linear combination of a set

of �n � �� or less column vectors of �I
��� �M ��� �e�� nondegenerate otherwise� If
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����� is nondegenerate� in every BFS of ����� obtained during the complementary pivot

algorithm� all basic variables are strictly positive� and the minimum ratio test identi�es

the dropping basic variable in each pivot step uniquely and unambiguously�

The argument that each almost complementary feasible basis has at most two

adjacent almost complementary feasible bases is used in developing the algorithm� This

guarantees that the path taken by the algorithm continues unambiguously in a unique

manner till termination occurs in one of the two possibilities� This property that each

almost complementary feasible basis has at most two adjacent almost complementary

feasible bases holds when ����� is nondegenerate� If ����� is degenerate� the dropping

variable during some pivots may not be uniquely determined� In such a pivot step� by

picking di�erent dropping variables� di�erent adjacent almost complementary feasible

bases may be generated� If this happens� the almost complementary feasible basis

in this step may have more than two adjacent almost complementary feasible bases�

The algorithm can still be continued unambiguously according to the complementary

pivot rule� but the path taken by the algorithm may depend on the dropping variables

selected during the pivots in which these variables are not uniquely identi�ed by the

minimum ratio test� All the arguments mentioned in earlier sections are still valid� but

in this case termination may not occur in a �nite number of steps if the algorithm keeps

cycling along a �nite sequence of degenerate pivot steps� This can be avoided by using

the concept of lexico feasibility of the solution� In this case the algorithm deals with

almost complementary lexico feasible bases throughout� In each pivot step the

lexico minimum ratio test determines the dropping variable unambiguously and� hence�

each almost complementary lexico feasible basis can have at most two adjacent almost

complementary lexico feasible bases� With this� the path taken by the algorithm is

again unique and unambiguous� no cycling can occur and termination occurs after a

�nite number of pivot steps� See Section ������

Interpretation of the Path Taken by the Complementary

Pivot Algorithm

B� C� Eaves has given a simple haunted house interpretation of the path taken by the

complementary pivot algorithm� A man who is afraid of ghosts has entered a haunted

house from the outside through a door in one of its rooms� The house has the following

properties �

�i� It has a �nite number of rooms�

�ii� Each door is on a boundary wall between two rooms or on a boundary wall

of a room on the outside�

�iii� Each room may have a ghost in it or may not� However� every room which

has a ghost has exactly two doors�

All the doors in the house are open initially� The man�s walk proceeds according to

the following property�

�iv� When the man walks through a door� it is instantly sealed permanently and

he can never walk back through it�
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The man �nds a ghost in the room he has entered initially� by properties �iii� and

�iv� this room has exactly one open door when the man is inside it� In great fear he

runs out of the room through that door� If the next room that he has entered has a

ghost again� it also satis�es the property that it has exactly one open door when the

man is inside it� and he runs out through that as fast as he can� In his walk� every

room with a ghost satis�es the same property� He enters that room through one of

its doors and leaves through the other� A sanctuary is de�ned to be either a room

that has no ghost� or the outside of the house� The man keeps running until he �nds

a sanctuary� Property �i� guarantees that the man �nds a sanctuary after running

through at most a �nite number of rooms� The sanctuary that he �nds may be either

a room without a ghost or the outside of the house�

We leave it to the reader to construct parallels between the ghost story and the

complementary pivot algorithm and to �nd the walk of the man through the haunted

house in Figure ���� The man walks into the house initially from the outside through

the door marked with an arrow�

Figure ��� Haunted house

Geometric Interpretation of a Pivot Step in the

Complementary Pivot Method

In a pivot step of the complementary pivot method� the current point moves between

two facets of a complementary cone in the direction of �e� This geometric interpreta�
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tion of a pivot step in the complementary pivot method as a walk between two facets

of a complementary cone is given in Section ���

Example ���

Consider the following LCP� �This is not an LCP corresponding to an LP��

w� w� w� w� z� z� z� z� q

� 
 
 
 �� � � � �


 � 
 
 � �� � � 	


 
 � 
 �� �� �� 
 ��

 
 
 � �� �� 
 �� �	
wi �

� 
� zi �
� 
� wizi � 
 for all i

When we introduce the arti�cial variable z� the tableau becomes �

w� w� w� w� z� z� z� z� z� q

� 
 
 
 �� � � � �� �


 � 
 
 � �� � � �� 	


 
 � 
 �� �� �� 
 �� ��

 
 
 � �� �� 
 �� �� �	

The most negative qi is q�� Therefore pivot in the column vector of z� with the third

row as the pivot row� The pivot element is inside a box�

Tableau ���

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

w� � 
 �� 
 
 � � � 
 �� ��
�

w� 
 � �� 
 � 
 � � 
 �� ��
�

z� 
 
 �� 
 � � � 
 � � 
�

w� 
 
 �� � 
 
 � �� 
 � �
� Min�

By the complementary pivot rule we have to pick z� as the entering variable� The

column vector of z� is the pivot column� w� drops from the basic vector�
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Tableau ��	

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

w� � 
 �
� � �

� 
 � 
 � 
  �
� Min�

w� 
 � �
� � �

� � 
 
 � 
 � �
�

z� 
 
 
 �� � � 
 � � 	 

�

z� 
 
 ��
�

�
�


 
 � �� 
 �

Since w� has dropped from the basic vector� its complement� z� is the entering variable

for the next step� w� drops from the basic vector�

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

z�
�
� 
 �

� � �
� 
 �

� 
 � 
 �
�

w� �� � 
 
 � �� 
 
 
 � �
� Min�

z� ��
� 
 ��

� � �
� � 
 
 
 � � �

�

z�
�
� 
 ��

�
�
� 
 �

� � 
 
 ��
�

Since w� has dropped from the basic vector� its complement� z� is the new entering

variable� Now w� drops from the basic vector�

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

z�
�
� 
 �

� ��
� 
 �

� 
 � 
 �
� �

z� ��
�

�
� 
 
 � �� 
 
 
 �

z� 
 ��
� ��

� ��
� 
 � 
 
 � � � Min�

z�
�
� 
 ��

�
�
� 
 �

� � 
 
 ��
� �

Since w� has dropped from the basic vector� its complement� z� is the entering variable�

Now z� drops from the basic vector�
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Basic w� w� w� w� z� z� z� z� z� q

variables

z�
�
�

�
�

�
� ��

� 
 
 
 � ��
� �

z� ��
� 
 ��

� ��
� � 
 
 
 � �

z� 
 ��
� ��

� ��
� 
 � 
 
 � �

z�
�
�

�
�

��
�

�
�


 
 � 
 ��
� �

Since the present basis is a complementary feasible basis� the algorithm terminates�

The correponding solution of the LCP is w � 
� �z�� z�� z�� z�� � ��� �� �� ���

Example ���

w� w� w� z� z� z� q

� 
 
 � 
 � ��

 � 
 �� � 	 ��

 
 � � � � ��
wi �� 
� zi �� 
� wizi � 
 for all i

The tableau with the arti�cial variable z� is �

w� w� w� z� z� z� z� q

� 
 
 � 
 � �� ��

 � 
 �� � 	 �� ��

 
 � � � � �� ��

The initial canonical tableau is �

Basic w� w� w� z� z� z� z� q Ratios

variables

z� �� 
 
 �� 
 �� � �

w� �� � 
 �� � � 
 �

w� �� 
 � � � �� 
 � �
�
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The next tableau is �

Basic w� w� w� z� z� z� z� q

variables

z� �� 
 � 
 � �� � 	

w� �� � � 
 � 
 
 	

z� �� 
 � � � �� 
 �

The entering variable here is z�� The pivot column is nonpositive� Hence� the algorithm

stops here with ray termination� The algorithm has been unable to solve this LCP�

����� IMPLEMENTATION OF THE

COMPLEMENTARY PIVOT METHOD

USING THE INVERSE OF THE BASIS

Let ����� be the original tableau for the LCP being solved by the complementary pivot

method� Let t be determined as in Section ������ After performing the pivot with

row t as the pivot row and the column vector of z� as the pivot column� we get the

initial tableau for this algorithm� Let P� be the pivot matrix of order n obtained by

replacing the tth column in I �the unit matrix of order n� by �en �the column vector

in Rn all of whose entires are ���� Let M � � P�M � q� � P�q� Then the initial tableau

in this algorithm is

Tableau �� � Initial Tableau

w z z�

P� �M � I�t q�

The initial basic vector is �w�� � � � � wt��� z�� wt��� � � � � wn� and the basis corresponding

to it in Tableau �� is I� By choice of t� q� � 
� So each row of �q�
��� I� is lexico�

positive� and hence the initial basic vector in this algorithm is lexico�feasible for the

problem in Tableau ���

At some stage of the algorithm� let B be the basis from Tableau ��� corresponding

to the present basic vector� Let � � ��ij� � B�� and �q � B��q�� Then the inverse

tableau at this stage is

Basic vector Inverse

� � B�� �q
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If the entering variable in this step� determined by the complementary pivot

rule� is ys � fws� zs g� then the pivot column� the updated column of ys� is �P�I�s
if ys � ws� or �P���M�s� if ys � zs� Suppose this pivot column is ��a�s� � � � � �ans�

T � If

��a�s� � � � � �ans�
T � 
� we have ray termination and the method has been unable to solve

this LCP� If ��a�s� � � � � �ans�
T �� 
� the minimum ratio in this step is � � minimum

�
�qi
�ais

�

i such that �ais � 

�
� If the i that attains this minimum is unique� it determines the

pivot row uniquely� The present basic variable in the pivot row is the dropping vari�

able� If the minimum ratio does not identify the dropping variable uniquely� check

whether z� is eligible to drop� and if so choose it as the dropping variable� If z� is not

eligible to drop� one of those eligible to drop can be choosen as the dropping variable

arbitrarily� but this can lead to cycling under degeneracy� To avoid cycling� we can

use the lexico�minimum ratio rule� which chooses the dropping basic variable so that

the pivot row is the row corresponding to the lexico�minimum among
� ��qi��i�������in	

�ais
�

i such that �ais � 

�
� This lexico minimum ratio rule determines the dropping vari�

able uniquely and unambiguously� If the lexico�minimum ratio rule is used in all steps

beginning with the initial step� the dropping variable is identi�ed uniquely in every

step� each of the updated vectors ��qi� �i�� � � � � �in�� i � � to n� remain lexico�positive

throught� and cycling cannot occur by the properties of the almost complementary

path generated by this method� discussed above �see Section ������� Once the drop�

ping variable is identi�ed� performing the pivot leads to the next basis inverse� and the

entering variable in the next step is the complement of the dropping variable� and the

method is continued in the same way�

Clearly it is not necessary to maintain the basis inverse explicitly� The comple�

mentary pivot algorithm can also be implemented with the basis inverse maintained

in product form �PFI� or in elimination form �EFI� just as the simplex algorithm for

linear programming �see Chapters 	� � of �������

Example ����

Consider the LCP �q�M� where

M �

������� � 
 

� � 

� � �

������� q �

������� ��
���
���

�������
To solve this LCP by the complementary pivot algorithm� we introduce the arti�cial

variable z� and construct the original tableau as in ������ When z� replaces w� in the

basic vector �w�� w�� w��� we get a feasible basic vector for the original tableau� So the

initial tableau for this problem is �



�� Chapter �� The Complementary Pivot Algorithm

Initial

Basic w� w� w� z� z� z� z� q

Vector

w� � 
 �� � � � 
 

w� 
 � �� 
 � � 
 �

z� 
 
 �� � � � � ��

The various basis inverses obtained when this LCP is solved by the complementary

pivot algorithm are given below�

Basic Inverse �q Pivot Ratios

Vector Column

z�

w� � 
 
  � 

w� 
 � 
 � � � Min�

z� 
 
 � �� � ��

z�

w� � �� 
 � � �

z� 
 � 
 � � � Min�

z� 
 �� � �� � ��

w�

w� � �� 
 � � � Min�

z� 
 � 
 � ��
z� 
 �� � �
 � �


z�

w� � �� 
 � � � Min�

z� � �� 
 � � �

z� �� 
 � � � �
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Basic Inverse �q Pivot Ratios

Vector Column

z�

z� � �� 
 � ��
z� 
 � 
 � � � Min�

z� �� � �  � 

w�

z� � �� 
 � ��
z� 
 � 
 � � � Min�

z� �� � � � � �

w�

z� � 
 
  ��
w� 
 � 
 � ��
z� �� 
 � � � � Min�

z� �� 
 � �

w� �� � � �

w� �� 
 � �

So the solution of this LCP is �w�� w�� w�� z�� z�� z�� � �
� �� �� �� 
� 
��

����� Cycling Under Degeneracy in the

Complementary Pivot Method

Whenever there is a tie for the pivot row in any step of the complementary pivot

method� suppose we adopt the rule that the pivot row will be chosen to be the topmost

among those eligible for it in that step� Under this rule it is possible that cycling occurs

under degeneracy� Here we provide an example of cycling under this rule� constructed

by M� M� Kostreva ����
�� Let

M �

������� � � 


 � �
� 
 �

������� q �

���������
��
��

�������
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and solve the LCP �q�M� by the complementary pivot method using the above pivot

row choice rule in each pivot step� It can be veri�ed that we get the following al�

most complementary feasible basic vectors� initial basic vector �z�� w�� w�� followed by

�z�� z�� w��� �z�� z�� w��� �z�� z�� w��� �z�� z�� w��� �z�� z�� w��� �z�� z�� w��� �z�� z�� w��� in

this order� After the initial basic vector �z�� w�� w�� is obtained� all pivots made are

degenerate pivot steps� and at the end the method has returned to the basic vector

�z�� z�� w�� and so the method has cycled on this problem� The matrix M is a P �

matrix� it will be proved later on the LCP �q�M� has a unique solution� and that the

complementary pivot method always terminates in a �nite number of pivot steps with

that solution� if it is carried out in such a way that cycling does not occur under degen�

eracy� Actually� for the LCP �q�M� considered here� it can be veri�ed that �z�� z�� z��

is the complementary feasible basic vector�

As discussed above� after obtaining the initial basic vector� if the complementary

pivot method is carried out using the lexico�minimum ratio rule for choosing the pivot

row in each pivot step� cycling cannot occur� and the method must terminate either by

obtaining a complementary feasible vector� or in ray termination� after a �nite number

of pivot steps� because of the following arguments� If q is nondegenerate in ������

the dropping basic variable is identi�ed uniquely by the usual minimum ratio test� in

every step of the complementary pivot algorithm applied on it� Using the properties

of the path traced by this algorithm we verify that in this case� the algorithm must

terminate after a �nite number of pivot steps either with a complementary feasible

basic vector or in ray termination� Suppose q is degenerate in ������ Perturb ����� by

replacing q by q��� � q���� ��� � � � � �n�T � as in ������ When � is positive but su�ciently

small� the perturbed problem is nondegenerate� So when the perturbed problem is

solved by the complementary pivot algorithm treating � � 
 to be su�ciently small�

it must terminate in a �nite number of pivot steps� If a complementary feasible basic

vector is obtained at the end for the perturbed problem� that basic vector is also a

complementary basic vector for the original LCP �unperturbed original problem� with

� � 
�� If ray termination occurs at the end on the perturbed problem� the �nal almost

complementary feasible basic vector is also feasible to the original LCP and satis�es

the condition for ray termination in it� The sequence of basic vectors obtained when

the complementary pivot algorithm is applied on the original problem ����� using the

lexico�minimum ratio rule for chosing the dropping variable in every pivot step� is

exactly the same as the sequence of basic vectors obtained when the complementary

pivot algorithm is applied on the perturbed problem got by replacing q in ����� by

q��� with � � 
 and su�ciently small� These facts show that the complementary pivot

algorithm must terminate in a �nite number of pivot steps �i� e�� can not cycle� when

operated with the lexico minimum ratio test for chosing the dropping variable in every

pivot step�
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��� CONDITIONS UNDER WHICH THE

COMPLEMENTARY PIVOT ALGORITHM

WORKS

We de�ne several classes of matrices that are useful in the study of the LCP� Let

M � �mij� be a square matrix of order n� It is said to be a

Copositive matrix if yTMy �� 
 for all y �� 
�

Strict copositive matrix if yTMy � 
 for all y � 
�

Copositive plus matrix if it is a copositive matrix and whenever y �� 
�

and satis�es yTMy � 
� we have yT �M �MT � � 
�

P �matrix if all its principal subdeterminantes are positive�

Q�matrix if the LCP �q�M� has a solution for every q � Rn�

Negative de�nite matrix if yTMy � 
 for all y �� 
�

Negative semide�nite matrix if yTMy �� 
 for all y � Rn�

Z�matrix if mij �� 
 for all i �� j

Principally nondegenerate matrix if all its principal subdeterminants

are non�zero�

Principally degenerate matrix if at least one of its principal subdeter�

minants is zero�

L��matrix if for every y � 
� y � Rn� there is an i such that yi � 
 and

Mi�y �� 
� If M is an L��matrix� an i like it is called a de�ning index for

M and y� These matrices are also called semimonotone matrices�

L��matrix if for every y � 
� y � Rn� such that My �
� 
 and yTMy �


� there are diagonal matrices� � �
� 
� � �

� 
 such that �y �� 
 and ��M �

MT��y � 
� An equivalent de�nition is that for each z � 
� satisfying w �

Mz �� 
 and wT z � 
� there exists a  z � 
 satisfying  w � �� zTM�T � w �
�

 w �
� 
� z ��  z �� 
�

L�matrix if it is both an L��matrix and an L��matrix�

L��matrix if for every y � 
� y � Rn� there is an i such that yi � 
 and

Mi�y � 
� If M is an L��matrix� an i like it is called a de�ning index for

M and y�

P��matrix if all its principal subdeterminants are �� 
�

Row adequate matrix if it is a P��matrix and whenever the principal

subdeterminant corresponding to some subset J � f �� � � � � n g is zero� then

the set of row vectors of M corresponding to J� fMi� � i � J g is linearly

dependent�

Column adequate matrix if it is a P��matrix and whenever the principal

subdeterminant corresponding to some subset J � f �� � � � � n g is zero� then
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the set of column vectors of M corresponding to J� fM�j � j � J g is linearly

dependent�

Adequate matrix if it is both row and column adequate�

In this book the only type of degeneracy� nondegeneracy of square matrices that

we discuss is principal degeneracy or principal nondegeneracy de�ned above� So� for

notational convenience we omit the term �principally� and refer to these matrices

as being degenerate or nondegenerate matrices� Examples of degenerate matrices

are

��� 
 �
� ��


����

��� � �
� �

���� Examples of nondegenerate matrices are

����� 


 ��

������� � �

 ��

���� The notation C��matrix is used to denote copositive matrices� and the

notation C��matrix is used to denote copositive plus matrices�

Theorem ���� implies that every PSD matrix is also a copositive plus matrix�

Also� the square matrix M is negative de�nite or negative semi�de�nite� i� �M is PD

or PSD respectively�

����� Results on LCPs Associated with

Copositive Plus Matrices

Theorem ��� If M is a copositive plus matrix and the system of constraints �����

and ����� of Section ����� has a feasible solution� then the LCP ����� � ���	� has a so


lution and the complementary pivot algorithm will terminate with the complementary

feasible basis� Conversely� when M is a copositive plus matrix� if the complementary

pivot algorithm applied on ����� � ���	� terminates in ray termination� the system of

constraints ������ ����� must be infeasible�

Proof� Assume that either ����� is nondegenerate� or that the lexico�minimum ratio

rule is used throughout the algorithm to determine the dropping basic variable in

each step of the algorithm� This implies that each almost complementary feasible �or

lexico feasible� basis obtained during the algorithm has exactly two adjacent almost

complementary feasible �or lexico feasible� bases� excepting the initial and terminal

bases� which have exactly one such adjacent basis only� The complementary pivot

algorithm operates on the system ������

The initial basic vector is �w�� � � � � wt��� z�� wt��� � � � � wn� �as in Section �������

The corresponding BFS is z � 
� wt � 
� z� � �qt� and wi � qi� qt for all i �� t� If wt

is taken as the entering variable into this basic vector� it generates the half�line �called

the initial extreme half�line�

wi � qi � qt � � for all i �� t

wt � �

z � 


z� � �qt � �
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where � �
� 
� �This can be seen by obtaining the canonical tableau corresponding to

the initial basic vector�� This initial extreme half�line contains the initial BFS of �����

as its end point� Among the basic vectors obtained during the algorithm� the only one

that can be adjacent to the initial basic vector is the one obtained by introducing zt
into it� Once the algorithm moves to this adjacent basic vector� the initial basic vector

will never again appear during the algorithm� Hence� if the algorithm terminates with

ray termination� the extreme half�line obtained at termination cannot be the initial

extreme half�line�

At every point on the initial extreme half�line all the variables w� z� are strictly

positive� It is clear that the only edge of ����� that contains a point in which all the

variables w� z� are strictly positive is the initial extreme half�line�

Suppose the algorithm terminates in ray termination without producing a solution

of the LCP� Let Bk be the terminal basis� When the complementary pivot algorithm is

continued from this basis Bk� the updated column vector of the entering variable must

be nonpositive resulting in the generation of an extreme half�line� Let the terminal

extreme half�line be�
�w� z� z�� � �wk � �wh� zk � �zh� zk� � �zh� � � � �� 


�
���	�

where �wk� zk� zk� � is the BFS of ����� with respect to the terminal basis Bk� and

�wh� zh� zh� � is a homogeneous solution corresponding to ����� that is�

wh �Mzh � enz
h
� � 


wh �
� 
� zh �� 
� zh� �

� 

����

�wh� zh� zh� � �� 
� If zh � 
� ���� and the fact that �wh� zh� zh� � �� 
 together imply

that wh �� 
 and hence zh� � 
� and consequently wh � 
� Hence� if zh � 
� points on

this terminal extreme half�line have all the variables w� z� strictly positive� which by

earlier arguments would imply that the terminal extreme half�line is the initial extreme

half�line� a contradiction� So zh �� 
�

Since every solution obtained under the algorithm satis�es the complementarity

constraint� wT z � 
� we must have �wk � �wh�T �zk � �zh� � 
 for all � �
� 
� This

implies that �wk�T zk � �wk�T zh � �wh�T zk � �wh�T zh � 
� From ���� �wh�T �

�Mzh � enz
h
� �

T � Hence from �wh�T zh � 
� we can conclude that �zh�TMT zh �

�zh�TMzh � �eTn zhzh� �
� 
� Since zh �� 
� and M is copositive plus by the hypothesis�

�zh�TMzh cannot be � 
� and hence� by the above� we conclude that �zh�TMzh � 
�

This implies that �zh�T �M � MT � � 
� by the copositive plus property of M � So

�zh�TM � ��zh�TMT � Also since �eTn zhzh� � �zh�TMzh � 
� zh� must be zero �since

zh � 
�� Since �wk� zk� zk� � is the BFS of ����� with respect to the feasible basis Bk�

wk � Mzk � q � enz
k
� � Now
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 � �wk�T zh � �Mzk � q � enz
k
� �

T zh

� �zk�TMT zh � qT zh � zk�e
T
n z

h

� �zh�TMzk � �zh�T q � zk� e
T
n z

h

� ��zh�TMT zk � �zh�T q � zk�e
T
n z

h

� ��zk�TMzh � �zh�T q � zk� e
T
n z

h

� ��zk�Twh � �zh�T q � zk�e
T
n z

h

� �zh�T q � zk�e
T
n z

h

So �zh�T q � �zk� eTn zh� Since zh � 
 and zk� � 
 �otherwise �wk� zk� would be a solution

of the LCP�� zk� e
T
n z

h � 
� Hence� �zh�T q � 
� Hence� if � � �zh�T we have� �q � 
�

� �
� 
� ���M� � ��zh�TM � �zh�TMT � �wh�T �

� 
� that is�

�q � 


��I
��� �M� �� 


By Farakas lemma �Theorem � of Appendix ��� this implies that the system �

�I
��� �M�

������� w
� � �
z

������� � q �

������� w
� � �
z

������� �
� 


has no feasible solution� Hence� if the complementary pivot algorithm terminates in

ray termination� the system ���� and ����� has no feasible solutions in this case and

thus there cannot be any solution to the LCP�

This also implies that whenever ���� and ����� have a feasible solution� the LCP

���� to ����� has a solution in this case and the complementary pivot algorithm �nds

it�

The following results can be derived as corollaries�

Result ��� In the LCPs corresponding to LPs and convex quadratic programs�

the matrix M is PSD and hence copositive plus� Hence� if the complementary pivot

algorithm applied to the LCP corresponding to an LP or a convex quadratic program

terminates in ray termination� that LP or convex quadratic program must either be

infeasible� or if it is feasible� the objective function must be unbounded below on the

set of feasible solutions of that problem�

Hence the complementary pivot algorithm works when used to solve LPs or convex

quadratic programs�

Result ��� If M is strict copositive the complementary pivot algorithm applied on

����� to ���	� terminates with a solution of the LCP�
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Proof� If the complementary pivot algorithm terminates in ray termination� as seen

in the proof of the above theorem there exists a zh � 
 such that �zh�TMzh � 
�

contradicting the hypothesis that M is strict copositive�

Thus all strict copositive matrices are Q�matrices� Also� if M � �mij� �� 
 and

mii � 
 for all i� M is strict copositive and hence a Q�matrix�

Exercise

��� Suppose M �
� 
 and m�� � 
� Prove that if q � ���� �� � � � � ��T � the LCP ���� to

����� cannot have a solution� Thus prove that a square nonegative matrix is a Q�matrix

i� all its diagonal entries are strictly positive�

Later on we prove that if M is a P �matrix� the complementary pivot algorithm

terminates with a complementary feasible solution when applied on the LCP �q�M��

When the complementary pivot algorithm is applied on a LCP in which the matrix

M is not a copositive plus matrix or a P �matrix� it is still possible that the algorithm

terminates with a complementary feasible basis for the problem� However� in this

general case it is also possible that the algorithm stops with ray termination even if a

solution to the LCP exists�

To Process an LCP �q�M�

An algorithm for solving LCPs is said to process a particular LCP �q�M� for given q

and M � if the algorithm is guaranteed to either determine that the LCP �q�M� has no

solution� or �nd a solution for it� after a �nite amount of computational e�ort�

Suppose M is a copositive plus matrix� and consider the LCP �q�M�� for given

q� When the complementary pivot algorithm is applied on this LCP �q�M�� either it

�nds a solution� or ends up in ray termination which implies that this LCP has no

solution by the above theorem� Hence� the complementary pivot algorithm processes

the LCP �q�M� whenever M is a copositive plus matrix�

����� Results on LCPs Associated with

L	 and L�	Matrices

Here we show that the complementary pivot algorithm will process the LCP �q�M�

whenever M is an L� or L��matrix� The results in this section are from B� C� Eaves

����� ����� they extend the results proved in Section ����� considerably� Later on� in

Section ����� we derive some results on the general nonconvex programming problem

using those proved in this section�
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Lemma ��� If M is an L�
matrix� the LCP �q�M� has a unique solution for all

q � 
� and conversely�

Proof� When q � 
� one solution of the LCP �q�M� is �w � q� z � 
�� So if � �w� �z� is

an alternate solution� we must have �z � 
� But �w �M �z � q� Let M be an L��matrix

and let i be the de�ning index for M and �z� We have

�wi � �M �z�i � qi � 


So �wi�zi � 
� contradiction to complementarity�

Now suppose M is not an L��matrix� So� there must exist a �y � ��yi� � 
 such

that for all i such that �yi � 
� Mi� �y � 
� Let J � f i � �yi � 
 g� Select a positive

number 	 such that 	 �
� jMi��yj � i �� J

�
� De�ne the vector q � �qj� � Rn by

qj �

��Mj��y� for all j � J
	� for all j �� J�

Then q � 
 and the LCP �q�M� has two distinct solutions namely �w� z� � �q� 
� and�
�w � � �wj�� �z � �y

	
� where

�wj �

�

� for all j � J
	�Mj��y� for all j �� J�

This establishes the converse�

Lemma ��� If M is an L�
matrix� the LCP �q�M� has a unique solution for every

q �� 
� and conversely�

Proof� Similar to Lemma ����

Lemma ��� If M is an L�
matrix and the complementary pivot method applied

on the LCP �q�M� terminates with the secondary ray f � �wk� zk� zk� � � ��wh� zh� zh� � �

� �� 
 g as in ������ where �wk� zk� zk� � is the terminal BFS of ����� and �wh� zh� zh� � is a

homogeneous solution corresponding to ����� satisfying ����� and zk� � 
 and zh� � 


then the LCP �q�M� is infeasible� that is� the system �w�Mz � q� w �
� 
� z �� 
� has

no feasible solution�

Proof� As in the proof of Theorem ��� we assume that either ����� is nondegenerate

or that the lexico minimum ratio rule is used throughout the algorithm to determine

the dropping basic variable in each step of the algorithm� Using the hypothesis that

zh� � 
 in ����� we have
wh �Mzh � 


�zh�Twh � 


Since �wh� zh� zh� � �� 
� this implies that zh � 
� Therefore 
 � �zh�Twh � �zh�TMzh

� 
� and zh � 
� So� using the hypothesis that M is an L��matrix� we have diagonal
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matrices � �
� 
� � �

� 
 such that �zh �� 
 and ��M �MT��zh � 
� Since �Mzh �
�


 �since Mzh � wh �
� 
 and � �

� 
 is a diagonal matrix� this implies that MT�zh �

�zh�T�M �
� 
� Now 
 � �zk�Twh � �zk�T�wh �since � is a diagonal matrix with

nonnegative entries and wh �
� 
� zk �

� 
� � �zk�T�Mzh � �zk�T ��MT�zh�� So

�zh�T�Mzk � 
� Now

�zh�T��wk �Mzk � ezk� � � �zh�T�q

Since � is a nonnegative diagonal matrix and �zh�Twk � 
 and �zh�T �
� 
� wk �

�

� we have �zh�T�wk � 
� Also �zh�T�Mzk � �zk�TMT�zh � ��zk�T�Mzh �

��zk�T�wh � 
 �since zk �� 
� wh �
� 
� � is a diagonal matrix which is �� 
� �zk�Twh �


 implies �zk�T�wh � 
�� Using these in the above equation� we get

��zh�T�ezk� � �zh�T�q

since �zh�T � 
� � �
� 
� �zh �� 
� we have �zh � �zh�T� � 
� this implies that

�zh�T�e � 
� Also� by hypothesis zk� � 
� So from the above equation �zh�T�q � 
�

So if � � �zh�T�� we have

� � 


��M � ��zh�T�M � �MT�zh � �Mzh � �wh �
� 


�q � 


which implies that q �� Pos�I��M� by Farakas� theorem �Theorem � of Appendix ���

So the system
w �Mz � q

w� z �� 


is itself infeasible�

Theorem ��� The complementary pivot algorithm processes the LCP �q�M� if M

is an L
matrix�

Proof� When we apply the complementary pivot algorithm on the LCP �q�M�� sup�

pose the secondary ray f �wk � �wh� zk � �zh� zk� � �zh� � � � �� 
 g is generated� So we

have

�wk � �wh��M�zk � �zh� � q � e�zk� � �zh� � �

If zh� � 
� and in the above equation if �� is a large positive value such that q � e�zk� �

�zh� � � 
� then �wk���wh� zk���zh� is a complementary solution for the LCP
�
q�e�zk��

��zh��M
	
which by Lemma ��� implies that zk � ��zh � 
� which means that zk �

zh � 
� a contradiction to the fact that this is the secondary ray� So zh� cannot be

� 
� that is zh� � 
� and in this case �q�M� has no solution by Lemma ���� So the

complementary pivot algorithm processes the LCP �q�M��
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Theorem ��� If M is an L�
matrix� when the complementary pivot algorithm is

applied on the LCP �q�M�� it terminates with a complementary feasible solution�

Proof� In this case we show that there can be no secondary ray� Suppose f �wk��wh�

zk��zh� zk���z
h
� � � � �� 
 g is a secondary ray� As in the proof of Theorem ���� zh � 


�otherwise this ray will be the same as the initial ray� a contradiction�� Let i be the

de�ning index of M � zh� So we have zhi � 
 which implies wh
i � 
 by complementarity

and


 � �Mzh�i � ��ezh� �i �� 


a contradiction� So a secondary ray cannot exist in this case� and the complementary

pivot method must terminate with a complementary feasible solution�

Theorem ��� and ��� make it possible for us to conclude that the complementary

pivot algorithm processes that LCP �q�M� for a much larger class of matrices M than

the copositive plus class proved in Theorem ���� We will now prove several results

establishing that a variety of matrices are in fact L� or L��matrices� By virtue of

Theorem ��� and ���� this establishes that the complementary pivot method processes

the LCP �q�M� whenever M is a matrix of one of these types�

All copositive plus matrices are L�matrices� This follows because when M is

copositive plus� y �
� 
 implies yTMy �

� 
� and if y is such that y �
� 
� yTMy � 


then �M �MT �y � 
� hence M satis�es the de�nition of being an L�matrix by taking

the diagonal matrices � and � to be both I� A strictly copositive matrix is clearly an

L��matrix� From the de�nitions� it can be veri�ed that PMPT �obtained by principal

rearrangement ofM�� �M� �obtained by positive row and column scaling ofM� are L�

matrices if M is� whenever P is a permutation matrix and �� � are diagonal matrices

with positive diagonal elements� Copositive plus matrices M satisfy the property

that PMPT is also copositive plus whenever P is a permutation matrix� but if M is

copositive plus� �M� may not be copositive when �� � are diagonal matrices with

positive diagonal entries� Also if M � N are L�matrices� so is

���M 


 N

���� Again� from

Theorem ���� of Section ���� it follows that all P �matrices are L� matrices�

Lemma ��� M is row adequate i� for any y� �yTM�i�yi �� 
 for i � � to n implies

that yTM � 
�

Proof� Suppose M is row adequate� and there exists a y �� 
 such that �yTM�i�yi �� 


for i � � to n� By a standard reduction technique used in linear programming �see

Section ����� in ������ we can get a solution x of

xTM � yTM

x �� 


such that fMi� � xi � 
 g � fMi� � yi � 
 g and fMi� � xi � 
 g is linearly independent�

So we also have �xTM�i�xi �� 
 for all i � � to n� Let J � f i � xi � 
 g� Since M

is a P��matrix� so is its principal submatrix MJJ � �mij � i � J� j � J�� By linear
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independence of the set of row vectors fMi� � i � J g� since M is row adequate� we

know that the determinant of MTT �� 
 for all T � J� and therefore that MJJ is a

P �matrix� The facts J � f i � xi � 
 g� xi � 
 if i �� J� and �xTM�i�xi �� 
 for all

i � � to n� together imply that MJJxJ �� 
 where xJ � �xj � j � J�� which implies by

Theorem ���� of Section ��� that xJ � 
 since MJJ is a P �matrix� a contradiction� So

J must be empty and x � 
� and hence yTM � 
� Now if y � Rn� y not necessarily
�
� 
� satis�es �yTM�i�yi �� 
 for all i � � to n� let �i � � if yi �� 
� or �� if yi � 
�

and let ! be the diagonal matrix with diagonal entries ��� � � � � �n� Then yT! �
� 
 and�

yT!�!M��i
	
��i yi �

�
�yT!��!M!��i

	
��iyi� �� 
 for all i� But !M! is row adequate

since M is� and by the above we therefore have yT!�!M!� � 
 or yTM � 
�

Conversely� if M is a square matrix such that for any y� �yTM�i�yi �� 
 for all

i � � to n implies that yTM � 
� it follows that M is a P��matrix by the result in

Exercise ��	 and that M is row adequate�

Lemma �� Let M be a P�
matrix� If

My � 


y � 


has a solution y� then the system

xTM � 


x � 


has a solution�

Proof� Let y satisfy My � 
� y � 
� By the result in Exercise �� we know that

since M is a P��matrix� there is a x satisfying xTM �
� 
� x � 
� If xTM �� 
� then

�xTM�y � 
 but xT �My� � 
� a contradiction� So this x must satisfy xTM � 
�

Theorem ��� If M is row adequate� then M is an L
matrix�

Proof� By the result in Exercise ��	 M is a P��matrix i� for all y �� 
� there exists an

i such that yi �� 
 and yi�Mi�y� �� 
� This implies that all P��matrices are L��matrices�

Suppose y satis�es y � 
� My �
� 
� yTMy � 
� Let J � f i � yi � 
 g� These

facts imply MJJyJ � 
 where MJJ is the principal submatrix �mij � i � J� j � J�� and

yJ � �yj � j � J� � 
� By Lemma ��	� there exists an xJ � �xj � j � J� satisfying

xJ � 
� xTJMJJ � 
� From Lemma ���� these facts imply that xTJMJ� � 
� where MJ�
is the matrix with rows Mi� for i � J� Select the diagonal matrix � so that xJ � ��y�J
�possible because yJ � 
� and 
 � ��y��J where �J � f �� � � � � n g n J� Then yT�M � 


and ��M � MT��y � 
 with � � 
� So M is an L��matrix too� Thus M is an

L�matrix�
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Lemma ��� If R� S are L
matrices and P � 
� N � 
 are matrices of appropriate

orders� then

A �

��� R P
N S

��� and B �

��� S N
P R

���
are also L
matrices�

Proof� Consider the product A
 where


 �

���x
y

��� � 


Case � � Let x � 
� y � 
� Select a de�ning index for R and x� suppose it is i� Then

xi�Rx� Py�i � 
� since P � 
 and y � 
 �

This veri�es that in this case the same i will serve as a de�ning index for A to satisfy

the condition for being an L��matrix with this vector 
� Also verify that in this case�

A satis�es the condition for being an L��matrix� with this vector 
� trivially�

Case � � Let x � 
� y � 
� The select i as in case � and it will serve as a de�ning index

for A to satisfy the conditions for being an L��matrix� with this vector 
� Also verify

that in this case A satis�es the condition for being an L��matrix� with this vector 
�

trivially� since A
 �� 
 would imply in this case x � 
� a contradiction�

Case � � Let x � 
� y � 
� Select a de�ning index for S and y� suppose it is i� Verify

that the same i will serve as a de�ning index for A to satisfy the condition for being

an L��matrix� If y is such that A
 �� 
 and 
TA
 � 
� then Sy �� 
� yTSy � 
� Since

S is an L��matrix� there must exist diagonal matrices ��� �� �� 
 such that ��y �� 


and ���S � ST���y � 
� Now� it can be veri�ed easily that there is an appropriate

choice of diagonal matrices ��� �� such that �since x � 
 in this case������P �NT��

��S � ST��

��� y �

�


�����

��

������ R P
N S

����

���RT NT

PT ST

��������

��

�������x
y

���
� 


So A satis�es the condition for being an L��matrix� with this vector 
�

These facts establish that A is an L�matrix� The proof that B is an L�matrix is

similar�

Lemma ��� If R� S are L�
matrices and P �
� 
� Q arbitrary� are matrices of

appropriate orders� then

A �

���R P
Q S

��� and B �

��� S Q
P R

���
are also L�
matrices�
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Proof� Let


 �

���x
y

���
Consider the product A
� If x � 
� select i to be a de�ning index for R and x� Since

P �
� 
� the same i serves as a de�ning index for A and 
 in the condition for A to be

an L��matrix with this 
� If x � 
� then select i to be a de�ning index for S and y� the

same i serves as a de�ning index for A and 
 in the condition for A to be an L��matrix�

with this 
� So A is an L��matrix� The proof that B is an L��matrix is similar�

Lemma ��� If P � 
 is of order n�m and N � 
 is of order m�n� then
��� 
 P
N 


���
is an L
matrix�

Proof� Since 
 is an L�matrix� this results follows from Lemma ���

In Exercise ���� we ask the reader to prove that one formulation of the bimatrix

game problem as an LCP can be solved directly by the complementary pivot algorithm�

to yield a solution� using this lemma�

Lemma ��� Let T �n � n�� R �n �m�� � �n � ��� S �m � n�� � �� � n� be given

matrices with � � 
� � � 
 where n �
� 
� m �

� 
� If for each x � �x�� � � � � xm�T �  real

satisfying �x�� � � � � xm� � � 
� Rx� � �� 
 there exist diagonal matrices � �
� 
� " �

� 


of orders n� n and �m� ��� �m� �� respectively such that

"

���x


��� �� 
 and
�
��R� �� � �ST � �T �"

	���x


��� � 


then the following matrix M is an L�
matrix

M �

�������T R �
S 
 

� 
 


�������
Proof� Follows from the de�nition of L��matrices�

Notice that in Lemma ���� m could be zero� this will correspond to R� S being

vacuous�

Theorem �� Let T �n � n�� R �n � m�� � �n � ��� S �m � n�� � �� � n� be

given matrices satisfying � � 
� � � 
� Let N � n � m � �� Let J� � f �� � � � � n g�
J� � fn � �� � � � � n �m g� J� � fn �m � � g� For vectors w� z� q � RN � let wJt etc�

be de�ned to be the vectors wJt � �wj � j � Jt�� etc� Assume that q � RN is a given

column vector satisfying qJ� � �qn�m��� � 
� Let

M �

�������T R �
S 
 

� 
 


�������
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If M is an L�
matrix� when the complementary pivot method is applied on the LCP

�q�M� with the original column vector of the arti�cial variable z� taken to be ���� � � � �
��� 
�T � RN � either we get a complementary feasible solution of the problem� or the

system

�
���S
�

���x ��

��� qJ�
qJ�

���
x �� 


must be infeasible�

Proof� Suppose the complementary pivot algorithm is applied on the LCP �q�M� with

the original column vector of the arti�cial variable z� taken to be ���� � � � ���� 
�T �
RN � and it terminates with the secondary ray

�
�wk��wh� zk��zh� zk� ��zh� � � � ��



�
� Then �������wh

J�

wh
J�

wh
J�

��������
�������T R �
S 
 

� 
 


�������
������� zhJ�
zhJ�
zhJ�

��������
������� en
em



������� zh� � 


So wh
J�

� �zhJ� and since zhJ� �� 
� wh
J�

�
� 
 and � � 
� we have zhJ� � 
� wh

J�
� 
�

If zh� � 
� then wh
J�

� SzhJ��emz
h
� � emz

h
� � 
� which by complementarity implies

that zhJ� � zkJ� � 
� So wh
J�

� RzhJ� � �zhJ� � enz
h
� � �zhJ� � enz

h
� � 
 �since � � 
�� By

complementarity zkJ� � 
� and so wk
J�

� �zkJ� � qJ� � qJ� � 
� So by complementarity�

zkJ� � zhJ� � 
� Thus zh � zk � 
� contradiction to the fact that this is a secondary

ray� Therefore zh� must be zero� Since M is an L��matrix� by Lemma ���� the existence

of this secondary ray with zh� � 
 implies that

w �Mz � q

w� z �� 


has no feasible solution� which� by Faraka�s theorem �Theorem � of Appendix �� implies

that there exists a row vector 	 � RN such that

	M �
� 


	q � 


	 � 


	M �
� 
 includes the constraints 	J� �� 
 and since 	J� �� 
� � � 
� this implies that

	J� � 
� So the above system of constraints becomes

�	J� � 	J��

���S
�

��� �
� 


�	J� � 	J��

��� qJ�
qJ�

��� � 


�	J� � 	J�� �� 
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By Faraka�s theorem �Theorem � of Appendix �� this implies that the system

�
���S
�

���x ��

��� qJ�
qJ�

���
x �� 


is infeasible�

In Section ������ Lemma ��� and Theorem ��	 are applied to show that KKT

points for general quadratic programs can be computed� when they exist� using the

complementary pivot algorithm�

����� A Variant of the Complementary Pivot Algorithm

In the version of complementary pivot algorithm discussed so far� we have choosen the

original column vector associated with the arti�cial variable z� to be �en� Given a

column vector d � Rn satisfying d � 
� clearly we can choose the original column vector

associated with z� to be �d instead of �en in the complementary pivot algorithm� If

this is done� the original tableau turns out to be �

w z z�

I �M �d q

w �
� 
� z �� 
� z� �� 


�����

If q �� 
� �w � q� z � 
� is a solution of the LCP �q�M� and we are done� So assume

q ��� 
� Determine t to satisfy
�
qt
dt

	
� minimum

� �
qi
di

	
� i � � to n

�
� Ties for t can be

broken arbitrarily� It can be veri�ed that if a pivot step is performed in ������ with the

column vector of z� as the pivot column� and the tth row as the pivot row� the right hand

side constants vector becomes nonnegative after this pivot step� So �w�� � � � � wt��� z��

wt��� � � � � wn� is a feasible basic vector for ������ It is an almost complementary feasible

basic vector as de�ned earlier� Choose zt as the entering variable into this initial almost

complementary feasible basic vector �w�� � � � � wt��� z�� wt��� � � � � wn�� and continue by

choosing entering variables using the complementary pivot rule as before�

We will now illustrate this variant of the complementary pivot algorithm using a

numerical example by M� M� Kostreva �������

Example ����

Consider the LCP �q�M�� where

M �

������	 �
�� �

��� q �

����	
��

���
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Let d � �	� ��T � We will apply the complementary pivot algorithm on this LCP� using

�d as the original column of the arti�cial variable z��

Basic w� w� z� z� z� q

variables

� 
 ��	 �� �	 �	 t � �


 � � �� �� ��

z� ��

 
 � �

��
�

 � �

w� ���

 � � �

��
��

 
 ��

The entering variable is z�� The updated column vector of z� in the canonical tableau

with respect to the basic vector �z�� w�� is nonpositive� So the algorithm ends up in

ray termination�

Example ����

Consider the LCP �q�M� discussed in Example ����� Let d � e� � ��� ��T � We will

apply the complementary pivot algorithm on this LCP with �e� as the original column

of the arti�cial variable z��

Basic w� w� z� z� z�

variables

� 
 ��	 �� �� �	 t � �


 � � �� �� ��

z� �� 
 � �
� � � 	

w� �� � 

� �� 
 ��

z� ��



�

 
 �


 � �



z� ��



�

 � ��


 
 ��



z� �� �
� 
 � 


�
�
�

z� �� � � 
 � ��

Now we have terminated with a complementary feasible basic vector� and the corre�

sponding solution of the LCP is w � 
� z � �z�� z�� � ���� �� ��

These examples taken from M� M� Kostreva ������ illustrate the fact that� given

a general LCP �q�M�� the complementary pivot algorithm applied on it with a given
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positive vector d may end up in ray termination� and yet when it is run with a di�erent

positive d vector it may terminate with a solution of the LCP� The question of how

to �nd a good d vector seems to be a hard problem� for which no answer is known�

There are LCPs which are known to have solutions� and yet when the complementary

pivot algorithm is applied on them with any positive d vector� it always ends up in ray

termination� See Exercise �����

If M is a copositive plus matrix� and if the complementary pivot algorithm with

any positive d vector ends up in ray termination when applied on the LCP �q�M�� then

it can be proved that the LCP �q�M� has no solution �in fact it can be proved that

�w �Mz � q� does not even have a nonnegative solution�� using arguments exactly

similar to those in the proof of Theorem ���� Thus any LCP �q�M� where M is a

copositive plus matrix� will be processed by the complementary pivot algorithm with

any positive d vector�

Exercise

��� Prove that when M is an L�matrix or an L��matrix� the variant of the complemen�

tary pivot algorithm discussed in this section� with any vector d � 
 of appropriate

dimension� will process the LCP �q�M�� �Proofs are similar to those in Section �������

����� Lexicographic Lemke Algorithm

This variant of the complementary pivot algorithm is known as the Lexicographic

Lemke Algorithm if the original column vector of the arti�cial variable z� is taken to

be �d � ��n� n��� � � � � �T where  is a su�ciently small positive number� It is not

necessary to give  a speci�c numerical value� but the algorithm can be executed leaving

 as a small positive parameter and remembering that r�� � r for any nonnegative

r� and that  is smaller than any positive constant not involving � In this case� if D

is any square matrix of order n� Dd � D�n� n��� � � � � �T � nD�� � n��D�� � � � ��

D�n� Using this� it is possible to execute this algorithm without giving the small

positive parameter  any speci�c value� but using the equivalent lexicographic rules�

hence the name�

����� Another Su
cient Condition for the

Complementary Pivot Method to Process the LCP �q�M�

We will now discuss some results due to J� M� Evers ������ on another set of su�cient

conditions under which the complementary pivot algorithm can be guaranteed to pro�

cess the LCP �q�M�� First� we discuss some lemmas� These lemmas are used later

on in Theorem �� to derive some conditions under which the complementary pivot

algorithm can be guaranteed to solve the LCP �q�M� when M is a matrix of the form

E �N where E is a symmetric PSD matrix� and N is copositive�
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Lemma ���� Let M � E � N where E is a symmetric PSD matrix and N is

copositive� If the system
�E �N�z �� 


cz � 


zT �E �N�z � 


z �� 


�����

has a solution z� then the system

Ex�NT y �� cT

y �� 

�����

has no solution �x� y��

Proof� Let �z be a feasible solution for ������ Since E is PSD and N is copositive�

�zT �E �N��z � 
 implies that �zTE�z � �zTN �z � 
� Since E is symmetric� by Theorem

����� �zTE�z � 
 implies that E�z � 
� So by ������ N �z �� 
� Let ��x� �y� be feasible to

������ So 
 �� �yTN �z � ��xTE�z � �yTN �z �since E�z � 
� � �zT ��E�x�NT �y� �� �c�z � 
�

a contradiction�

Lemma ���� If the variant of the complementary pivot algorithm starting with an

arbitrary positive vector d for the column of the arti�cial variable z� in the original

tableau ends up in ray termination when applied on the LCP �q�M� in which M is

copositive� there exists a �z satisfying

M �z �� 


qT �z � 


�zTM �z � 


�z �� 


����
�

Proof� Let the terminal extreme half�line obtained in the algorithm be
�
�w� z� z�� �

�wk � �wh� zk � �zh� zk� � �zh� � � � �
� 


�
where �wk� zk� zk� � is the BFS of ����� and

�wh� zh� zh� � is a homogeneous solution corresponding to ������ that is

wh �Mzh � dzh� � 


wh� zh� zh� �� 


�wh� zh� zh� � �� 


������

and every point on the terminal extreme half�line satis�es the complementarity con�

straint� that is

�wk � �wh�T �zk � �zh� � 
 for all � �� 
 � ������

Clearly zh �� 
 �otherwise the terminal extreme half�line is the intial one� a contradic�

tion�� so zh � 
� By complementarity� we have �wh�T zh � 
� from ������ this implies
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that �zh�TMzh � �dT zhzh� �
� 
� �since d � 
� zh � 
 implies that dT zh � 
� which

implies by the copositivity of M � that �zh�TMzh � 
 and zh� � 
� Using this in ������

we conclude that

Mzh � wh �
� 
 � ������

Since �wk� zk� zk� � is a BFS of ����� we have wk � Mzk�dzk��q� Using this and ������ in

������ we get� for all � �� 
� �zk��zh�T dzk���zk��zh�T q � ��zk��zh�TM�zk��zh� ��

 �since M is copositive and zk � �zh �

� 
�� Make � � 
� divide this inequality by �

and take the limit as � tends to ��� This leads to

�zh�T dzk� � �zh�T q �� 
 � ������

But zk� � 
 �otherwise �wk� zk� will be a solution to the LCP �q�M�� contradicting

the hypothesis that the algorithm terminated with ray termination without leading to

a solution of the LCP�� d � 
� zh � 
� Using these facts in ������ we conclude that

qT zh � 
� All these facts imply that zh � �z satis�es ����
��

Theorem ��� Let M � E � N where E is a symmetric PSD matrix and N is

copositive� If the system ����� with cT � �q has a solution �x� y� there exists no

secondary ray� and the complementary pivot algorithm terminates with a solution of

the LCP �q�M��

Proof� Follows from Lemma ���
 and �����

Corollary ��� Putting E � 
 in Theorem ���� we conclude that if N is copositive�

for every u �� 
� v �� 
 in Rn� there exists w� z � Rn satisfying

Nz � w � �NTu� v

z� w �
� 
� zTw � 
 �

����� Unboundedness of the Objective Function

Consider a mathematical program in which an objective function f�x� is required to

be minimized subject to constraints on the decision variables x � �x�� � � � � xn�
T � This

problem is said to be unbounded below if the set of feasible solutions of the problem

is nonempty and f�x� is not bounded below on it� that is� i� there exists an in�nite

sequence of feasible solutions fx�� � � � � xr� � � �g such that f�xr� diverges to �� as r

goes to ���

It is well known that if a linear program is unbounded below� there exists a

feasible half�line �in fact an extreme half�line of the set of feasible solutions� see ������

along which the objective function diverges to ��� This half�line is of the form
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fx� � �x� � � �
� 
 g satisfying the property that x� � �x� is a feasible solution for all

� �
� 
� and the objective value at x� � �x� diverges to �� as � goes to ��� This

property may not hold in general convex programming problems� that is� problems in

which a convex function is required to be minimized over a closed convex set� Consider

the following example due to R� Smith and K� G� Murty�

Minimize � x�

Subject to x� � x�� �� 
 �

x�� x� �� 


����	�

The set of feasible solutions of this problem is drawn in Figure ����

1x

(α ,α )2

x2

0
0

Figure ��� The feasible region for ����	� is the area between the x� axis

and the parabola� For every 	 � 
� the straight line x� � 	x� � 
 intersects

the parabola at exactly two points�

The equation x��x�� � 
 represents a parabola in the x�� x��Cartesian plane� For

every 	 � 
� the straight line x� � 	x� � 
 intersects this parabola at the two points

�
� 
� and �	� 	��� These facts clearly imply that even though �x� is unbounded below

in ����	�� there exists no half�line in the feasible region along which �x� diverges to

���
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However� for convex quadratic programs �i�e�� problems of the form ������ in which

the matrix D is PSD� we have the following theorem�

Theorem ��� Consider the quadratic program ������ in which D is PSD and sym


metric� Suppose ������ is feasible and that Q�x� is unbounded below in it� Then

there exists a feasible half
line for ������ along which Q�x� diverges to ��� Such a

half
line can be constructed from the data in the terminal tableau obtained when the

complementary pivot algorithm is applied to solve the corresponding LCP �������

Proof� For any positive integer r� let er denote the column vector in Rr� all of whose

entries are �� By Theorem ���� when the complementary pivot algorithm is applied to

solve ������ it must end in ray termination� When this happens� by the results estab�

lished in the proof of Theorem ���� we get vectors �uk� vk� xk� yk� and �uh� vh� xh� yh�

satisfying ���uk

vk

����
���D �AT

A 


������xk

yk

����
��� en
em

��� zk� �

��� cT

�b
��� �����

uk� vk� xk� yk �� 
� �uk�Txk � �vk�T yk � 
� zk� � 
 �

���uh

vh

����
���D �AT

A 


������xh

yh

��� � 
 ������

uh� vh� xh� yh �� 
� �uh�Txh � �vh�T yh � 
� �xh� yh� � 
 �

�uk�Txh � �vk�T yh � �uh�Txk � �vh�T yk � 
 � ������

�
�xh�T � �yh�T

	��� cT

�b
��� � 
 � ������

So we have vh � Axh and 
 � �yh�T vh � �yh�TAxh� We also have uh �Dxh � AT yh

� 
� and hence 
 � �xh�Tuh � �xh�TDxh � �xh�TAT yh � �xh�TDxh� Since D is PSD

and symmetric by Theorem ����� this implies that Dxh � 
� So AT yh � �uh �
� 
�

that is �yh�TA �
� 
� From ������ �b � vk � Axk � emz

k
� � z

k
� � 
� So ��bT yh� �

�vk�T yh��xk�TAT yh�zk� eTmyh � ��xk�TAT yh�zk� eTmyh � ��xk�T ��uh��zk� eTmyh �

�zk� �eTmyh� �� 
 since zk� � 
 and yh �� 
� So bT yh � zk� �e
T
my

h� �� 
�

If bT yh � 
� ������ must be infeasible� To see this� suppose  x is a feasible solution

of ������� Then A x �
� b�  x �

� 
� So �yh�TA x �
� �yh�T b� But it has been established

earlier that �yh�TA � ��uh�T �
� 
� Using this in the above� we have� �yh�T b �

�
�yh�TA x � ��uh�T  x �� 
 �since both uh and  x are �� 
�� and this contradicts the fact

that �yh�T b � 
�

So� under the hypothesis that ������ is feasible� we must have bT yh � 
� In

this case� from ������ we have cxh � 
� From earlier facts we also have Axh �

vh �
� 
� xh �

� 
 and Dxh � 
� Let #x be any feasible solution to ������� These facts

together imply that #x� �xh is also feasible to ������ for any � �� 
 and Q�#x� �xh� �

Q�#x� � ��cxh� �this equation follows from the fact that Dxh � 
� diverges to �� as
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� tends to ��� Thus in this case� f #x � �xh � � �
� 
 g is a feasible half�line along

which Q�x� diverges to ���

Since D is assumed to be PSD� we have xTDx �
� 
 for all x � Rn� So� in this

case� if Q�x� is unbounded below in ������� the linear function cx must be unbounded

below on the set of feasible solutions of ������� and this is exactly what happens on

the half�line constructed above�

If ray termination occurs in the complementary pivot algorithm applied on ������

when D is PSD� we get the vectors satisfying ������ ������� ������ and ������ from the

terminal tableau� If bT yh � 
� we have shown above that ������ must be infeasible�

On the other hand� if bT yh � 
� Q�x� is unbounded below in ������ if ������ is feasible�

At this stage� whether ������ is feasible or not can be determined by using Phase I of

the Simplex Method or some other algorithm to �nd a feasible solution of the system

Ax �� b� x �� 
�

With a slight modi�cation in the formulation of a convex quadratic program as

an LCP� we can make sure that at termination of the complementary pivot algorithm

applied to this LCP� if ray termination has occurred� then either a proof of infeasibility

or a feasible extreme half�line along which the objective function is unbounded� are

readily available� without having to do any additional work� See Section ����� for this

version�

����� Some Results on Complementary BFSs

Theorem ��� If the LCP �q�M� has a complementary feasible solution� then it has

a complementary feasible solution which is a BFS of

w �Mz � q

w �
� 
� z �� 
 �

����
�

Proof� Let � �w� �z� be a complementary feasible solution for the LCP �q�M�� So for

each j � � to n� we have �wj �zj � 
� If � �w� �z� is a BFS of ����
�� we are done� Otherwise�

using the algorithm discussed in Section ��	�� of ������ starting with � �w� �z�� we can

obtain a BFS �  w�  z� of ����
� satisfying the property that the set of variables which

have positive values in �  w�  z�� is a subset of the set of variables which have positive

values in � �w� �z�� So  wj zj � 
� for j � � to n� Hence �  w�  z� is a complementary feasible

solution of the LCP �q�M� and it is also a BFS of ����
��

Note ��� The above theorem does not guarantee that whenever the LCP �q�M�

has a complementary feasible solution� there exists a complementary feasible basis for

����
�� See Exercise ���
�
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Theorem ��� Suppose M is nondegenerate� If � �w� �z� is a complementary feasible

solution for the LCP �q�M�� the set of column vectors f I�j � j such that �wj � 
 g 
f�M�j � j such that �zj � 
 g is linearly independent� Also� in this case� de�ne a vector

of variables y � �y�� � � � � yn� by

yj �

���
wj � if �wj � 

zj � if �zj � 

either wj or zj choosen arbitrarily � if both �wj and �zj are � �

Then y is a complementary feasible basic vector for �������

Proof� From Corollary ��� of Chapter �� when M is nondegenerate� every comple�

mentary vector is basic� Since � �w� �z� is a complementary feasible solution� this implies

that the set f I�j � j such that �wj � 
 g  f�M�j � j such that �zj � 
 g is linearly

independent� Also from this result� y is a complementary basic vector� and the BFS

of ����
� with y� as the basic vector is � �w� �z�� and hence y is a complementary feasible

basic vector�

Theorem ���� If M is PSD or copositive plus� and ������ is feasible� then there

exists a complementary feasible basic vector for �������

Proof� When the complementary pivot algorithm is applied to solve the LCP �q�M��

it terminates with a complementary feasible basic vector when M is copositive plus

and ����
� is feasible� by Theorem ����

��� A METHOD OF CARRYING OUT THE

COMPLEMENTARY PIVOT ALGORITHM

WITHOUT INTRODUCING ANY

ARTIFICIAL VARIABLES�

UNDER CERTAIN CONDITIONS

Consider the LCP �q�M� of order n� suppose the matrix M satis�es the condition �

there exists a column vector of M in which all the entries are

strictly positive�
������

Then a variant of the complementary pivot algorithm which uses no arti�cial variable

at all� can be applied on the LCP �q�M�� We discuss it here� The original tableau for
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this version of the algorithm is �

w z

I �M q

w �
� 
� z �� 


������

As before� we assume that q ��� 
� Let s be such that M�s � 
� So the column vector

associated with zs is strictly negative in ������� Hence the variable zs can be made to

play the same role as that of the arti�cial variable z� in versions of the complementary

pivot algorithm discussed earlier� and thus there is no need to introduce the arti�cial

variable� Determine t to satisfy
�

qt
mts

	
� minimum

� �
qi
mis

	
� i � � to n

�
� Ties for t

can be broken arbitrarily� When a pivot step is carried out in ������ with the column

of zs as the pivot column and row t as the pivot row� the right hand side constants

vector becomes nonnegative after this pivot step �this follows because �mis � 
 for

all i and by the choice of t�� Hence� �w�� � � � � wt��� zs� wt��� � � � � wn� is a feasible basic

vector for ������� and if s � t� it is a complementary feasible basic vector and the

solution corresponding to it is a solution of the LCP �q�M�� terminate� If s �� t� the

feasible basic vector �w�� � � � � wt��� zs� wt��� � � � � wn� for ������ satis�es the following

properties �

i� It contains exactly one basic variable from the complementary pair �wi� zi�

for n� � values of i �namely i �� s� t here��

ii� It contains both the variables from a �xed complementary pair �namely

�ws� zs� here�� as basic variables�

iii� There exists exactly one complementary pair both the variables in which are

not contained in this basic vector �namely �wt� zt� here��

The complementary pair of variables identi�ed by property �iii�� both of which are

not contained in the basic vector� is known as the left out complementary pair of

variables in the present basic vector�

For carrying out this version of the complementary pivot algorithm� any feasible

basic vector for ������ satisfying �i�� �ii�� �iii� is known as an almost complemen�

tary feasible basic vector� All the basic vectors obtained during this version of the

algorithm� with the possible exception of the terminal one �which may be a comple�

mentary basic vector�� will be such almost complementary feasible basic vectors� and

the complementary pair in property �ii� both of whose variables are basic� will be the

same for all of them�

In the canonical tableau of ������ with respect to the initial almost complementary

feasible basic vector� the updated column vector of wt can be veri�ed to be strictly

negative �because the pivot column in the original tableau� �M�s� is strictly negative��

Hence if wt is selected as the entering variable into the initial basic vector� an almost

complementary extreme half�line is generated� Hence the initial almost complementary

BFS of ������ is at the end of an almost complementary ray�

The algorithm chooses zt as the entering variable into the initial almost comple�

mentary feasible basic vector �w�� � � � � wt��� zs� wt��� � � � � wn�� In all subsequent steps�
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the entering variable is uniquely determined by the complementary pivot rule� that

is� the entering variable in a step is the complement of the dropping variable in the

previous step� The algorithm can terminate in two possible ways �

�� At some stage one of the variables form the complementary pair �ws� zs� �this

is the pair speci�ed in property �ii� of the almost complementary feasible

basic vectors obtained during the algorithm� drops out of the basic vector� or

becomes equal to zero in the BFS of ������� The BFS of ������ at that stage

is a solution of the LCP �q�M��

�� At some stage of the algorithm both the variables in the complementary pair

�ws� zs� may be strictly positive in the BFS� and the pivot column in that stage

may turn out to be nonpositive� and in this case the algorithm terminates with

another almost complementary ray� This is ray termination�

When ray termination occurs� the algorithm bas been unable to solve the LCP

�q�M��

Example ����

Consider the LCP �q�M�� where

M �

������� � � �
� � �
� � �

������� q �

���������
�	
��

�������
All the column vectors of M are strictly positive here� We will illustrate the algorithm

on this problem using s � ��

Original Tableau

w� w� w� z� z� z� q

� 
 
 �� �� �� ��

 � 
 �� �� �� �	

 
 � �� �� �� ��

�M�� � 
� The minimum f ��
� �

�

� �

��
� g � �	� and hence t � � here� So the pivot

row is row �� and the pivot element for the pivot operation to get the initial almost

complementary feasible basic vector is inside a box in the original tableau� Applying

the algorithm we get the following canonical tableaus�
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Basic w� w� w� z� z� z� q Ratios

variables

w� � �� 
 �� � 
 � �
� Min�

z� 
 �� 
 � � � 	 

�

w� 
 �� � � � 
 � 
�

z� � �� 
 �� � 
 �

z� �� � 
 � 
 � � �
�Min�

w� �� � � � 
 
  �
�

z�
�
� ��

� 
 
 � �
� �

z� ��
�

�
� 
 � 
 �

� �

w� ��
� ��

� � 
 
 ��
� �

So the solution of this LCP is w � �w�� w�� w�� � �
� 
� ��� z � �z�� z�� z�� � ��� �� 
��

Exercise

��� Show that the version of the complementary pivot algorithm discussed in this

section can be used to process all LCPs �q�M� in which M is copositive plus and at

least one of its columns is strictly positive� In this case� prove that ray termination

cannot occur� and that the algorithm will terminate with a complementary feasible

basic vector for the problem�

��� TO FIND AN EQUILIBRIUM PAIR OF

STRATEGIES FOR A BIMATRIX GAME

USING THE COMPLEMENTARY PIVOT

ALGORITHM

The LCP corresponding to the problem of �nding an equilibrium pair of strategies in

a bimatrix game is ������� where A� BT are positive matrices� The original tableau for

this problem is �
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u v 
 �

Im 
 
 �A �em

 IN �BT 
 �eN
u �

� 
� v �
� 
� 
 �

� 
� � �
� 


������

where for any r� Ir denotes the identity matrix of order r� The complementary pairs

of variables in this problem are �ui� 
i�� i � � to m� and �vj � �j�� j � � to N �

We leave it to the reader to verify that when the complementary pivot algorithm

discussed in Section ��� is applied on this problem� it ends up in ray termination right

after obtaining the initial almost complementary feasible basic vector� However� it

turns out that the variant of the complementary pivot algorithm discussed in Section

��� can be applied to this problem� and when it is applied it works� We discuss the

application of this version of the algorithm here�

So� here� an almost complementary feasible basic vector for ������� is de�

�ned to be a feasible basic vector that contains exactly one basic variable from each

complementary pair excepting two pairs� Both variables of one of these pairs are basic

variables� and both variables in the other pair are nonbasic variables� These are the

conditions for almost complementarity �i�� �ii�� �iii�� discussed in Section ����

The column vectors of the variables 
i� �j � in ������ are all nonpositive� but none

of them is strictly negative� But� because of their special structure� an almost com�

plementary feasible basic vector for ������ can be constructed by the following special

procedure�

Initially make the variable 
� a basic variable and the variables 
�� � � � � 
m nonbasic

variables� Make 
� equal to 
�� � the smallest positive number such that v� � �eN �

�BT ���

�
� � 
� At least one of the components in v�� say� v�r is zero� Make vr a nonbasic

variable too� The complement of vr is �r� Make the value of �r to be the smallest

positive value� ��r � such that u� � A�r�
�
r � em � 
� At least one of the components in

u�� say u�s is 
� If s � �� the basic vector �u�� � � � � um� v�� � � � � vr��� vr��� � � � � vN � 
�� �r�

is a complementary feasible basic vector� and the feasible solution corresponding to it

is a solution of the LCP ������� terminate�

If s �� �� the basic vector� �u�� � � � � us��� us��� � � � � um� v�� � � � � vr��� vr��� � � � � vN �


�� �r� is a feasible basic vector� Both the variables in the complementary pair �u�� 
��

are basic variables in it� Both variables in the complementary pair �us� 
s� are nonbasic

variables� And this basic vector contains exactly one basic variable from every comple�

mentary pair in ������� excepting �u�� 
��� �us� 
s�� Hence this initial basic vector is an

almost complementary feasible basic vector� All the basic vectors obtained during the

algorithm �excepting the terminal complementary feasible basic vector� will be almost

complementary feasible basic vectors containing both the variables in the pair �u�� 
��

as basic variables�

When us is made as the entering variable into the initial basic vector� an almost

complementary extreme half�line is generated� Hence the BFS of ������ with respect
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to the initial basic vector is an almost complementary BFS at the end of an almost

complementary extreme half�line�

The algorithm begins by taking 
s as the entering variable into the initial basic

vector� In all subsequent steps� the entering variable is picked by the complementary

pivot rule� The algorithm terminates when one of the variables in the pair �u�� 
��

drops from the basic vector� It can be proved that temination occurs after at most

a �nite number of pivots� The terminal basis is a complementary feasible basis� In

this algorithm if degeneracy is encountered� its should be resolved using the lexico

minimum ratio rule �see Section �������

Example ����

We will solve the LCP ������ corresponding to the � person game in Example ���� In

tableau form it is

u� u� v� v� v� 
� 
� �� �� �� q

� 
 
 
 
 
 
 �� �� �� ��

 � 
 
 
 
 
 �� �� �� ��

 
 � 
 
 �� �� 
 
 
 ��

 
 
 � 
 �� �� 
 
 
 ��

 
 
 
 � �� �� 
 
 
 ��

u� v� 
� � �
� 
 and u�
� � u�
� � v��� � v��� � v��� � 


Making 
� � 
� the smallest value of 
� that will yield nonnegative values to the v�s is

�� When 
� � 
� 
� � � the value of v� is 
� Hence� v� will be made a nonbasic variable�

The complement of v� is ��� So make �� and �� nonbasic variables� The smallest value

of �� that will make the u�s nonnegative is �� � �� When �� � � with �� � �� � 
�

u� becomes equal to 
� So make u� a nonbasic variable� The canonical tableau with

respect to the initial basic vector is therefore obtained as below by performing pivots

in the columns of 
� and ��� with the elements inside a box as pivot elements�

Basic u� u� v� v� v� 
� 
� �� �� �� q Ratios

variables

u� � �� 
 
 
 
 
 
 � � �

�� 
 �� 
 
 
 
 
 � � � �


� 
 
 �� 
 
 � � 
 
 
 � �
�

v� 
 
 �� � 
 
 	 
 
 
 � �

 Min�

v� 
 
 �� 
 � 
 � 
 
 
 � �
�
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The algorithm continues by selecting 
�� the complement of u�� as the entering variable�

v� drops from the basic vector�

Basic u� u� v� v� v� 
� 
� �� �� �� q

variables

u� � �� 
 
 
 
 
 
 � � �

�� 
 �� 
 
 
 
 
 � � � �


� 
 
 �

 ��


 
 � 
 
 
 
 �




� 
 
 ��



�

 
 
 � 
 
 
 �




v� 
 
 ��

 ��


 � 
 
 
 
 
 �



Since v� has dropped from the basic vector� its complement �� is the next entering

variable� There is a tie in the minimum ratio when �� is the entering variable� since it

can replace either u� or �� from the basic vector� Such ties should be resolved by the

lexico minimum ratio test� but in this case we will let u� drop from the basic vector�

since that leads to a complementary feasible basis to the problem�

Basic u� u� v� v� v� 
� 
� �� �� �� q

variables

��
�
� �� 
 
 
 
 
 
 � �

�
�
�

�� �� � 
 
 
 
 
 � 
 �� 



� 
 
 �

 ��


 
 � 
 
 
 
 �




� 
 
 ��



�

 
 
 � 
 
 
 �




v� 
 
 ��

 ��


 � 
 
 
 
 
 �



The present basic vector is a complementary feasible basic vector� The solution �u�� u��

v�� v�� v�� 
�� 
�� ��� ��� ��� � �
� 
� 
� 
� �
 �
�

 �

�

 � 
�

�
� � 
� is a solution of the LCP� In this

solution 
� � 
� �
�

 and �� � �� � �� � �

� � Hence the probability vector x � �

�
P

�i	
��

�
� �

�
�

	T
and y � �

�
P

�j	
� �
� �� 
�T constitute an equilibrium pair of strategies for this

game�

Theorem ���� If the lexicographic minimum ratio rule is used to determine the

dropping variable in each pivot step �this is to prevent cycling under degeneracy� of

the complementary pivot algorithm discussed above for solving ������� it terminates in

a �nite number of pivot steps with a complementary feasible solution�

Proof� The original tableau for this problem is ������� in which A � 
� BT � 
� by

the manner in which the problem is formulated� In the algorithm discussed above
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for this problem� both variables from exactly one complementary pair are nonbasic in

every almost complementary feasible basic vector obtained� and this pair is known as

the left out complementary pair of variables� The left out complementary pair

may be di�erent in the various almost complementary feasible basic vectors obtained

during the algorithm� but the complementary pair both of whose variables are basic�

remains the same in all of them�

Let �u�� � � � � us��� us��� � � � � um� v�� � � � � vr��� vr��� � � � � vN � 
�� �r� be the initial al�

most complementary feasible basic vector obtained in the algorithm� by the special

procedure discussed above� Let the initial tableau be the canonical tableau of ������

with respect to the initial almost complementary feasible basic vector� In this� the left

out complementary pair is �us� 
s� both of which are nonbasic at present� Let

u� � �u�i �� u�i � �� � � air
asr

	
� for i �� s� u�s � 
 �

v� � �v�j �� v�j � �� � �b�j
b�r

	
� for j �� r� v�r � 
 �


� �
� �

b�r
� 
� � � � � 


	
�� � ���j �� ��j � 
� for j �� r� ��r �

�

asr
�

�uh � ��uhi �� �uhi �
�ais
air

	
� for i �� s� �uhs � � �

�vh � 
� �
h � 


��h � ���hj �� ��hj � 
� for j �� r� ��hr �
� �

asr

	
�

The present BFS can be veri�ed to be �u�� v�� 
�� ���� It can also be veri�ed that ��uh�

�vh� �
h� ��h� is a homogeneous solution corresponding to the initial tableau� and that the

initial almost complementary extreme half�line generated when us is brought into the

basic vector in the initial tableau is
�
�u�� v�� 
�� ��� � ���uh� �vh� �
h� ��h� � � �� 


�
�

The algorithm begins by bringing the nonbasic variable 
s into the basic vector in

the initial tableau� and continues by using the complementary pivot rule to choose the

entering variable and the lexico�minimum ratio rule to choose the dropping variable in

each step�

Let B be the basis consisting of the columns of the basic variables in the initial

tableau �not the original tableau�� in a step of this procedure and let � � ��ij� � B���

Let �q be the updated right hand side constants vector in this step� If u� or 
�� is

eligible to be a dropping variable in this step by the usual minimum ratio test� it

is choosen as the dropping variable� and the pivot step is carried out� leading to a

complementary feasible basic vector for the problem� If both u� and 
� are ineligible to

be dropping variables in this step� the lexico minimum ratio rule chooses the dropping

variable so that the pivot row corresponds to the row which is the lexico minimum� ��qi��i�	
pit

� i such that pit � 

�

where p � �p�t� � � � � pm�N�t�
T is the pivot column

�updated column of the entering variable� in this step� This lexico minimum ratio rule

determines the dropping variable uniquely and unambiguously in each pivot step�
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In each almost complementary feasible basic vector� obtained during the algo�

rithm� there is exactly one left out complementary pair of variables� and hence it can

have at most two adjacent almost complementary feasible basic vectors� that can be

obtained by bringing one variable from the left out complementary pair into it�

The left out complementary pair in the initial almost complementary feasible

basic vector is �us� 
s�� and when us is brought into the initial almost complementary

feasible basic vector� we obtain the initial almost complementary extreme half�line� So

the only manner in which the almost complementary path can be continued from the

initial almost complementary BFS is by bringing 
s into the basic vector� The updated

column of 
s in the initial tableau can be veri�ed to contain at least one positive entry�

Hence when 
s is brought into the initial basic vector� we get an adjacent almost

complementary feasible basic vector� and the almost complementary path continues

uniquely and unambiguously from there� Each almost complementary feasible basic

vector has at most two adjacent ones� from one of them we arrive at this basic vector�

we move to the other when we leave this basic vector� These facts� and the perturbation

interpretation of the lexico minimum ratio rule imply that an almost complementary

feasible basic vector obtained in the algorithm can never reappear later on� Since

there are at most a �nite number of almost complementary feasible basic vectors� the

algorithmmust terminate in a �nite number of pivot steps� If it terminates by obtaining

a complementary feasible basic vector� the BFS corresponding to it is a solution of the

LCP ������ and we are done� The only other possibility in which the algorithm can

terminate is if the updated column vector of the entering variable in some step has no

positive entries in it� in which case we get a terminal almost complementary extreme

half�line �this is the ray termination discussed earlier�� We will now show that this

second possibility �ray termination� cannot occur in this algorithm�

Suppose ray termination occurs in pivot step k� Let the almost complementary

BFS in this step be �uk� vk� 
k� �k� and let the terminal extreme half�line be� f �uk� vk�

k� �k� � ��uh� vh� 
h� �h� � � �

� 
 g� From this and from the almost compelementary

property being maintained in the algorithm� we have ����uk � �uh

vk � �vh

����
��� 
 A
BT 


������ 
k � �
h

�k � ��h

��� �

����em
�eN

��� ������

�uki � �uhi ��

k
i � �
hi � � 
 for all i �� � ����	�

�vkj � �vhj ���
k
j � ��hj � � 
 for all j �����

uk� vk� 
k� �k� uh� vh� 
h� �h �� 
 ������

for all � �
� 
� �uh� vh� 
h� �h� is a homogeneous solution satisfying the nonnegativity

restrictions and ���uh

vh

����
��� 
 A
BT 


������ 
h

�h

��� � 
 �

That is �
uh � A�h

vh � BT 
h �
������
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We also have �uh� vh� 
h� �h� �� 
� which implies by ������ and ������ that �
h� �h� � 
�

Now suppose 
h �� 
� So 
h � 
� Since B � 
� this implies by ������ that vh � BT 
h �


� From ����� this implies that �kj � ��hj � 
 for all j and for all � �
� 
� From ������

this implies that �uk � �uh� � �em � 
� a contradiction�

Suppose we have 
h � 
 but �h �� 
� So �h � 
 and since A � 
� uh � A�h � 
�So

from ����	�� we must have 
ki � 
 for all i �� �� Since 
h � 
� by ������ vh � 
� So

from ������

vk � �eN �BT 
k ������

and since 
ki � 
 for all i �� �� vk is obtained by the same procedure as v�� the value of

v in the initial BFS �since 
k� must be the smallest value that makes vk nonnegative in

������ in order to get an extreme point solution�� So vk is the same as v� in the initial

BFS in ������� By our discussion earlier� this implies that vkj � 
 for all j �� r� and

vkr � 
� By ����� this implies that �kj � ��hj � 
 for all � �
� 
 and j �� r� These facts

clearly imply that �uk� vk� 
k� �k� is the same as the initial BFS obtained for �������

This is a contradiction� since a BFS obtained in a step of the algorithm cannot reappear

later on� along the almost complementary path�

These facts imply that ray termination cannot occur� So the algorithm must

terminate in a �nite number of steps by obtaining a complementary feasible basic

vector� and the terminal BFS is therefore a solution of the LCP �������

Comments ��� The complementary pivot algorithm for computing equilibrium stra�

tegies in bimatrix games is due to C� E� Lemke and J� T� Howson ������� C� E� Lemke

������ extended this into the complementary pivot algorithm for LCPs discussed in Sec�

tion ���� The proof of Theorem ��� is from the paper of R� W� Cottle and G� B� Dantzig

����� which also discusses various applications of the LCP and some principal pivoting

methods for solving it� C� E� Lemke was awarded the ORSA$TIMS John Von Neumann

Theory Prize in ���� for his contributions to this area� The citation of the award says

�Nash�s equilibrium proofs were nonconstrutive� and for many years it seemed that

the nonlinearity of the problem would prevent the actual numerical solution of any

but the simplest noncooperative games� The breakthrough came in ��� with an inge�

nious algorithm for the bimatrix case devised by Carlton Lemke and L� T� Howson Jr�

It provided both a constructive existence proof and a practical means of calculation�

The underlying logic� involving motions on the edges of an appropriate polyhedron�

was simple and elegant yet conceptually daring in an epoch when such motions were

typically contemplated in the context of linear programming� Lemke took the lead

in exploiting the many rami�cations and applications of this procedure� which range

from the very basic linear complementary problem of mathematical programming to

the problem of calculating �xed points of continuous� nonlinear mappings arising in

various contexts� A new chapter in the theory and practice of mathematical program�

ming was thereby opened which quickly became a very active and well�populated area

of research�����
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The geometric interpretation of the LCP using complementary cones was initiated

in K� G� Murty ������ �����

��� A VARIABLE DIMENSION ALGORITHM

We consider the LCP �q�M� which is to �nd w� z � Rn satisfying

w �Mz � q ����
�

w� z �� 
 ������

and wT z � 
 ������

De�nition � Principal Subproblem

Let J � f�� � � � � ng� Denote wJ � �wj � j � J�� zJ � �zj � j � J�� qJ � �qj � j �
J�� and the principal submatrix of M corresponding to J� MJJ � �mij � i� j � J��

The principal subproblem of the LCP ������������� in the variables wJ� zJ �or the

principal subproblem of the LCP ������������� associated with the subset J� is the

LCP �qJ�MJJ� of order jJj� the complementary pairs of variables in it are fwj � zjg for
j � J and it is� �nd wJ� zJ satisfying

wJ �MJJzJ � qJ

wJ� zJ �� 


wT
J zJ � 
 �

This principal subproblem is therefore obtained from ������������� by striking o� the

columns of all the variables wj � zj for j �� J and the equation in ������ corresponding

to j �� J�

Let J � f�� � � � � ng n fig� � � �w�� � � � � wi��� wi��� � � � � wn�
T � 
 � �z�� � � � � zi���

zi��� � � � � zn�
T � The following results follow by direct veri�cation�

Results ��� If �  w � �  w�� � � � �  wn�
T �  z � � z�� � � � �  zn�

T � is a solution of the LCP �q�M�

and  zi � 
� then � � � �  w�� � � � �  wi���  wi��� � � � �  wn�
T �  
 � � z�� � � � �  zi���  zi��� � � � �  zn�

T �

is a solution of its principal subproblem in the variables �� 
�

Results ��� Suppose that �#� � � #w�� � � � � #wi��� #wi��� � � � � #wn�
T � #
 � �#z�� � � � � #zi���

#zi��� � � � � #zn�
T � is a solution of the principal subproblem of the LCP �q�M� in the

variables �� 
� De�ne #zi � 
 and let #z � �#z�� � � � � #zi��� #zi� #zi��� � � � � #zn�
T � If qi�Mi�#z ��


� de�ne #wi � qi �Mi�#z� and let #w � � #w�� � � � � #wi��� #wi� #wi��� � � � � #wn�
T � then � #w� #z� is

a solution of the original LCP �q�M��
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Example ���

Consider the following LCP �q�M�

w� w� w� z� z� z� q

� 
 
 � 
 �� �


 � 
 �� �� �� ���

 
 � � � �� ��

wj �� 
� zj �� 
� wjzj � 
 for all j � � to �

Let � � �w�� w��
T � 
 � �z�� z��

T � Then the principal subproblem of this LCP in the

variable �� 
 is

w� w� z� z� �

� 
 � 
 �


 � �� �� ���
wj �� 
� zj �� 
� wjzj � 
 for j � �� �

�  w � �
� 
� 	�T �  z � ��� �� 
�T � is a solution of the original LCP and  z� is equal to

zero in this solution� This implies that � � � �
� 
��  
 � ��� ��� is a solution of this

principal subproblem which can easily be veri�ed� Also� �#� � ��� 
�T � #
 � �
� ��� �
T �

is another solution of the principal subproblem� De�ning #z� � 
� #z � �
� ��� � 
�
T � we

verify that q� � M��#z � �� � ������� ���
� ��� � 
�T �  � 
� Hence� de�ne #w� � �

and #w � ��� 
� �T � It can be veri�ed that � #w � ��� 
� �T � #z � �
� ��� � 
�
T � is another

solution of the original LCP�

We now discuss a variable dimension algorithm for the LCP �q�M� due to L� Van

der Heyden ������� If q �� 
� �w � q� z � 
� is a readily available solution� So we assume

that q ��� 
� The method proceeds by solving a sequence of principal subproblems of

����
�� ������� ������ always associated with subsets of the form J � f�� � � � � kg �this

problem is called the k�problem�� for some k satisfying � �� k �� n� When the method is

working on the k�problem� the bottom n�k constraints in ����
� as well as the columns

of variables wj � zj for j � k can be ignored� hence the reason for the name� All the

intermediate solutions for ����
� obtained during the method �with the exception of the

terminal solution which is a complementary feasible solution satisfying ����
�� �������

������� are of two types called position � and position � solutions de�ned below�

Position � Solution � This is a solution � #w� #z� for ����
� satisfying the following

properties �

i� there exists an index k such that #zk � 
 and #wk � 
�
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ii� #zj � 
 for j � k�

iii� if k � �� #w�k��	 � � #w�� � � � � #wk���� #z�k��	 � �#z�� � � � � #zk��� is a solution for

the principal subproblem of ����
�� ������� ������ determined by the subset

f�� � � � � k � �g� that is� #w�k��	 �
� 
� #z�k��	 �� 
 and � #w�k��	�T #z�k��	 � 
�

From the de�nition� a position � solution � �w� �z� always satis�es �wT �z � 
� it is

complementary �but infeasible� and it will be a complementary basic solution associ�

ated with a complementary �but infeasible in the same sense that the solution violates

������� basic vector for ����
��

Position � Solution � This is a solution �  w�  z� for ����
� satisfying the following

properties �

a� there exists an index k such that  zk � 
�  wk � 
�

b�  zj � 
 for j � k�

c� there is a u � k such that both  zu and  wu are zero�

d�  w�k��	 � �  w�� � � � �  wk���
T �
� 
�  z�k��	 � � z�� � � � �  zk���

T �
� 
 and

�  w�k��	�T  z�k��	 � 
�

From the de�nition� a position � solution discussed above is an almost complemen�

tary solution �not feasible� since some of the variables are � 
� of the type discussed

in Section ���� it satis�es  wT  z �  wk zk� It will be an almost complementary basic

solution associated with an almost complementary basic vector for ����
� which has

both wk� zk as basic variables� and contains exactly one basic variable from the com�

plementary pair �wj � zj� for each j �� k or u �both variables wu� zu are out of this

almost complementary basic vector� so the complementary pair �wu� zu� is the left out

complementary pair in this basic vector�� This almost complementary basic vector

has wj as a basic variable for all j � k� All intermediate �i� e�� except the initial and

terminal� solutions obtained by the method when it is working on the k�problem wiil

be position � solutions of ����
� as de�ned above�

Note ��� As mentioned above� all the solutions obtained during the algorithm will

be basic solutions of ����
��The de�nitions given above for positions �� � solutions are

under the assumption that q is nondegenerate in the LCP �q�M� �i� e�� that every

solution to ����
� has at least n nonzero variables�� In the general case when q may be

degenerate� the algorithm perturbs q by adding the vector ��� ��� � � � � �n�T to it� where

� is treated as a su�ciently small positive number without giving any speci�c value to

it �see Section ���� ������ ������� and all the inequalities for the signs of the variables

should be understood in the usual lexico sense�

The Algorithm

The algorithm takes a path among basic vectors for ����
� using pivot steps� All basic

vectors obtained will be almost complementary basic vectors as de�ned in Section ����

or complementary basic vectors�
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Initial Step� STEP � � The initial basic vector is w � �w�� � � � � wn�� The

initial solution is the Position � basic solution of ����
� corresponding to it� de�ne k �

minimum fi � qi � 
g� Begin with the k�problem� by making a type � pivot step to

increase the value of the nonbasic variable zk from 
� as described below�

STEP � � Type � Pivot Step� to increase the Value of a Nonbasic Vari�

able from Zero� Let �y�� � � � � yk� wk��� � � � � wn� be the basic vector in some stage of

working for the k�problem� If this is the initial basic vector� �y�� � � � � yk� will be a com�

plementary basic vector for the principal subproblem of ����
�� ������� ������ de�ned

by the subset f�� � � � � kg� Except possibly at termination of work on the k�problem� yk
will always be wk� y�� � � � � yk�� will all be wj or zj for j �� k � �� This type of pivot

step occurs when the value of a nonbasic variable� say v� selected by the rules speci�ed

in the algorithm� is to be increased from its present value of zero� The variable v will

be either wj or zj for some j �� k� Let the canonical tableau for ����
� with respect to

the present basic vector be

Tableau ��� Canonical Tableau

y� � � � yk wk�� � � � wn � � � v � � �

a� �q�

I � � � �� � � � ��

an �qn

While working on the k�problem� in all the canonical tableaus� we will have �q�� � � � �

�qk�� �� 
 and �qk � 
 �and yk � wk�� Let � � B�� be the inverse of the present basis�

The algorithm always maintains ��qi� �i�� � 
 for i � � to k � �� Let � denote the

nonnegative value given to the nonbasic variable v� The new solution as a function of

� is
all nonbasic variables other than v are 


v � �

yi � �qi � �ai� i � � to k

wj � �qj � �aj � j � k � � to n

������

We will increase the value of � from 
 until one of the variables yi for i � � to k�

changes its value from its present to zero in ������� and will change sign if � increases

any further� This will not happen if the updated column of the entering variable v

satis�es

ai �� 
� i � �� � � � � k � � and ak �� 
 ������

If condition ������ is satis�ed� the method is unable to proceed further and termination

occurs with the conclusion that the method is unable to process this LCP� If condition

������ is not satis�ed� de�ne

� � Max
� �qi
ai

� Over � �� i �� k � � such that ai � 
 � and
�qk
ak
� if ak � 


�
����	�
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Let !!! be the set of all i between � to k which tie for the maximum in ����	�� If !!! is

a singleton set� let r be the element in it� Otherwise let r be the element which at�

tains the lexicomaximum in lexicomaximum
� � ��qi��i�	

ai

	
� i � !!!

�
� If r � k� v replaces

yk�� wk� from the basic vector� After this pivot step we are lead to the basic vector

�y�� � � � � yk��� v� wk��� � � � � wn� which will be a complementary basic vector for ����
�

�except that the variables y�� � � � � yk��� v may have to be rearranged so that the jth

variable here is from the jth complementary pair�� and �y�� � � � � yk��� v� is a comple�

mentary lexico feasible basic vector for the k�problem �except for the rearrangement

of the basic variables as mentioned above�� If �y�� � � � � yk��� v� wk��� � � � � wn� is feasible

to ����
� �this happens if the updated right hand side constants vector is �� 
 after

the pivot step of replacing yk by v�� it is a complementary feasible basic vector for

����
�� the method terminates with the basic solution corresponding to it as being a

solution for ����
�� ������� ������� On the other hand� if �y�� � � � � yk��� v� wk��� � � � � wn�

is not a feasible basic vector for ����
�� the k�problem has just been solved and the

method moves to another principal subproblem with index greater than k �this is called

a forward move�� go to Step ��

If r � k� v replaces yr from the basic vector� leading to the new basic vector

�y�� � � � � yr��� v� yr��� � � � � yk� wk��� � � � � wn�� Two things can happen now� If yr �

zk� then this new basic vector is a complementary basic vector for ����
� �except for

rearrangement of the variables as mentioned above�� but �y�� � � � � yr��� v� yr��� � � � � yk�

is not lexico feasible for the k�problem� In this case the method moves to make a type

� pivot step �discussed next� leading to a principal subproblem with index less than k

�this is called a regressive move� moving to a smaller principal subproblem already

solved earlier�� The next steps of the algorithm will be concerned with �nding yet

another solution for this smaller principal subproblem� Go to Step ��

The second possibility is that yr �� zk� In this case the basic vector �y�� � � � � yr���

v� yr��� � � � � yk� wk��� � � � � wn� is another almost complementary basic vector� the basic

solution of ����
� associated with which is another position � solution� In this case�

the method continues the work on the k�problem by making a type � pivot step next�

to increase the value of the complement of yr from zero�

STEP � � Type � Pivot Step to Decrease the Value of a Nonbasic Variable

wg from Zero� This pivot step will be made whenever we obtain a complementary

basic vector �y�� � � � � yk� wk��� � � � � wn� after doing some work on the k�problem� with

yk � wk� Let Tableau ��� be the canonical tableau with respect to this complementary

basic vector� We will have �qi �� 
� i � � to k � � and ��qk� �k�� � 
 at this stage ��k� is

the kth row of the present basis inverse�� Let g be the maximum j such that yj � zj �

Now the algorithm decreases the value of the nonbasic variable wg from zero� Letting

v � wg� and giving this variable a value � �we want to make � �� 
�� the new solution

obtained is of the same form as in ������� We will decrease the value of � from 
 until

one of the variables yi for i � � to g� changes its value from its present to zero in �������

and will change sign if � decreases any further� This will not happen if the updated

column of the entering variable v satis�es
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ai �� 
� i � � to g �����

in which case termination occurs with the conclusion that the method is unable to

process this LCP� If ����� is not satis�ed� de�ne

� � Minimum
��� �qi

ai

	
� � �� i �� g� i such that ai � 


�
� ������

Let !!! be the set of all i between � to g which tie for the minimum in ������� If !!! is a

singleton set let r be the element in it� Otherwise let r be the element which attains

the lexicominimum in lexico minimum
�� ��qi��i�	

ai
� i � !!!

�
� Replace yr in the present

basic vector by v �� wg here� and move over to the g�problem after this pivot step� by

going to Step � to increase the value of the complement of yr from 
�

STEP � � We move to this step when we have solved a k�problem after performing a

type � pivot step on it in Step �� Let �y�� � � � � yk� wk��� � � � � wn� be the complementary

basic vector at this stage with yj � fwj � zjg for j � � to k� Let �q � ��q�� � � � � �qn�
T be the

current updated right hand side constants vector� Since �y�� � � � � yk� is a complementary

feasible basic vector for the k�problem� we have �qi �� 
 for i � � to k� If �qi �� 
 for

i � k�� to n also� this basic vector is complementary feasible to the original problem

����
�� ������� ������� and we would have terminated� So �qi � 
 for at least one i

between k � � to n� Let u be the smallest i for which �qi � 
� replace k by u and go

back to Step � to increase the value of zk from zero�

Numerical Example ����

We provide here a numerical example for this algorithm from the paper ������ of L� Van

der Heyden� Consider the LCP �q�M� where

q �

������� ��
��
��


������� � M �

������� � � �
� � �
� � �

�������
Since q� � 
� the algorithm begins with k � �� on the ��problem� Pivot elements are

inside a box�

Basic w� w� w� z� z� z�

Vector

w� � 
 
 �� �� �� �� k � �� Increase z�� In this

w� 
 � 
 �� �� �� �� type � pivot step� w�

w� 
 
 � �� �� �� ��
 drops from basic vector�

z� �� 
 
 � � � � k � ��

w� �� � 
 
 � � � Increase z��

w� �� 
 � 
 
 � �� w� drops�
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Basic w� w� w� z� z� z�

Vector

z�
�
� ��

� 
 � 
 
 �
� k � �� Increase z�

z� ��
�

�
� 
 
 � � �

� �complement of w���

w� ��
� ��

� � 
 �� 
 ���
� z� drops�

z�
�
�

��
� 
 � 
 
 �

� Need a type � pivot step�

z� ��
�

�
� 
 
 � � �

� Decrease w��

w� �� 
 � 
 
 � �� z� drops�

w� �� � 
 �� 
 
 �� k � �� Increase w� �compl�

z� �� 
 
 � � � � of z� that just dropped�

w� �� 
 � 
 
 � �� w� drops�

w� � �� 
 � 
 
 � k � ��

z� 
 �� 
 � � � � Increase z��

w� 
 �� � � 
 � � z� drops�

w� � �� 
 � 
 
 � Increase w� �complement

z� 
 �� 
 � � � � of z� that just dropped��

w� 
 �� � � �� 
 �� w� drops�

w� � 
 �� � � � � Complementary

z� 
 
 �� � � � �
 feasible

w� 
 � �� �� � 
 � basic vector

Thus �w�� w�� w�� z�� z�� z�� � ��� �� 
� 
� 
� �
� is a complementary feasible solution of

this problem�

Conditions Under Which the Algorithm is Guaranteed to Work

Theorem ���� For every J � f�� � � � � ng� if the principal submatrix MJJ of M

associated with J satis�es the property that there exists no positive vector zJ such that

the last component of MJJzJ is nonpositive and the other components are zero� the

termination criteria ������ or ������ will never be satis�ed and the algorithm terminates
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with a complementary feasible basic vector for the LCP �q�M� after a �nite number

of steps�

Proof� When ������ or ����� is satis�ed� we have a solution of the type given in

equation ������� which we denote by �w���� z���� � � �w � �wh� �z � �zh� satisfying the

property that for � � 
� there exists a k such that wk��� � 
� zk��� � 
� zj��� � 


for j � k� and if k � � the vectors w�k��	��� � �w����� � � � � wk������� z
�k��	��� �

�z����� � � � � zk������ are nonnegative and complementary� Let J � f�� � � � � kg� wh
J �

�wh
� � � � � � w

h
k �

T � zhJ � �zh� � � � � � z
h
k �

T � Then

wh
J �MJJz

h
J � 


zhJ �� 


wh
k
�
� 


������

and if k � �� �wh
� � � � � � w

h
k��� �� 
� and wh

j z
h
j � 
 for j � � to k � �� Let P � f j �

� �
� j �

� k� and zhj � 
 g� Clearly P �� �� otherwise �wh
J� z

h
J� � 
� Letting zhP �

�zhj � j � P�� all the components of MPPz
h
P are zero except possibly the last one

because of ������ and the fact that wh
j z

h
j � 
 for j � � to k � �� Also� the last

component of MPPz
h
P is �� 
 because of ������� And since zhP � 
� this contradicts the

hypothesis in the theorem�

The �niteness of the algorithm follows from the path argument used in Sections

���� ���� the argument says that the algorithm never returns to a previous position

as this situation implies the existence of a position with three adjacent positions� a

contradiction� Since there are only a �nite number of positions we must terminate

with a solution for the original LCP�

Corollary ��� IfM has the property that for every J � f�� � � � � ng� the corresponding
submatrix MJJ of M satis�es the property that the system

MJJzJ �� 


zJ �� 


has the unique solution zJ � 
� then the variable dimension algorithm discussed above

will terminate with a solution of the LCP �q�M� for any q � Rn�

Proof� Follows from Theorem �����

R� W� Cottle ����� has shown that the class of matricesM satisfying the hypothesis

in Theorem ���� or Corollary ���� is the strictly semi�monotone matrices de�ned later

on in Section ���� which is the same as �Q �completely Q�matrices� that is� matrices all

of whose principal submatrices are Q�matrices�� This class includes all P �matrices and

positive or strictly copositive matrices�

By the results discussed in Chapter �� the LCP �q�M� has a unique solution when

M is a P �matrix� So if M is s P �matrix and the LCP �q�M� is solved by the variable

dimension algorithm� type � pivot steps will never have to be performed�
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M� J� Todd ����	� ���� has shown that when q is nondegenerate in ����
� and M

is a P �matrix� the variable dimension algorithm discussed above corresponds to the

lexicographic Lemke algorithm discussed in Section ������

Now consider the LCP �q�M� of order n� Let en denote the column vector of all

��s in Rn� Introduce the arti�cial variable z� associated with the column vector �en�
as in the complementary pivot algorithm �see equation ������� Introduce an additional

arti�cial variable w�� which is the complement of z�� and the arti�cial constraint �w��
eTn z � q��� where q� is treated as a large positive number� without giving it any speci�c

value� This leads to an LCP of order n��� in which the variables are �w�� w�� � � � � wn��

�z�� z�� � � � � zn� and the data is

M� �

��� 
 �eTn
en M

��� � q� �

��� q�
q

��� �

Since q� is considered as a large positive parameter� w� � 
 and z� � 
 in any com�

plementary solution of this larger dimensional LCP �q��M��� and hence if �� �w�� �w��

��z�� �z�� is a solution of this LCP� then � �w� �z� is a solution of the original LCP �q�M��

Essentially by combining the arguments in Theorems ��� and ����� L� Van der Hey�

den ������ has shown that if M is a copositive plus matrix and the system �w�Mz �

q� w �
� 
� z �

� 
� has a feasible solution� when the variable dimension algorithm is

applied on the LCP �q��M��� it will terminate with a complementary feasible solution

�� �w�� �w�� ��z�� �z�� in a �nite number of steps� This shows that the variable dimension

algorithm will process LCP�s associated with copositive plus matrices� by introduc�

ing an arti�cial dimension and by applying the variable dimension algorithm to the

enlarged LCP�

��� EXTENSIONS TO FIXED POINT

COMPUTING� PIECEWISE LINEAR

AND SIMPLICIAL METHODS

It has also been established that the arguments used in the complementary pivot al�

gorithm can be generalized� and these generalizations have led to algorithms that can

compute approximate Brouwer and Kakutani �xed points% Until now� the greatest

single contribuition of the complementarity problem is probably the insight that it has

provided for the development of �xed point computing algorithms� In mathematics�

�xed point theory is very higly developed� but the absence of e�cient algorithms for

computing these �xed points has so far frustrated all attempts to apply this rich theory

to real life problems� With the development of these new algorithms� �xed point the�

ory is �nding numerous applications in mathematical programming� in mathematical

economics� and in various other areas� We present one of these �xed point computing
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algorithms� and some of its applications� in this section� We show that the problem of

computing a KKT point for an NLP can be posed as a �xed point problem and solved

by these methods�

The algorithms that are discussed later in this section trace a path through the

simplices of a triangulation in Rn� that is why they are called simplicial methods�

Since they use piecewise linear approximations of maps� these methods are also called

piecewise linear methods� Since the path traced by these methods has exactly the

same features as that of the complementary pivot algorithm �see Sections ����	� �����

these methods are also called complementary pivot methods�

����� Some De�nitions

Let g�x� be a real valued function de�ned over a convex subset """ � Rn� We assume

that the reader is familiar with the de�nition of continuity of g�x� at a point x� �
"""� and the de�nition of the vector of partial derivatives of g�x� at x�� rg�x�� ���g�x�	

�x�
� � � � � �g�x

�	
�xn

	
� when it exists� The function g�x� is said to be di�erentiable at x�

if rg�x�� exists� and for any y � Rn� �
�

�
g�x� � 	y�� g�x��� 	

�rg�x��	y	 tends in

the limit to zero as 	 tends to zero� If g�x� is di�erentiable at x�� for any y � Rn�

we can approximate g�x� � 	y� by g�x�� � 	
�rg�x��	y for values of 	 for which j	j

is small� This is the �rst order Taylor series expansion for g�x� 	y� at x � x��

If g�x� is di�erentiable at x�� the partial derivative vector rg�x�� is known as the

gradient vector of g�x� at x��

When the second order partial derivatives of g�x� exist at x�� we denote the n�n

matrix of second order partial derivatives
���g�x�	
�xi �xj

	
by the symbol H�g�x���� It is

called the Hessian matrix of g�x� at x��

Let g��x�� � � � � gm�x� be m real valued convex functions de�ned on the convex sub�

set """� Rn� For each x � """� de�ne s�x� � Maximum f g��x�� � � � � gm�x� g� The function
s�x� is known as the pointwise supremum or maximum of fg��x�� � � � � gm�x�g� It

is also convex on """� See Figure ��� where we illustrate the pointwise supremum of

several a�ne functions de�ned on the real line�
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(    )xl3

x

Function Values

Figure ��� l��x� to l
�x� are �ve a�ne functions de�ned on R�� Function

values are plotted on the vertical axis� Their pointwise maximum is the

function marked with thick lines here�

Subgradients and Subdi�erentials of Convex Functions

Let g�x� be a real valued convex function de�ned on Rn� Let x� � Rn be a point

where g�x�� is �nite� The vector d � �d�� � � � � dn�
T is said to be a subgradient of g�x�

at x� if

g�x� �� g�x�� � dT �x� x��� for all x � Rn � ������

Notice that the right hand side of ������ is l�x� � �g�x�� � dtx�� � dTx� is an

a�ne function in x� and we have g�x�� � l�x��� One can verify that l�x� is the �rst

order Taylor expansion for g�x� around x�� constructed using the vector d in place of

the gradient vector of g�x� at x�� So d is a subgradient of g�x� at x�� i� this modi�ed

Taylor approximation is always an underestimate for g�x� at every x�
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Example ����

Let x � R�� g�x� � x�� g�x� is convex� Consider the point x� � �� d � �� It can be

veri�ed that the inequality ������ holds in this case� So d � ��� is a subgradient for

g�x� at x� � � in this case� The a�ne function l�x� on the right hand side of ������ in

this case is � � ��x � �� � �x� �� See Figures ��	� �� where the inequality ������ is

illustrated�

f(
x)

 =
 x

x

Function Values

l(x
) =

 2
x 

- 1

x = 10

2

Figure �� A Convex Function� and the A�ne Function Below it Con�

structed Using a Subgradient for it at the Point x��
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θ (x)

x
x

Figure ��� The subdi�erential to ��x� at �x is the set of slope vectors of all

lines in the cone marked by the angle sign�

The set of all subgradients of g�x� at x� is denoted by the symbol �g�x��� and called

the subdi�erential set of g�x� at x�� It can be proved that if g�x� is di�erentiable

at x�� then its gradient rg�x�� is the unique subgradient of g�x� at x�� Conversely if

�g�x�� contains a single vector� then g�x� is di�erentiable at x� and �g�x�� � frg�x��g�
See references �����&����� for these and other related results�

Subgradients of Concave Functions

Let h�x� be a concave function de�ned on a convex subset """ � Rn� In de�ning a

subgradient vector for h�x� at a point x� � """� the inequality in ������ is just reversed�

in other words� d is a subgradient for the concave function h�x� at x� if h�x� �� h�x���

dT �x � x�� for all x� With this de�nition� all the results stated above also hold for

concave functions�
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Computing a Subgradient

Let ��x� be a convex function de�ned on Rn� Let �x � Rn� if ��x� is di�erentiable at

�x� then the gradient vector r���x� is the only subgradient of ��x� at �x� If ��x� is not

di�erentiable at �x� in general� the computation of a subgradient for ��x� at �x may be

hard� However� if ��x� is the pointwise supremum of a �nite set of di�erentiable convex

functions� say

��x� � Maximum f g��x�� � � � � gm�x� g
where each gi�x� is di�erentiable and convex� then the subdi�erential of ��x� is easily

obtained� Let

J��x� � f i � ���x� � gi��x� g
the the subdi�erential of ��x� at �x�

����x� � convex hull of frgi��x� � i � J��x� g �

See references �����&������

����� A Review of Some Fixed Point Theorems

Let """ � Rn be a compact convex subset with a nonempty interior� Let f�x� � """� """ be

a single valued map� that is� for each x � �x�� � � � � xn�
T � """� f�x� � �f��x�� � � � � fn�x��

T

� """� which is continuous� We have the following celebrated theorem�

Theorem ���� � Brouwer�s Fixed Point Theorem If f�x� � """� """ is continuous�

it has a �xed point� that is� the system

f�x�� x � 
 ����
�

which is a system of n equations in n unknowns� has a solution x � """�

See references ������ ��	
� ���� ���� ����� for proofs of this theorem� We now

provide an illustration of this theorem�

Example ����

Consider n � �� Let """ � fx � x � R�� 
 �� x �
� � g denoted by �
� ��� Consider the

continuous function f�x� � �
� ��� �
� ��� We can draw a diagram for f�x� on the two

dimensional Cartesian plane by plotting x on the horizontal axis� and the values of

f�x� along the vertical axis� as in Figure ���� Since f�x� is de�ned on �
� �� the curve

of f�x� begins somewhere on the thick vertical line x � 
� and goes all the way to the

thick vertical line x � �� in a continuous manner� Since f�x� � �
� ��� the curve for

f�x� lies between the two thin horizontal lines f�x� � 
 and f�x� � �� The dashed
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diagonal line is f�x�� x � 
� It is intuitively clear that the curve of f�x� must cross

the diagonal of the unit square� giving a �xed point for f�x��

f(x)

0 1

1

x0

Figure ��� The curve of f�x� � �
� ��� �
� ��� Points of intersection of the

curve with the dashed diagonal line are the Brouwer �xed points of f�x��

Example ����

This example illustrates the need for convexity in Theorem ����� Let n � �� Let K

denote the dotted ring in Figure ��� between two concentric circles� Let f�x� denote

the continuous mapping K � K obtained by rotating the ring through a speci�ed

angle � in the anti�clockwise direction� Clearly this f�x� has no �xed points in K�
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x

f(x)
θ

Figure ��� The need of convexity for the validity of Brouwer�s �xed point

theorem�

The need for the boundedness of the set """ for the validity of Theorem ���� follows

from the fact that the mapping f�x� � x � a for each x � Rn� where a �� 
 is a

speci�ed point in Rn� has no �xed points� The need for the closedness of the set """ for

the validity of Theorem ���� follows from the fact that the mapping f�x� � �
��x � ��

from the set fx � 
 �� x � �g into itself has no �xed point in the set�

The system ����
� is a system of n equality constraints in n unknowns� An e�ort

can be made to solve ����
� using methods for solving nonlinear equations�

A Monk�s Story

The following story of a monk provides a nice intuitive justi�cation for the concept and

the existence of a �xed point� A monk is going on a pilgrimage to worship in a temple

at the top of a mountain� He begins his journey on Saturday morning at �

 AM

promptly� The path to the temple is steep and arduous and so narrow that trekkers on

it have to go in a single �le� Our monk makes slow progress� he takes several breaks

on the way to rest� and at last reaches the temple by evening� He spends the night

worshipping at the temple� Next morning� he begins his return trip from the temple

exactly at �

 AM� by the same path� On the return trip� since the path is downhill�

he makes fast progress and reaches the point from where he started his hjourney on

Saturday morning� well before the evening�
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Suppose we call a point �or spot or location� on the path� a �xed point� if the monk

was exactly at that spot at precisely the same time of the day on both the forward

and return trips�

The existence of a �xed point on the path can be proved using Brouwer�s �xed

point theorem� but there is a much simpler and intuitive proof for its existence �see

A� Koestler� The Act of Creation� Hutchinson� ���� London�� Imagine that on Satur�

day morning exactly at �

 AM� a duplicate monk starts from the temple� down the

mountain� proceeding at every point of time at exactly the same rate that the original

monk would on Sunday� So� at any point of time of the day on Saturday� the duplicate

monk will be at the same location on the path as the original monk will be at the time

on Sunday� Since the path is so narrow that both cannot pass without being in each

other�s way� the two monks must meet at some time during the day� and the spot on

the path where they meet is a �xed point�

Successive Substitution Method for Computing a

Brouwer�s Fixed Point

One commonly used method to compute a Brouwer�s �xed point of the single valued

map f�x� � """ � """ is an iterative method that begins with an arbitrary point x� � """�

and obtains a sequence of points fxr � r � 
� �� � � �g in """ using the iteration

xr�� � f�xr� �

The sequence so generated� converges to a Brouwer�s �xed point of f�x� if f�x� satis�es

the contraction property� that is� if there exists a constant � satisfying 
 �� � � �

such that for every x� y � """� we have

kf�x�� f�y�k �� �kx� yk � ������

If the map f�x� satis�es the contraction proprety� this successsive substituitions method

is a very convenient method for computing a Brouwer�s �xed point of f�x�� Unfor�

tunately� the contraction property is a strong property and does not usually hold in

many practical applications�

Newton�Raphson Method for Solving a System

of n Equations in n Unknowns

The system ����
� is a system of n equations in n unknowns� and we can try to solve it

using approaches for solving nonlinear equations of this type� like Newton�Raphson

method� which we now present� The method is also called Newton�s method often in

the literature� or Newton�s method for solving equations� Consider the system

gi�x� � 
 i � � to n ������
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where each gi�x� is a real valued function de�ned on Rn� Assume that each function

gi�x� is di�erentiable� Let rgi�x� be the row vector of partial derivatives and let the

Jacobian be

rg�x� �

���������
rg��x�

���
rgn�x�

���������
in which the ith row vector is the partial derivative vector of gi�x� written as a row�

To solve ������ the Newton�Raphson method begins with an arbitrary point x�

and generates a sequence of points fx�� x�� x�� � � �g� Given xr in the sequence� the

method approximates ������ by its �rst order Taylor approximation around xr leading

to

g�xr� �rg�xr��x� xr� � 


whose solution is xr��rg�xr����g�xr�� which is taken as the next point in the sequence�

This leads to the iteration

xr�� � xr � �rg�xr����g�xr� �

If the Jacobian is nonsingular� the quantity y � �rg�xr����g�xr� can be computed

e�ciently by solving the system of linear equations

�rg�xr��y � g�xr�

If the Jacobian rg�xr� is singular� the inverse �rg�xr���� does not exist and the

method is unable to proceed further� Several modi�cations have been proposed to

remedy this situation� see references ��
��� �
���� �
����� Many of these modi�cations

are based on the applications of Newton�s method for unconstrained minimization or

a modi�ed version of it �see Sections �
����� �
���	� to the least squares formulation of

������ leading to problem of �nding the unconstrained minimum of

nX
i��

�gi�x��
� �

As an example� consider the system

g��x� � x�� � x�� � � � 


g��x� � x�� � x� � 


The Jacobian matrix is ��� �x� �x�
�x� ��

���
Let x� � ��� 
�T be the initial point� So g�x�� � �
� ��T � The Jacobian matrix at

x� is

��� � 

� ��

���� This leads to the next point x� � ��� ��T � It can be veri�ed that
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x� �
�


� �

�
�

	T
� and so on� The actual solution in this example can be seen from Figure

����

x2

x1

x

x

x

x1

2

0

Figure ��� The circle here is the set of all points �x�� x�� satisfying x�� �

x�� � � � 
� The parabola is the set of all points satisfying x�� � x� � 
�

The two intersect in two points �solutions of the system� one of which is �x�

Beginning with x�� the Newton�Raphson method obtains the sequence x��

x�� � � � converging to �x�

In order to solve ����
� by Newton�Raphson method or some modi�ed versions

of it� the map f�x� must satisfy strong properties like being di�erentiable etc�� which

do not hold in may many practical applications� Thus� to use Brouwer�s �xed point

theorem in practical applications we should devise methods for solving ����
� without

requiring the map f�x� to satisfy any conditions besides continuity� In ��� H� Scarf

in a pioneering paper ����� developed a method for �nding an approximate solu�

tion of ����
� using a triangulation of the space� that walks through the simplices of

the triangulation along a path satisfying properties similar to the one traced by the

complementary pivot algorithm for the LCP� This method has the advantage that it

works without requiring any conditions on the map f�x� other than those required by

Brouwer�s theorem for the existence of the �xed point �i� e�� continuity�� Subsequently

vastly improved versions of these methods have been developed by many researches�

We will discuss one of these methods in detail�
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Approximate Brouwer Fixed Points

Let f�x� � """� """ be continuous as de�ned in Theorem ����� A true Brouwer �xed point

of f�x� is a solution of ����
�� However� in general� we may not be able to compute

an exact solution of ����
� using �nite precision arithmetic� In practice� we attempt

to compute an approximate Brouwer �xed point� There are two types of approximate

Brouwer �xed points� we de�ne them below�

Type �� A point �x � """ is said to be an approximate Brouwer �xed point of f�x� of

Type � if

jj�x� f��x�jj � �

for some user selected tolerance � �a small positive quantity��

Type �� A point x� � """ is said to be an approximate Brouwer �xed point of Type

� if there exists an exact solution y of ����
� such that

jjx� � yjj � � �

In general� a Type � approximate Brouwer �xed point �x may not be a Type �

approximate Brouwer �xed point� that is� �x may be far away from any exact solution

of ����
�� If some strong conditions hold �such as� f�x� is continuously di�erentiable

in the interior of """ and all the derivatives are Lipschitz continuous� or f�x� is twice

continuously di�erentiable in the interior of """� a Type � approximate Brouwer �xed

point can be shown to be also a Type � approximate Brouwer �xed point with a

modi�ed tolerance� At any rate� the algorithms discussed in the following sections are

only able to compute approximate Brouwer �xed points of Type ��

Kakutani Fixed Points

In many applications� the requirement that f�x� be a point�to�point map is itself too

restrictive� In ���� S� Kakutani generalized Theorem ���� to point�to�set maps� As

before� let """ be a compact convex subset of Rn� Let F�x� be a point�to�set map on """�

that is� for each x � """� F�x� is itself a speci�ed subset of """�

Example ����

Let n � �� Let """ � fx � R� � 
 �
� x �

� � g� For each x � """� suppose F�x� � f y �

x �� y �� � g � �x� ��� See Figure ���
�
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F(  )x

x 10
x

1

0

Figure ���� For each x � """� F�x� is the closed interval �x� ���

We consider only maps in which F�x� is a compact convex subset of """ for each

x � """� The point�to�set map F�x� is said to be an USC �Upper Semi�Continuous� map

if it satis�es the following properties� Let fxk � k � �� �� � � �g be any sequence of points

in """ converging to a point x� � """� For each k� suppose yk is an arbitrary point selected

from F�xk�� k � �� �� � � �� Suppose that the sequence f yk � k � �� �� � � �g converges to

the point y�� The requirement for the upper semi�continuity of the point�to�set map

F�x� is that these conditions imply that y� � F�x���

It can be veri�ed that the point�to�set map F�x� given in Figure ��� satis�es this

USC property�

Theorem ���� Kakutani�s Fixed Point Theorem

If F�x� is a USC point
to
set map de�ned on the compact convex subset """ � Rn�

there exists a point x � """ satisfying

x � F�x� � ������
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Any point satisfying ������ is known as a Kakutani�s �xed point of the point�

to�set map F�x�� To prove his theorem� Kakutani used the fundamental notion of

a piecewise linear approximation to the map F�x�� The same picewise linear

approximation scheme is used in the method discussed later on for computing �xed

points� See reference ���	
� for the proof of Kakutani�s theorem�

For each x � """� if F�x� is a singleton set �i� e�� a set containing only a single ele�

ment� ff�x�g � """� it can be veri�ed that this F�x� is USC i� f�x� is continuous� Thus

the USC property of point�to�set maps is a generalization of the continuity property of

point�to�point maps� Also� every Brouwer �xed point of the point�to�point map f�x�

can be viewed as a Kakutani �xed point of F�x� � ff�x�g�

Approximate Kakutani Fixed Points

Given the USC point�to�set map F�x� as de�ned in Theorem ����� a Kakutani �xed

point is a point x � """ satisfying ������� As under the Brouwer �xed point case� using

�nite precision arithmetic� we may not be able to �nd x � """ satisfying ������ exactly�

We therefore attempt to compute an approximate Kakutani �xed point� Again� there

are two types of approximate Kakutani �xed points� we de�ne them below

Type �� A point �x � """ is said to be an approximate Kakutani �xed point of F�x� of

Type � if there exists a z � F��x� satisfying

jj�x� zjj � �

for some user selected tolerance � �a small positive quantity��

Type �� A point x� � """ is said to be an approximative Kakutani �xed point of F�x�

of Type � if there exists a y satisfying ������ and

jjx� � yjj � � �

The algorithms discussed in the following sections are only able to compute Type

� approximate Kakutani �xed points�

Use in Practical Applications

In pratical applications we have to deal with either point�to�point or point�to�set maps

de�ned over the whole space Rn� not necessarily on only a compact convex subset

of Rn� Also� it is very hard� if not computationally impossible� to check whether

properties like USC etc� hold for our maps� For such maps� the existence of a �xed

point is not guaranteed� Because of this� the algorithms that we discuss for computing

�xed points may not always work on these problems� Also� it is impossible for us to

continue the computation inde�nitely� we have to terminate after a �nite number of

steps� In practice� from the path traced by the algorithm� it will be clear whether it

seems to be converging� or running away� If it seems to be converging� from the point
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obtained at termination� an approximate solution of the problem can be obtained� If

the algorithm seems to be running away� either we can conclude that the algorithm

has failed to solve the problem� or an e�ort can be made to run the algorithm again

with di�erent initial conditions� Before discussing the algorithm� we will now discuss

some standard applications of �xed point computing�

����� Applications in Unconstrained Optimization

Let ��x� be a real valued function de�ned on Rn and suppose it is required to solve

the problem

minimize ��x�

over x � Rn ������

If ��x� is di�erentiable� a necessary condition for a point x � Rn to be a local minimum

for ������ is

r��x� � 
 ����	�

which is a system of n equations in n unknowns� De�ne f�x� � x� �r��x��T � Then

every Brouwer �xed point of f�x� is a solution of ����	� and vice versa� Hence every

�xed point of f�x� satis�es the �rst order necessary optimality conditions for ������� If

��x� is convex� every solution of ����	� is a global minimum for ������ and vice versa�

and hence in this case ������ can be solved by computing a �xed point for f�x� de�ned

above� However� if ��x� is not convex� there is no guarantee that a solution of ����	��

�i�e�� a �xed point of f�x� � x � �r��x��T � is even a local minimum for ������ �it

could in fact be a local maximum�� So� after obtaining an approximate �xed point�

�x� of f�x�� one has to verify whether it is a local minimum or not� If ��x� is twice

continuously di�erentiable� a su�cient condition for a solution of ����	� to be a local

minimum for ������ is that the Hessian matrix H����x�� be positive de�nite�

If ��x� is not di�erentiable at some points� but is convex� then the subdi�erential

set ���x� exists for all x� In this case de�ne F�x� � fx� y � y � ���x� g� Then every

Kakutani �xed point of F�x� is a global minimum for ������ and vice versa�

One strange feature of the �xed point formulation for solving ����	� is worth

mentioning� De�ne G�x� � fx� y � y � ���x� g� Clearly� every Kakutani �xed point

of G�x� also satis�es the necessary optimality conditions for ������� Mathematically�

the problems of �nding a Kakutani �xed point of F�x� or G�x� are equivalent� but

the behavior of the �xed point computing algorithm discussed in Section ����� on the

two problems could be very di�erent� This is discussed later on under the subsection

entitled� �Su�cient Conditions for Finite Termination� in Section ������ In practical

applications� one might try computing the Kakutani �xed point of F�x� using the

algorithm discussed in Section ������ and if its performance is not satisfactory switch

over and use the same algorithm on G�x� instead�
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����� Application to Solve a System of

Nonlinear Inequalities

Consider the system

gi�x� �� 
� for i � � to m �����

where each gi�x� is a real valued convex function de�ned on Rn� De�ne the pointwise

supremum function s�x� � Maximum f g��x�� � � � � gm�x� g� As discussed earlier� s�x�

is itself convex� and �s�x� � Si�J�x	 �gi�x�� where J�x� � f i � gi�x� � s�x� g� If each
gi�x� is di�erentiable� then �s�x� � convex hull of frgi�x� � i � J�x� g� If ����� has a
feasible solution �x� then s��x� �� 
� and conversely every point x satisfying s�x� �� 
 is

feasible to ������ So the problem of �nding a feasible solution of ����� can be tackled

by �nding the unconstrained minimum of s�x�� which is the same as the problem of

�nding a Kakutani �xed point of F�x� � fx� y � y � �s�x� g as discussed in Section

������ If �x is a Kakutani �xed point of this map and �s�x� � 
� ����� is infeasible� On

the other hand if s��x� �� 
� �x is a feasible solution of ������

����� Application to Solve a System of

Nonlinear Equations

Consider the system of equations

hi�x� � 
� i � � to r ������

where each hi�x� is a real valued function de�ned on Rn� Let h�x� � �h��x�� � � � �

hr�x��
T � If r � n� ������ is said to be an overdetermined system� In this case there

may be no solution to ������� but we may be interested in �nding a point x � Rn that

satis�es ������ as closely as possible� The least squares approach for �nding this

is to look for the unconstrained minimum of
Pr

i���hi�x��
�� which can be posed as a

�xed point problem as in Section ������

If r � n� ������ is known as an underdetermined system� and it may have

many solutions� It may be possible to develop additional n � r equality constraints

which when combined with ������ becomes a system of n equations in n unknowns� Or

the least squares method discussed above can be used here also�

Assume that r � n� In this case de�ne f�x� � x � h�x�� Then every Brouwer

�xed point of f�x� solves ������ and vice versa� As mentioned in Section ������ it may

be worthwhile to also consider the equivalent problem of computing the �xed point of

d�x� � x� h�x� in this case�
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����� Application to Solve the

Nonlinear Programming Problem

Consider the nonlinear program

Minimize ��x�

subject to gi�x� �� 
� i � � to m
������

where ��x�� gi�x� are real valued functions de�ned over Rn� We will assume that each

of these functions is convex� and continuously di�erentiable� We make an additional

assumption that if ������ is feasible �i� e�� the set fx � gi�x� �� 
� i � � to m g �� ��� then
there exists an x � Rn satisfying gi�x� � 
� for each i � � to m� This assumption is

known as a constraint quali�cation� As before� let s�x� be the pointwise supremum

function� maximum f g��x�� � � � � gm�x� g� Then ������ is equivalent to

Minimize ��x�

s�x� �� 

������

By our assumption� and the results discussed earlier� s�x� is also convex and �s�x� �

convex hull of frgi�x� � i � J�x� g� where J�x� � f i � s�x� � gi�x� g� Consider the

following point�to�set mapping de�ned on Rn�

F�x� �

���
�
x� �r��x��T �� if s�x� � 
 ��
x� y � y � convex hull of fr��x�� �s�x�g�� if s�x� � 
 �

fx� y � y � �s�x� g� if s�x� � 
 �

���	
�

Under our assumptions of convexity and di�erentiability� it can be veri�ed that F�x�

de�ned in ���	
� is USC� Let �x be a Kakutani �xed point of F�x�� If s��x� � 
� then 
 �

r���x�� and thus �x is a global minimum for ��x� over Rn and is also feasible to �������

and therefore solves ������� If s��x� � 
� then 
 � �s��x�� thus 
 is a global minimum of

s�x�� and since s��x� � 
� ������ has no feasible solution� If s��x� � 
� then 
 � convex

hull of fr���x�� �s��x� g � convex hull of fr���x��rgi��x� for i � J��x�g� so there exists

nonnegative numbers ��� �i for i � J��x� satisfying

��r���x� �
X

i�J��x	

�irgi��x� � 


�� �
X

i�J��x	

�i � � ���	��

��� �i �� 
 for all i � J��x�

If �� � 
� ���	�� implies that 
 � �s��x� and so s��x� is a global minimizer of s��x�� �x

is feasible to ������ since s��x� � 
� and these facts lead to the conclusion that fx �

gi�x� �� 
� for i � � to m g �� � and yet there exists no x satisfying gi�x� � 
 for all

i � � to m� violating our constraint quali�cation assumption� So �� � 
 in ���	���
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So if we de�ne ��i �
�i
��

if i � J��x�� � 
 otherwise� then from ���	�� we conclude that

�x� �� together satisfy the Karush�Kuhn�Tucker necessary conditions for optimality for

������� and our convexity assumption imply that �x is the global minimum for �������

Thus solving ������ is reduced to the problem of �nding a Kakutani �xed point of

the mapping F�x� de�ned in ���	
��

Example ����

Consider the problem �

minimize ��x� � x�� � x�� � �x� � �x�
subject to g��x� � x� � x� �� �

���	��

Clearlyr��x� � ��x���� �x����� rg��x� � ��� ��� The mapping F�x� for this problem

is

F�x� �

���
��x� � ���x� � ��T

�
� if x� � x� � � �

Convex hull of f��x� � ���x� � ��T � �x� � �� x� � ��Tg� if x� � x� � � �
f �x� � �� x� � ��T g� if x� � x� � � �

It can be veri�ed that �x � � �� �
�
� �

T is a Kakutani �xed point of this mapping F�x�� and

that �x is the global optimum solution of the nonlinear program ���	���

If ��x�� gi�x� are all continuously di�erentiable� but not necessarily convex� we can

still de�ne the point�to�set mapping F�x� as in ���	
� treating �s�x� � convex hull of

frgi�x� � i � J�x� g� In this general case� any Kakutani �xed point �x of F�x� satis�es

the �rst order necessary optimality conditions for ������� but these conditions are not

su�cient to guarantee that �x is a global or even a local minimum for ������� see Section

�
�� for de�nitions of a global minimum� local minimum� One can then try to check

whether �x satis�es some su�cient condition for being a local minimum for ������ �for

example� if all the functions are twice continuously di�erentiable� a su�cient condition

for �x to be a local minimum for ������ is that the Hessian matrix of the Lagrangian

with respect to x is positive de�nite at �x� See references ��
��� �
��� �
���� �
���� A��

A����� If these su�cient optimality conditions are not satis�ed� it may be very hard

to verify whether �x is even a local minimum for ������� As an example� consider the

problem� minimize xTDx� subject to x �
� 
� The point 
 � Rn is a global minimum

for this problem if D is PSD� If D is not PSD� 
 is a local minimum for this problem i�

D is a copositive matrix� Unfortunately� there are as yet no e�cient methods known

for checking whether a matrix which is not PSD� is copositive� See Section ������

Thus� in the general nonconvex case� the �xed point approach for ������ �nds a

point satisfying the �rst order necessary optimality conditions for ������� by computing

a Kakutani �xed point of F�x� de�ned in ���	
�� In this general case� many of the other

solution techniques of nonlinear programming for solving ������ �see Chapter �
� are

usually based on descent methods� These techniques generate a sequence of points
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fxr � r � 
� �� � � �g� Given xr� they generate a yr �� 
 such that the direction xr��yr�

� �� 
� is a descent direction� that is� it is either guaranteed to decrease the objective

value or a measure of the infeasibility of the current solution to the problem or some

criterion function which is a combination of both� The next point in the sequence xr��

is usually taken to be the point which minimizes the criterion function on the half line

fxr � �yr � � �� 
 g obtained by using some one dimensional �� is the only variable to

be determined in this problem� line minimization algorithm� And the whole process

is then repeated with the new point� On general problems� these methods su�er from

the same di�culties� they cannot theoretically guarantee that the point obtained at

termination is even a local minimum� However� these descent methods do seem to

have an edge over the �xed point method presented above in the general case� In

the absence of convexity� one has more con�dence that a solution obtained through

a descent process is likely to be a local minimum� than a solution obtained through

�xed point computation which is based purely on �rst order necessary conditions for

optimality�

The approach for solving the nonlinear program ������ using the �xed point trans�

formation has been used quite extensively� and seems to perform satisfactorily� See

references ����
� ��	�� ��	���

Many practical nonlinear programming models tend to be nonconvex� The �xed

point approach outlined above� provides additional arsenal in the armory for tackling

such general problems�

Now consider the general nonlinear programming problem in which there are both

equality and inequality constraints�

minimize ��x�

subject to gi�x� �� 
� i � � to m

ht�x� � 
� t � � to p

���	��

The usual approach for handling ���	�� is the penality function method which

includes a term with a large positive coe�cient corresponding to a measure of violation

of the equality constraints in the objective function� One such formulation leads to the

problem

minimize ��x� � 	
pP

t��
�ht�x��

�

subject to gi�x� �� 
� i � � to m
���	��

In ���	��� 	� a large positive number� is the penalty parameter� If ���	�� has a

feasible solution� every optimum solution of ���	�� would tend to satisfy ht�x� � 
�

t � � to p as 	 becomes very large� and thus would also be optimal to ���	��� When

	 is �xed to be a large positive number� ���	�� is in the same form as ������� and can

be tackled through a �xed point formulation as discussed above�

Advantages and Disadvantages of this Approach

In the NLP ������ there may be several constraints �i� e�� m may be large� and the

problem di�culty can be expected to increase with the number of constraints� The
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�xed point approach for solving ������� �rst transforms ������ into the equivalent �������

which is an NLP in which there is only a single constraint� The fact that ������ is a

single constraint problem is de�nitely advantageous�

The original problem ������ is a smooth problem since the objective and constraint

functions are all assumed to be continuously di�erentiable� Eventhough gi�x� are con�

tinuously di�erentiable for all i� there may be points x where s�x� is not di�erentiable�

However� s�x� is di�erentiable almost everywhere and so ������ is a nonsmooth NLP�

That this approach transforms a nice smooth NLP into a nonsmooth NLP is a disad�

vantage� But� because of the special nature of the function s�x�� for any x� we are able

to compute a point in the subdi�erential set �s�x� e�ciently� as discussed above� For

computing a �xed point of the map F�x� de�ned in ���	
�� the algorithms discussed in

the following sections need as inputs only subroutines to compute r��x�� or a point

from �s�x� for any given x� which are easy to provide� Thus� eventhough ������ is

a nonsmooth NLP� the �xed point approach is able to handle it e�ciently� Practical

computational experience with this approach is quite encouraging�

The �xed point approach solves NLPs using only the �rst order necessary con�

ditions for optimality� The objective value is never computed at any point� This is

a disadvantage in this approach� In nonconvex NLPs� a solution to the �rst order

necessary conditions for optimality� may not even be a local minimum� Since the ob�

jective value is not used or even computed in this approach� we lack the circumstantial

evidence� or the neighborhood information about the behaviour of objective values� to

conclude that the �nal solution obtained is at least likely to be a local minimum�

����� Application to Solve the

Nonlinear Complementarity Problem

As discussed in Section ��� the nonlinear complementary problem �NLCP� is the

following� Given g�x� � �g��x�� � � � � gn�x��
T � Rn

� � Rn� where Rn
� is the nonnegative

orthant of Rn� �nd x �� 
 satisfying g�x� �� 
� xT g�x� � 
�

De�ne ��x� � Maximum f�x�� � � � ��xng� So ���x� � convex hull of f�I�j � j

such that �xj �� �xi for all i � � to n in x g� De�ne the point�to�set map on Rn�

F�x� �

��� fx� y � y � ���x� g� if ��x� � 
 ��
x� y � y � convex hull of fg�x�� ���x�g�� if ��x� � 
 �

fx� g�x�g� if ��x� � 
 �
���		�

It can be veri�ed that every Kakutani �xed point of F�x� de�ned here is a solution of

the NLCP and vice versa� Thus the NLCP can be solved by computing a Kakutani

�xed point of F�x��
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����� Merrill�s Algorithm for Computing

a Kakutani Fixed Point

Let F�x� be a point�to�set map de�ned on Rn� We describe in this section� Merrill�s

method for computing a Kakutani �xed point of F�x��

Data Requirements of the Algorithm

If the algorithm requires the storage of the complete set F�x� for any x� it will not be

practically useful� Fortunately� this algorithm does not require the whole set F�x� for

even one point x � Rn� It only needs a computational procedure �or a subroutine��

which� for any given x � Rn� outputs one point from the set F�x�� The algorithm will

call this subroutine a �nite number of times� Thus the data requirements of the algo�

rithm are quite modest� considering the complexity of the problem being attempted�

and it can be implemented for the computer very e�ciently� Also� the primary com�

putational step in the algorithm is the pivot step� which is the same as that in the

simplex method for linear programs�

n�Dimensional Simplex

The points v�� � � � � vr in Rn are the vertices of an �r � �� dimensional simplex if the

set of column vectors

���� �
v�

��� � � � � �

��� �
vr

��� in Rn�� form a linearly independent set�

The simplex itself is the convex hull of its vertices and will be denoted by the symbol

hv�� � � � � vri� Given the simplex with vertices v�� � � � � vr� the convex hull of any subset

of its vertices is a face of the simplex� An n�dimensional simplex has �n� �� vertices�

See Figure ����� Clearly a ��dimensional simplex is a line segment of positive length

joining two distinct points� a ��dimensional simplex is the triangle enclosed by three

points which are not collinear� etc�
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v1

v3

v4

v2

Figure ���� The tetrahedron which is the convex hull of vertices fv�� v�� v��
v�g is a ��dimensional simplex� Its vertices v�� v�� v�� v� are its 
�dimensional

faces� Its  edges� of which the thick line segment joining v� and v� is one� are

its ��dimensional faces� The dashed ��dimensional simplex which is the convex

hull of fv�� v�� v�g is one of the four ��dimensional faces of the tetrahedron�

Triangulations

Let K be either Rn or a convex polyhedral subset of Rn of dimension n� A triangu�

lation of K is a partition of K into simplexes satisfying the following properties

i� the simplexes cover K�

ii� if two simplexes meet� their intersection is a common face�

iii� each point x � K has a neighborhood meeting only a �nite number of the

simplexes�

iv� each �n��� dimensional simplex in the triangulation is the face of either two

n�dimensional simplexes �in which case� the �n � �� dimensional simplex is

said to be an interior face in the triangulation� or exactly one n�dimensional

simplex �in this case the �n��� dimensional simplex is said to be a boundary

face in the triangulation��

v� for every point x � K there exists a unique least dimension simplex� say �� in

the triangulation� containing x� If dimension of � is � n� � may be a face of

several simplexes in the triangulation of dimension � dimension of �� and x

is of course contained on the boundary of each of them� There exists a unique

expression for x as a convex combination of vertices of �� and this is the same

expression for x as the convex combination of the vertices of any simplex in

the triangulation containing x�
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Example ����

In Figure ���� we give a triangulation of the unit cube in R�� The two ��dimensional

simplexes in this triangulation are the convex hulls of fv�� v�� v�� g� fv�� v�� v�g� The

thick line segments in Figure ���� are the ��dimensional simplexes in this triangulation

which are the faces of exactly one two dimensional simplex� These ��dimensional

simplexes are the boundary faces in this triangulation� The thin diagonal line segment

joining vertices v� and v� is the face of exactly two ��dimensional simplexes� and hence

is an interior face in this triangulation�

= (0,0)

= (0,1) = (1,1)

= (1,0)v
0

v
3

v
2

v
1

Figure ���� Triangulation K� of the unit square in R��

Example ����

Consider the partition of the unit square in R� into simplexes in Figure ����� It is not

a triangulation since the two simplexes hv�� v�� v�i and hv�� v�� v
i intersect in hv�� v
i
which is a face of hv�� v�� v
i but not a face of hv�� v�� v�i �it is a proper subset of the

face hv�� v�i of hv�� v�� v�i�� So the partition of the unit square in R� in Figure ����

into simplexes violates property �ii� given above� and is therefore not a triangulation�
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V
3

V
1

V
2

V

V
5

4

Figure ���� A partition of the unit cube in R� into simplexes which is not

a triangulation�

The triangulation for the unit cube inR� given in Example ���� can be generalized

to a triangulation of the unit cube in Rn which we call triangulation K�� discussed

by Freudenthal in ����� The vertices of the simplexes in this triangulation are the

same as the vertices of the unit cube� There are n% n�dimensional simplexes in this

triangulation� Let v� � 
 � Rn� Let p � �p�� � � � � pn� be any permutation of f�� � � � � ng�
Each of the n% permutations p leads to an n�dimensional simplex in this triangulation�

The n�dimensional simplex associated with the permutation p� denoted by �v�� p�� is

hv�� v�� � � � � vni where
vi � vi�� � I�pi � i � � to n � ���	�

In ���	�� I is the unit matrix of order n� For example� for n � �� p � ��� ��� we get

the simplex hv� � �
� 
�T � v� � ��� 
�T � v� � ��� ��T i� See Figure ����� See reference

������ for a proof that this does provide a triangulation of the unit cube of Rn�

In this representation �v�� p� for the simplex discussed above� v� is known as the

initial or the 
th vertex of this simplex� The other vertices of this simplex are obtained

recursively as in ���	�� The vertex vi is called the ith vertex of this simplex for i � �

to n�

This triangulation can be extended to provide a triangulation for the whole space

Rn itself� which we call triangulation K� �it has been called by other symbols like K�

I� etc�� in other references� by �rst partitioning Rn into unit cubes using the integer

points in Rn� and then triangulating each unit cube as above� The vertices in this

triangulation are all the points with integer coordinates in Rn� Let �v be any such

vertex� and let p � �p�� � � � � pn� be any permutation of f�� � � � � ng� De�ne v� � �v�

and obtain vi for i � � to n as in ���	�� Let ��v� p� denote the simplex hv�� v�� � � � �
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vni� The set of all such simplexes as �v ranges over all points with integer coordinates

in Rn� and p ranges over all the permutations of f�� � � � � ng is the collection of all the

n�dimensional simplexes in this triangulation K�� Again see reference ������ for a proof

that this is indeed a triangulation of Rn� See Figure �����

(0,0)

(1,1)

(0,1)

Figure ���� A partition of the unit cube in R� into simplexes which is not

a triangulation�

The mesh of a triangulation is de�ned to be the maximum Euclidean distance

between any two points in a simplex in the triangulation� Clearly the mesh of trian�

gulation K� of Rn is
p
n�

We can get versions of triangulation K� with smaller mesh by scaling the variables

appropriately� Also the origin can be translated to any speci�ed point� Let x� � Rn

be any speci�ed point and  a positive number� Let J � fx � x � �xj� � Rn� xj � x�j
is an integer multiple of  for all j � � to n g� For any v� � J� and p � �p�� � � � � pn�� a

permutation of f�� � � � � ng� de�ne

vi � vi�� � I�pi � i � � to n � ���	��

Let �v�� p� denote the simplex hv�� v�� � � � � vni� The set J are the vertices� and the set

of all simplexes �v�� p� as v� ranges over J and p ranges over all the permutations of

f�� �� � � � � ng are the n�dimensional simplexes� in the triangulation of Rn� We denote

this triangulation by the symbol K��x
��� Its mesh is 

p
n�
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How is the Triangulation used by the Algorithm 	

The algorithm traces a path� Each step in the path walks from one �n����dimensional

face of an n�dimensional simplex in the triangulation� to another �n� ���dimensional

face of the same simplex� and continues this way� See Figure ���	� The path traced

is unambiguous once it is started� and is similar to the one in the ghost story men�

tioned earlier� or the path traced by the complementary pivot method for the LCP�

Computationally� the algorithm associates a column vector in Rn to each vertex in the

triangulation� At each stage� the columns associated with the vertices of the current

�n����dimensional simplex form a basis� and the inverse of this basis is maintained� A

step in the algorithm corresponds to the pivot step of entering the column associated

with a new entering vertex into the basis� The path never returns to a simplex it has

visited earlier�

To execute the path� one may consider it convenient to store all the simplexes in

the triangulation explicitly� If this is necessary� the algorithm will not be practically

useful� For practical e�ciency the algorithm stores the simplexes using the mathe�

matical formulae given above� which are easily programmed for the computer� The

current simplex is always maintained by storing its 
th vertex and the permutation

corresponding to it� To proceed along the path e�ciently� the algorithm provides very

simple rules for termination once a desirable �n� ���dimensional simplex in the trian�

gulation is reached �this is clearly spelled out later on�� If the termination condition is

not satis�ed� a mathematical formula provides the entering vertex� A minimum ratio

procedure is then carried out to determine the dropping vertex� and another mathe�

matical formula then provides the 
th vertex and the permutation corresponding to the

new simplex� All these procedures make it very convenient to implement this algorithm

for the computer�
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V1

V

V

V3

V5

V6

V4

V7

0

2

Figure ��� A path traced by the algorithm through the simplexes in the

triangulation�

Special Triangulations of Rn � �
� ��

For computing a Kakutani �xed point of F�x� de�ned on Rn� Merrill�s algorithm uses

a triangulation of Rn � �
� ��� which is a restriction of triangulation K� for Rn�� to

this region� known as the special triangulation eK��

We will use the symbolX �

��� x
xn��

��� with x � Rn� to denote points inRn��
� ���

The set of vertices J in the special triangulationK� of R
n��
� �� are all the points X ���� x

xn��

��� � Rn�� with x an integer vector in Rn and xn�� � 
 or �� The set of these

vertices of the form

��� v
�

��� is denoted by J�� and the set of vertices of the form

��� v



���
is denoted by J�� J � J�J�� The boundary of Rn� �
� �� corresponding to xn�� � �

is known as the top layer� and the boundary corresponding to xn�� � 
 is called the

bottom layer� So J�� J� are respectively the points with integer coordinates in the top

and bottom layers� The �n� ���dimensional simplexes in the special triangulation eK�

of Rn � �
� �� are those of the form �V�� P � where P � �p�� � � � � pn��� is a permutation

of f�� � � � � n� �g and V� � J�� and �V�� P � � hV�� V�� � � � � Vn��i where
Vi � Vi�� � I�pi � i � � to n� � � ���	��

In ���	��� I is the unit matrix of order n � �� It can be veri�ed that the set of all

simplexes of the form �V�� P � as V� ranges over J�� and P ranges over all permutations
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of f�� �� � � � � n � �g forms a triangulation of Rn � �
� ��� V� is the 
th vertex and

for i � � to n � �� the vertex Vi determined as in ���	�� in the ith vertex of the

�n � ���dimensional simplex denoted by �V�� P �� The following properties should be

noted�

Property � � In the representation �V� P � for an �n����dimensional simplex in the

special triangulation eK� of Rn � �
� ��� the 
th vertex V is always an integer point in

the bottom layer� that is� belongs to J��

Property � � In the representation �V� P � for an �n����dimensional simplex in the

special triangulation eK� of Rn � �
� ��� there exists a positive integer r such that for

all i �� r � �� the ith vertex of �V� P � belongs to the bottom layer� and for all i �� r�

the ith vertex of �V� P � belongs to the top layer� The i here is the index satisfying the

property that if the permutation P � �p�� � � � � pn���� then pi � n � �� This property

follows from the fact that the vertices of the simplex �V� P � are obtained by letting

V� � V � and using ���	�� recursively�

Two �n � ���dimensional simplexes in the special triangulation eK� are said to

be adjacent� if they have a common n�dimensional simplex as a face �i� e�� if �n � ��

of their vertices are the same�� Merrill�s algorithm generates a sequence of �n � ���

dimensional simplexes ��� ��� ��� � � � of eK� in which every pair of consecutive simplexes

are adjacent� So� given �j � �j�� is obtained by dropping a selected vertex V � of �j
and adding a new vertex V � in its place� The rules for obtaining �j�� given �j and

V � are called the entering vertex choice rules of the algorithm� These rules are

very simple� they permit the generation of vertices as they are needed� We provide

these rules here�

Let �j � �V� P �� where P � �p�� � � � � pn��� is a permutation of f�� � � � � n � �g�
The vertices of �j are V� � V� V�� � � � � Vn��� as determined by ���	��� Let V � be the

dropping vertex� So V � is Vi for some i � 
 to n� �� There are several cases possible

which we consider separately�

Case � � fV�� V�� � � � � Vn��g n fV �g � J�� By property �� this can only happen if

V � � V� and V� � J�� that is� p� � n � �� The face of �j obtained by dropping the

vertex V �� is the n�dimensional simplex hV�� � � � � Vn��i in the top layer� and hence is

a boundary face� hV�� � � � � Vn��i is the face of exactly one �n� �� dimensional simplex

in the triangulation eK�� �j � and the algorithm terminates when this happens�

Case � � fV�� V�� � � � � Vn��gnfV �g � J�� By property �� this implies that V � � Vn��
and Vn � J�� that is pn�� � n � �� We will show that this case cannot occur in the

algorithm� So whenever V � � Vn��� we will have pn�� �� n� � in the algorithm�

Case � � fV�� V�� � � � � Vn��g n fV �g contains vertices on both the top and bottom

layers� So the convex hull of fV�� V�� � � � � Vn��g n fV �g is an n�dimensional simplex

in the triangulation eK� which is an interior face� and hence is a face of exactly two

�n � �� dimensional simplexes in the triangulation� one is the present �j� The other

�j�� is �bV � bP � as given below �V � given below is the new vertex in �j�� not in �j � it

is the entering vertex that replaces the dropping vertex V ���
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V � V � �entering vertex� bV bP
V � � V�

p� �� n� � Vn�� � I�p� V� � I�p� �p�� � � � � pn��� p��

�see Case ��y
V � � Vi Vi�� � I�pi�� V� �p�� � � � � pi��� pi���


 � i � n� � pi� pi��� � � � � pn���

V � � Vn��

pn�� �� n� � V� � I�pn�� V� � I�pn�� �pn��� p�� � � � � pn�

�see Case ��'

It can be veri�ed that if �bV � bP � is de�ned as above� then bV � J� �since V � J�
where V is the 
th vertex of �j� and so �bV � bP � is an �n � ���dimensional simplex in

the special triangulation� and that �bV � bP � and �V� P � share �n � �� common vertices�

so they are adjacent �n � �� dimensional simplexes in this triangulation� See Figure

��� for an illlustration of the special triangulation eK� of R� � �
� ���

The restriction of the special triangulation eK� of Rn � �
� �� to either the top

layer �given by xn�� � �� or the bottom layer �given by xn�� � 
� in the same as

the triangulation K� of Rn� The mesh of the special triangulation eK� of Rn� �
� �� is

de�ned to be the mesh of the triangulation of Rn on either the top and bottom layer�

and hence it is
p
n�

We can get special triangulation of Rn � �
� �� of smaller mesh by scaling the

variables in Rn appropriately� Also� the origin in the Rn part can be translated to

any speci�ed point in Rn� Let x� � Rn be a speci�ed point and  a positive number�

Let J�x�� � �

���� x
xn��

��� � x � �xj� � Rn� xj � x�j is an integer multiple of  for

each j � � to n� xn�� � 
 or �


� Then the points is J�x�� � are the vertices of the

special triangulation of Rn� �
� �� denoted by  eK��x
��� J��x

�� � �

�
X �

��� x
xn��

��� �

X � J�x�� �� xn�� � 



� J��x

�� � �

���� x
xn��

��� � x � J�x�� �� xn�� � �


� For any

V � J��x
�� �� and P � �p�� � � � � pn��� a permutation of f�� � � � � n� �g de�ne

V� � V

Vi � Vi�� � I�pi � i � � to n� �
���	��

and let �V� P � � hV�� V�� � � � � Vn��i� The set of all �n � �� dimensional simplexes

�V� P � given by ���	�� with V � J��x
�� � and P ranging over all the permutation of

y In this case� if p� � n��� as discussed in Case � above� the algorithm terminates�

So the algorithm continues only if p� �� n� � when this case occurs�
' In this case� we cannot have pn�� � n � �� as discussed in Case � above� So�

whenever this case occurs in the algorithm� we will have pn�� �� n� ��
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f�� � � � � n��g are the �n����dimensional simplexes in the special triangulation  eK��x
��

of Rn � �
� ��� Its mesh in 
p
n� In this triangulation� the vertex

���x�




��� plays the

same role as the origin

��� 




��� in the triangulation eK��

The Piecewise Linear Approximation and

a Linear Approximate 
xed Point of F �x�

Consider the special triangulation eK� of R� �
� �� de�ned above� and let J�� J� be the

vertices in this triangulation on the bottom and top layers respectively� On the top

layer� we de�ne a a piecewise linear map f�X� known as a piecewise linear approxi�

mation of F�x� relative to the present triangulation� For each V �

��� v
�

��� � J� de�ne

f�V � �

��� f�v�
�

���� where f�v� � F�v�� The point f�v� can be selected from the set

F�v� arbitrarily� in fact it can be determined using the subroutine for �nding a point

from the set F�v�� which was pointed out as a required input for this algorithm� Any

nonvertex point X �

���x
�

��� on the top layer must lie in an n�dimensional simplex in

the triangulation on this layer� Suppose the vertices of this simplex are Vi �

��� vi
�

����

i � � to n � �� Then x can be expressed as a convex combinations of v�� � � � � vn�� in

a unique manner� Suppose this expression is 	�v� � � � �� 	n��vn�� where 	� � � � ��

	n�� � �� 	�� � � � � 	n�� �� 
� Then de�ne f�x� � 	�f�v�� � � � �� 	n��f�vn���� f�x�

is the piecewise linear approximation of F�x� de�ned on the top layer relative to the

present triangulation� For X �

���x
�

��� de�ne f�X� �

��� f�x�
�

���� In each n�dimensional

simplex in the top layer in this triangulation f�x� is linear� So f�x� is a well de�ned

piecewise linear continuous function de�ned on the top layer� Remember that the

de�nition of f�x� depends on the choice of f�v� from F�v� for V �

��� v
�

��� � J��

The point x � Rn is said to be a linear approximate �xed point of F�x� relative

to the present piecewise linear approximation if

x � f�x� � ���
�

The n�dimensional simplex

�
Vi �

��� vi
�

��� � i � � to n� �

�
on the top layer contains a

�xed point of the piecewise linear map f�x� i� the system

�� � � � �n��

� � � � � �

f�v��� v� � � � f�vn���� vn�� 

�i �� 
� i � � to n� �

�����
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has a feasible solution� Thus the problem of �nding a �xed point of the piecewise linear

approximation f�x� boils down to the problem of �nding an n�dimensional simplex on

the top layer whose vertices are such that ����� is feasible�

For each vertex V �

��� v
�

��� in the top layer associate the column vector��� �
f�v�� v

��� � Rn��� which we denote by A�V and call the label of the vertex V �

The coe�cient matrix in ����� whose columns are the labels of the vertices of the sim�

plex is called the label matrix corresponding to the simplex� Because of the nature

of the labels used on the vertices� this is called a vector labelling method�

An n�dimensional simplex on the top layer is said to be a completely labelled

simplex if the system ����� corresponding to it has a nonnegative solution� that is�

if it contains a �xed point of the current piecewise linear approximation�

Let V� �

��� v�



��� �

��� 




���� P � ��� � � � � n��� and let �V�� P � � hV�� V�� � � � � Vn��i�

where Vi �

��� vi



���� i � � to n� Then hV�� V�� � � � � Vni is the n�dimensional face of �V��

P � in the bottom layer� Let W �

���w
o

��� be an arbitrary point in the interior of this

n�dimensional simplex hV�� � � � � Vni� for example� w � �v������vn	
�n��	 � For every vertex

V �

��� v



��� � J� in the bottom layer� de�ne f�V � �

��� f�v�



��� �

���w



���� For any

nonvertex X in Rn � �
� ��� X must lie in some �n � ���dimensional simplex in the

present triangulation� say hV �
� � V

�
� � � � � � V

�
n��i� So there exist unique numbers 	�� � � � �

	n�� �� 
 such that 	� � 	� � � � �� 	n�� � �� X � 	�V
�
� � 	�V

�
� � � � �� 	n��V

�
n���

Then de�ne f�X� � 	�f�V
�
� �� � � ��	n��f�V

�
n���� The map f�X� is thus a continuous

piecewise linear map de�ned on Rn� �
� ��� In each �n��� dimensional simplex in the

present triangulation� f�X� is linear� Also� under this map� every point in the bottom

layer maps into the point W � De�ne the label of any vertex V �

��� v



��� � J� to be the

column vector A�V �

��� �
w � v

��� � Rn���

Let hV�� V�� � � � � Vni be the n�dimensional simplex in the bottom layer� from the

interior of which we selected the point W � Since W is in the interior of this simplex�

B�� the �n���� �n��� label matrix corresponding to this simplex is nonsingular� Let

b � ��� 
� 
� � � � � 
�T � Rn��� Then the system corresponding to ����� for this simplex

is

�

B� b
� �

� 


�����

This system has the unique positive solution � � �b � B��
� b � 
� since W is in the

interior of this simplex� Incidentally� this hV�� V�� � � � � Vni is the only n�dimensional

simplex in the bottom layer whose label matrix leads to a nonnegative solution to the

system like ������ The reason for it is that since W is in the interior of hV�� V�� � � � �
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Vni� W is not contained in any other simplex in the triangulation in the bottom layer�

Also� since �b � 
� the n � �n� �� matrix
�
�b

��� B��
�

	
has all rows lexicopositive� The

inverse tableau corresponding to the initial system ����� is

basic vector basis inverse

� B��
�

�b
�����

The initial simplex hV�� V�� � � � � Vni in the bottom layer is an n�dimensional face of the

unique �n� ���dimensional simplex hV�� V�� � � � � Vn� Vn��i in the present triangulationeK�� Introduce a new variable� say �n��� in ����� with its column vector equal to the

label of this new vertex Vn��� and bring this variable into the present basic vector� The

pivot column for this pivot operation is B��
� A�Vn�� � If this pivot column is nonpositive�

it would imply that the set of feasible solutions of this augmented system ����� with

this new variable is unbounded� which is impossible since the �rst constraint in the

system says that the sum of all the variables is �� and all the variables are nonnegative�

So� the pivot column contains at least one positive entry� and it is possible to bring

the new variable into the present basic vector� The dropping variable is determined

by the usual lexico minimum ratio test of the primal simplex algorithm� this always

determines the dropping variable uniquely and unambiguously and maintains the sys�

tem lexico feasible� If the label of Vi is the dropping column� the next basis is the

label matrix of the n�dimensional simplex hV�� � � � � Vi��� Vi��� � � � � Vn��i� The inverse

tableau corresponding to this new basis is obtained by entering the pivot column by

the side of the present inverse tableau in ����� and performing a pivot step in it� with

the row in which the dropping variable �i is basic� as the pivot row�

By the properties of the triangulation� the new n�dimensional simplex hV�� � � � �
Vi��� Vi��� � � � � Vn��i is the face of exactly one or two �n � �� dimensional simplexes

in the triangulation� One is the simplex hV�� � � � Vn��i� If there is another� it must be

a simplex of the form hY� V�� � � � � Vi��� Vi��� � � � � Vn��i� Then bring the column A�Y
into the basis next� Continuing in this manner� we generate a unique path of the form

Sn� � S
n��
� � Sn� � S

n��
� � � � �� Here Snk � S

n��
k represent the kth n�dimensional simplex and

�n � ���dimensional simplex respectively in this path� Termination can only occur

if at some stage the basis corresponds to an n�dimensional simplex Snr all of whose

vertices are on the top layer� Each n�dimensional simplex in this path is the face

of at most two �n � ���dimensional simplexes� we arrive at this face through one of

these �n � ���dimensional simplexes� and leave it through the other� The initial n�

dimensional simplex in the bottom layer is a boundary face� and hence is the face of

a unique �n� ���dimensional simplex in the triangulation� So the path continues in a

unique manner and it cannot return to the initial n�dimensional simplex again� Also�

since the initial n�dimensional simplex is the only n�dimensional simplex in the bottom

layer for which the system corresponding to ����� is feasible� the path will never pass

through any other n�dimensional simplex in the bottom layer after the �rst step� Any

n�dimensional simplex obtained on the path whose vertices belong to both the bottom

and top layers is an interior face� so it is incident to two �n����dimensional simplexes�
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we arrive at this n�face through one of these �n� ���dimensional simplexes and leave

it through the other� and the algorithm continues� The reader can verify that the

properties of the path generated are very similar to the almost complementary basic

vector path traced by the complementary pivot algorithm for the LCP� Thus we see

that the path continues uniquely and unambiguously and it can only terminate when

the columns of the current basis are the labels of vertices all of whom belong to the

top layer� When it terminates� from the �nal BFS we get a �xed point of the current

piecewise linear approximation�

Example ����

Consider n � �� We consider a single�valued map fromR� toR�� F�x� � fx��	x��g�
x � R�� The special triangulation of R� � �
� �� is given in Figure ����

V0 V1 4V

V5V3V2

1
4

1
1

1
0

-3/2
11

-1/2
1

1/2

0 0 1 2 3

Figure ���� The column vector by the side of a vertex is its vector label�

The vertices for the triangulation are all the points with integer coordinates in

R� � �
� ��� For each V �

��� v
�

��� on the top layer with v integer� we de�ne f�v� �

v� � 	v � �� We take the initial ��dimensional simplex on the bottom layer to be

hV�� V�i and the point W to be the interior point �w� 
�T �
�
�
� � 

	T

in it� For each V ���� v



��� in the bottom layer� de�ne f�V � � W �
�
�
� � 

	T

� The label of the vetex V ���� v
xn��

��� is

��� �
f�v�� v

��� if xn�� � �� or

��� �
w � v

��� if xn�� � 
� The labels of some

of the vertices are entered in Figure ���� The initial system corresponding to �����

here is
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�� ��

� � �

�
� ��

� 

��� �� �

� 


The feasible solution of this system and the basis inverse are given below�

Basic Basis �b Pivot Column Ratios

variable Inverse �A�V�

��
�
�

� �
�


�

�
�
� 
�

Min�

��
�
� � � �

� ��
�

The initial simplex hV�� V�i is the face of the unique ��dimensional simplex hV�� V�� V�i
in the triangulation� So we associate the label of V� with a variable �� and bring it

into the basic vector� The pivot column is���� �
� �
�
� ��

���� ��� �
�

��� �

���� 
�

��
�

���� � �A�V�

and this is entered on the inverse tableau� The dropping variable is �� and the pivot

element is inside a box� Pivoting leads to the next inverse tableau� For ease in un�

derstanding� the vertices are numbered as Vi� i � 
� �� � � � in Figure ��� and we will

denote the variable in the system associated with the label of the vertex Vi by �i�

Basic Basis �b Pivot Column Ratios

variable Inverse �A�V�

��
�


�


�


�


�
� Min�

��
�
 ��


�


�


�
�

The current ��simplex hV�� V�i is the face of hV�� V�� V�i and hV�� V�� V�i� We came

to the present basic vector through hV�� V�� V�i� so we have to leave hV�� V�i through
the ��simplex hV�� V�� V�i� Hence the updated column of the label of V�� �A�V� � is the

entering column� It is already entered on the inverse tableau� The dropping variable

is ��� Continuing� we get the following
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Basic Basis �b pivot Column Ratios

variable Inverse �A�V�

��
�
�

�
�

�
�

��
�

��
�
� ��

�
�
�



�

�

 Min�

�A�V�

��
�



�



�



�



�

��
�



��



�



�

 �

�� 
 � 


�
 � �� �

In the basic vector ��� ��� there is a tie for the dropping variable by the usual primal

simplex minimum ratio test� and hence the lexico minimum ratio test was used in

determining the dropping variable� The algorithm terminates with the basic vector

���� �
� since the corresponding vertices V�� V
 are both in the top layer� The �xed

point of the piecewise linear approximation is 
� v���� v
 � 
� ���� � � �� from

the terminal BFS� It can be veri�ed that x � � is indeed a �xed point of F�x�� since

F��� � f�g�

Su�cient Conditions for Finite Termination with a

Linear Approximate Fixed Point

Once the triangulation of Rn� �
� �� and the piecewise linear approximation are given�

the path generated by this algorithm either terminates with an n�dimensional simplex

on the top layer �leading to a �xed point of the present piecewise linear approximation�

after a �nite number of pivot steps� or continues inde�nitely� Su�cient conditions to

guarantee that the path terminates after a �nite number of steps are discussed in ���	���

where the following theorem is proved�

Theorem ��� Given  x � Rn and 	 � 
 let B� x� 	� � fx � x � Rn satisfying

kx�  xk �� 	 g� Suppose there are �xed positive numbers � and � and a point �x � Rn

satisfying� for each x � B��x� ��� y � B�x� ��nB��x� �� and u � F�x�� �u�x�T �y��x� � 
�

Let x� by an arbitrary point inRn� If the above algorithm is executed using the starting

point x � fx�g B��x� � � �� and a special triangulation eK� with its mesh �
� �� then�

the algorithm terminates in a �nite number of steps with a linear approximate �xed

point of F�x�� Also� every linear approximate �xed point lies in B��x� � � ���

We refer the reader to O� H� Merril�s Ph� D� thesis ���	�� for a proof of this theorem�

But it is very hard to verify whether these conditions hold in practical applications�

In practical applications we apply the algorithm and let the path continue until some
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prescribed upper bound on computer time is used up� If termination does not occur

by then� one usually stops with the conclusion that the method has failed on that

problem�

One strange feature of the su�cient conditions to guarantee �nite termination of

the above algorithm is the following� Let f�x� � �f��x�� � � � � fn�x��
T be a continuously

di�erentiable function from Rn into Rn� and suppose we are applying the algorithm

discussed above� on the �xed point formulation for the problem of solving the system

of equations �f�x� � 
�� Solving the system �f�x� � 
� is equivalent to �nding

the Kakutani �xed point of either F��x� � ff�x� � xg or F��x� � f�f�x� � xg�
Mathematically� the problem of �nding a �xed point of F��x� or F��x� are equivalent�

However� if F��x� satis�es the su�ciency condition for �nite termination� F��x� will

not� Thus� if the algorithm is applied to �nd the �xed points of F��x�� and F��x�� the

behavior of the algorithm on the two problems could be very di�erent� On one of them

the algorithm may have �nite termination� and on the other it may never terminate�

This point should be carefully noted in using this algorithm in practical applications�

Algorithm to generate an Approximate Fixed Point of F�x�

Select a sequence of positive numbers � � �� �� �� � � � converging to zero� Let x� � 
�

Set t � 
 and go to Step ��

Step � � De�ne the piecewise linear approximation for F�x� relative to the special

triangulation t eK��x
t� choosing the point W from the interior of the translate of the

n�dimensonal face of the initial simplex h
� I��� � � � � I�ni on the bottom layer in this tri�

angulation� Find a �xed point of this piecewise linear approximation using this special

triangulation by the algorithm discussed above� Suppose the �xed point obtained is

xt��� xt�� is a linear approximate �xed point of F�x� relative to this special triangu�

lation t eK��x
t�� If xt�� � F�xt���� terminate� xt�� is a �xed point of F�x�� Otherwise

go to Step ��

Step � � Replace t by t� � and do Step ��

So this method generates the sequence fx�� x�� x�� � � �g of linear approximate �xed

points for F�x�� If at any stage xt � F�xt�� it is a �xed point of F�x� and we terminate�

Otherwise� any limit point of the sequence fxt � t � �� �� � � �g can be shown to be a

�xed point of F�x�� In practice� if �nite termination does not occur� we continue until

t becomes su�ciently small and take the �nal xt as an approximate �xed point of

F�x��

To 
nd Fixed Points of USC Maps De
ned on a

Compact Convex Subset """ � Rn

Without any loss of generality we can assume that """ has a nonempty interior �if the

interior of """ in Rn is �� the problem is not altered by replacing Rn by the a�ne hull

of """� in which """ has a nonempty interior�� Let F�x� be the given USC map� So F�x�
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is de�ned for all x � """� and for all such x� F�x� is a compact convex subset of """� Since

this map is only de�ned on """� and not on the whole of Rn� the algorithm discussed

above does not apply to this problem directly� However� as pointed out by B� C� Eaves

������� we can extend the de�nition of F�x� to the whole of Rn as below� Let c be any

point from the interior of """�

F��x� �

��� fcg� if x �� """
convex hull of fc�F�x�g� if x � boundary of """
F�x�� if x � interior of """�

It can be veri�ed that F��x� is now a USC map de�ned on Rn� and that every �xed

point of F��x� is in """ and is also a �xed point of F�x� and vice versa� Since F��x� is

de�ned over all of Rn� the method discussed above can be applied to �nd a �xed point

of it�

Homotopy Interpretation

In the algorithm discussed above for computing a �xed point of the piecewise linear

approximation� there are two layers� the bottom layer and the top layer� We have

the same triangulation of Rn in both the bottom and top layers� The labels for the

vertices on the bottom layer are arti�cial labels corresponding to a very simple map

for which we know the �xed point� The labels for the vertices on the top layer are

natural labels corresponding to the piecewise linear map whose �xed point we want to

�nd� The algorithm starts at the known �xed point of the arti�cial map of the bottom

layer and walks its way through the triangulation until it reaches a �xed point of the

piecewise linear map on the top layer� This makes it possible to interpret the above

algorithm as a homotopy algorithm� Other homotopy algorithms for computing �xed

points with continuous re�nement of the grid size have been developed by B� C� Eaves

������ and B� C� Eaves and R� Saigal ������ and several others ����
 to ���
��

Comments ��� H� Scarf ����� �rst pointed out that the basic properties of the

path followed by the complementary pivot algorithm in the LCP can be used to com�

pute approximate Brouwer�s �xed points using partitions of the space into sets called

primitive sets� and T� Hansen and H� Scarf ����� extended this into a method for

approximating Kakutani �xed points� The earliest algorithms for computing approx�

imate �xed points using triangulations are those by B� C� Eaves ������� H� W� Kuhn

���	��� These early algorithms su�ered from computational ine�ciency because they

start from outside the region of interest� The �rst method to circumvent this di�culty

is due to O� H� Merrill ���	�� ��	�� discussed above� The applications of �xed point

methods in nonlinear programming discussed in Sections ������ ������ ����	� ���� and

����� are due to O� H� Merrill ���	��� Besides the triangulation K� discussed above�

Merrill�s algorithm can be implemented using other triangulations� see M� J� Todds

book ������ and the papers ����
 to ���
��
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��	 COMPUTATIONAL COMPLEXITY OF THE

COMPLEMENTARY PIVOT ALGORITHM

The computational complexity of an algorithm measures the growth of the com�

putational e�ort involved in executing the algorithm as a function of the size of the

problem� In the complementary pivot algorithm� we will assess the computational ef�

fort by the number of pivot steps carried out before the algorithm terminates� There

are three commonly used measures for studying the computational complexity of an

algorithm� These are discussed below�

Worst Case Computational Complexity

This measure is a tight mathematical upper bound on the number of pivot steps re�

quired before termination� as a function of the size of the problem� In studying the

worst case computational complexity we will assume that the data is integer� or more

generally� rational� that is� each mij � qi in the matrices q� M is a ratio of two inte�

gers� In this case by multiplying all the data by a suitable positive integer� we can

transform the problem into an LCP in which all the data is integer� Hence without

any loss of generality we assume that all the data is integer� and de�ne the size of

the problem to be the total number of bits of storage needed to store all the data in

the problem in binary form� See Chapter  where a mathematical de�nition of this

size is given� The worst case computational complexity of an algorithm provides a

guaranteed upper limit on the computational e�ort needed to solve any instance of

the problem by the algorithm� as a function of the size of the instance� The algorithm

is said to be polynomially bounded if this worst case computational complexity is

bounded above by a polynomial of �xed degree in the size of the problem� that is� if

there exist constants 	� r independent of the size� such that the computational e�ort

needed is always �� 	sr when the algorithm is applied on problems of size s� Even

though the worst case computational complexity is measured in terms of the number

of pivot steps� each pivot step needs O�n�� basic arithmetical operations �addition�

multiplication� division� comparison� on data each of which has at most s digits� where

s is the size and n the order of the instance� so if the algorithm is polynomially bounded

in terms of the number of pivot steps� it is polynomially bounded in terms of the basic

arithmetical operations� In Chapter  we conclusively establish that the complemen�

tary pivot algorithm is not a polynomially bounded algorithm in this worst case sense�

Using our examples discussed in Chapter � in ������ M� J� Todd constructed examples

of square nonsingular systems of linear equations �Ax� b � 
�� with integer data� for

solving which the computational e�ort required by Merrill�s algorithm of Section ������

grows exponentially with the size of the problem�

An algorithm may have a worst case computational complexity which is an ex�

ponentially growing function of the size of the problem� just because it performs very

poorly on problem instances with a very rare pathological structure� Such an algorithm
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might be extremely e�cient on instances of the problem not having the rare patholog�

ical structure� which may never show up in practical applications� For this reason� the

worst case measure is usually very poor in judging the computational e�ciency of an

algorithm� or its practical utility�

The Probabilistic Average Computational Complexity

Here we assume that the data in the problem is randomly generated according to

some assumed probability distribution� The average computational complexity of the

algorithm under this model is then de�ned to be the statistical expectation of the

number of steps needed by the algorithm before termination� on problem instances

with this data� Since the expectation is a multiple integral� this average analysis

requires techniques for bounding the values of multiple integrals� If the probability

distributions are continuous distributions� the data generated will in general be real

numbers �not rational�� and so in this case we de�ne the size of the LCP to be its

order n� We assume that each pivot step in the algorithm is carried out on the real

data using exact arithmetic� but assess the computational complexity by the average

number of pivot steps carried out by the algorithm before termination�

M� J� Todd performed the average analysis in ����� under the folowing assump�

tions on the distribution of the data �q�M��

i� With probability one� every square submatrix of M whose sets of row indices

and column indices di�er in at most one element� is nonsingular�

ii� q is nondegenerate in the LCP �q�M��

iii� The distributions of �q�M� are sign�invariant� that is� �q�M� and �Sq� SMS�

have identical distributions for all sign matrices S �i� e�� diagonal matrices

with diagonal entries of �� or ����
Under these assumptions he showed that the expected number of pivot steps taken

by the lexicographic Lemke algorithm �see Section ������ before termination when

applied on the LCP �q�M� is at most n�n��	
� �

M� J� Todd ����� also analysed the average computational complexity of the lex�

icographic Lemke algorithm applied on the LCP corresponding to the LP

minimize cx

subject to Ax �� b

x �� 


under the following assumptions� A is a matrix of order m � N � The probability

distribution generating the data �A� b� c� and hence the data �q�M� in the corresponding

LCP satis�es the following assumptions �

i� with probability one� the LP and its dual are nondegenerate �every solution of

Ax� u � b has at least m nonzero variables� and every solution of yA� v �

c has at least N nonzero variables�� and every square submatrix of A is

nonsingular�
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ii� the distributions of �A� b� c� and of �S�AS�� S�b� S�c� are identical for all sign

matrices S�� S� of appropriate dimension�� This is the sign invariance re�

quirement�

Under these assumptions he showed that the expected number of pivot steps taken

by the lexicographic Lemke algorithm when applied on the LCP corresponding to this

LP is at most� minimum
�
m��
m���

�
� �N

��
N�

�

�
� See also ������ for similar results

under slightly di�erent probabilistic models�

In a recent paper� ����
� R� Saigal showed that the expected number of pivot steps

taken by the lexicographic Lemke algorithm when applied on the LCP corresponding

to the above LP is actually bounded above by m and asymptotically approaches m
�
���

where m is the number of rows in A�

Unfortunately� these nice quadratic or linear bound expected complexity results

seem very dependent on the exact manner in which the algorithm is implemented� and

on the problabilistic model of the data� For example� it has not been possible so far to

obtain comparable results for the complementary pivot algorithm of Section ��� which

uses the column vector e of all ��s as the original column vector of the arti�cial variable

z��

Empirical Average Computation Complexity

This measure of computational complexity is used more in the spirit of simulation�

Here� a computational experiment is usually performed by applying the algorithm on

a large number of problem instances of various sizes� and summary statistics are then

prepared on how the algorithm performed on them� The data is usually generated

according to some distribution �typically we may assume that each data element is a

uniformly distributed random variable from an interval such as ��

 to ��

� etc��� In

the LCP� we may also want to test how the complementary pivot algorithm performs

under varying degrees of sparsity of q andM � For this� a certain percentage of randomly

chosen entries in q andM can be �xed as zero� and the remaining obtained randomly as

described above� It may also be possible to generateM so that it has special properties�

As an example� if we want to experiment on LCPs associated with PSD symmetric

matrices� we can generate a random square matrix A as above and take M to be ATA�

Such computational experiments can be very useful in practice� The experiments

conducted on the complementary pivot algorithm� suggest that the empirical average

number of pivot steps before termination grows linearly with n� the order of the LCP�

We know that Merrill�s simplicial method for computing the �xed point of a piece�

wise linear map discussed in Section ����� may not terminate on some problems� Com�

putational experiments indicate that on problems on which it did terminate� the av�

erage number of simplices that the algorithm walked through before termination� is

O�n��� as a function of the dimension of the problem� See ���� to �����
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��
 THE GENERAL QUADRATIC

PROGRAMMING PROBLEM

From the results in Section ��� we know that the complementary pivot method pro�

cesses convex quadratic programs with a �nite computational e�ort� Here we discuss

the general� possibly nonconvex� quadratic programming problem� This is a problem

in which a general quadratic objective function is to be minimized subject to linear

constraints�

The Reduction Process

If there is an equality constraint on the variables� using it� obtain an expression for

one of the variables as an a�ne function of the others� and eliminate this variable and

this constraint from the optimization portion of the problem� A step like this is called

a reduction step� it reduces the number of variables in the optimization problem

by one� and the number of constraints by one� In the resulting problem� if there is

another equality constraint� do a reduction step using it� and continue in the same

manner� When this work is completed� only inequality constraints remain� and the

system of constraints assumes the form FX �
� f � which includes any sign restrictions

and lower or upper bound constraints on the variables� We assume that this system is

feasible� An inequality constraint in this system is said to be a binding inequality

constraint if it holds as an equation at all feasible solutions� A binding inequality

constraint can therefore be treated as an equality constraint without a�ecting the set

of feasible solutions� Binding inequality constraints can be identi�ed using a linear

programming formulation� Introduce the vector of slack variables v and transform the

system of constraints into FX � v � f � v �
� 
� The ith constraint in the system�

Fi�X �
� fi� is a binding constraint i� the maximum value of vi subject to FX � v � f �

v �� 
� is zero� Using this procedure identify all the binding constraints� change each

of them into an equality constraint in the system� Carry out further reduction steps

using these equality constraints� At the end� the optimization portion of the problem

reduces to one of the following form

Minimize ��x� � cx� �
�x

TDx

Subject to Ax �� b
�����

satisfying the property that Ax � b is feasible� Let A be of order m� n� Without any

loss of generality we assume that D is symmetric �because xTDx � xT D�DT

� x and
D�DT

� is a symmetric matrix�� Let K � fx � Ax �� bg� By our assumptions here K �� �
and in fact K has a nonempty interior� Every interior point of K satis�es Ax � b and

vice versa� We also assume that K is bounded� The solution of the problem when K

is unbounded can be accomplished by imposing additional constraints �	 �
� xj �� 	

for each j� where 	 is a large positive valued parameter� The parameter 	 is not given
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any speci�c value� but treated as being larger than any number with which it may be

compared� The set of feasible solution of the augmented problem is bounded� and so

the augmented problem can be solved by the method discussed below� If the optimum

solution of the augmented problem is independent of 	 when 	 is positive and large�

it is the optimum solution of the original problem ������ On the other hand if the

optimum solution of the augmented problem depends on 	 however large 	 may be�

and the optimum objective value diverges to �� as 	 tends to ��� the objective

function is unbounded below in the original problem� In the sequel we assume that K

is bounded� Under these assumptions� ����� will have an optimum solution� If D is

not PSD� we have the following theorem�

Theorem ���� If D is not PSD� the optimum solution of ������ cannot be an interior

point of K�

Proof� Proof is by contradiction� Suppose �x� an interior point of K� is an optimum

solution of ������ Since �x is an interior point of K� we have A�x � b� and a necessary

condition for it to be optimum for ����� �or even for it to be a local minimum for

������ is that the gradient vector of ��x� at �x� which is r���x� � c� �xTD � 
� Since

D is not PSD� there exists a vector y �� 
 satisfying yTDy � 
� Using c� �xTD � 
� it

can be veri�ed that ���x� �y� � ���x� � ��

� y
TDy� Since �x satis�es A�x � b� we can �nd

� � 
 and su�ciently small so that �x��y is feasible to ������ and ���x��y� � ���x��
��

� y
TDy � ���x�� contradiction to the hypothesis that �x is optimal to ������ So if D

is not PSD� every optimum solution must be a boundary point of K� that is� it must

satisfy at least one of the constraints in ����� as an equation�

The Method

Express the problem in the form ������ using the reduction steps discussed above as

needed� so that the system Ax � b is feasible� Suppose A is of order m � n� Then

we will refer to the problem ����� as being of order �m�n�� where n is the number of

decision variables in the problem� and m the number of inequality constraints on these

variables�

Check whether D is PSD� This can be carried out by the e�cient algorithm dis�

cussed in Section ����� with a computational e�ort of O�n��� If D is PSD� ����� is

a convex quadratic program� the optimum solution for it can be computed using the

complementary pivot algorithm discussed in earlier sections� with a �nite amount of

computational e�ort� If D is not PSD� generate m candidate problems as discussed

below� This operation is called the branching operation�

For i � � to m� the ith candidate problem is the following �

Minimize cx� �
�x

TDx

Subject to Ap�x �� bp� p � � to m� p �� i

Ai�x � bi �

���	�
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If D is not PSD� by Theorem ���� every optimum solution for ����� must be an

optimum solution of at least one of the m candidate problems�

Each of the candidate problems is now processed independently� The set of fea�

sible solutions of each candidate problem is a subset �a face� of K� the set of feasible

solutions of the original problem ������ Using the equality constraint� a reduction step

can be carried out in the candidate problem ���	�� In the resulting reduced problem

identify any binding inequality constraints by a linear programming formulation dis�

cussed earlier� Treat binding constraints as equality constraints and carry out further

reduction steps� The �nal reduced problem is one of the same form ������ but of order
�
� �m � �� n � ��� Test whether it is a convex quadratic programming problem �this

could happen even if the original problem ����� is not a convex quadratic program�

and if it is so� �nd the optimum solution for it using the complementary pivot algo�

rithm and store its solution in a solution list� If it is not a convex quadratic program

carry out the branching operation on it and generate additional candidate problems

from it� and process each of them independently in the same way�

The total number of candidate problems to be processed is �� �m� When there are

no more candidate problems left to be procesed� �nd out the best solution �i� e�� the

one with the smallest objective value� among those in the solution list at that stage�

That solution is an optimum solution of the original problem�

This provides a �nite method for solving the general quadratic programming prob�

lem� It may be of practical use only if m and n are small numbers� or if the candidate

problems turn out to be convex quadratic programs fairly early in the branching pro�

cess� On some problems the method may require a lot of computation� For example�

if D in the original problem ����� is negative de�nite� every candidate problem with

one or more inequality constraints will be nonconvex� and so the method will only

terminate when all the extreme points of K are enumerated in the solution list� In

such cases� this method� eventhough �nite� is impractical� and one has to resort to

heuristics or some approximate solution methods�

���� Testing Copositiveness

Let M be a given square matrix of order n� Suppose it is required to check whether

M is copositive� From the de�nition� it is clear that M is copositive i� the optimum

objective value in the following quadratic program is zero�

Minimize xTMx

Subject to x �� 


eTx �� � �
����

where e is the column vector of all ��s in Rn� We can check whether M is PSD

with a computational e�ort of O�n�� by the e�cient pivotal methods discussed in

Section ������ If M is PSD� it is also copositive� If M is not PSD� to check whether
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it is copositive� we can solve the quadratic program ���� by the method discussed

above� If the optimum objective value in it is zero� M is copositive� not otherwise�

This provides a �nite method for testing copositiveness� However� this method is not

practilly useful when n is large� Other methods for testing copositiveness are discussed

in ������ ��	��� See also Section ������

Exercise

��� Using the results from Section ���� prove that the general quadratic programming

problem ����� with integer data is an NP�hard problem�

Comments ���� Theorem ��� is from R� K� Mueller ������� The method for the

general quadratic programming problem discussed here is from ������ of K� G� Murty�

���� Computing a KKT point for a

General Quadratic Programming Problem

Consider the QP �quadratic program�

minimize Q�x� � cx� �
�x

TDx

subject to Ax �� b

x �� 

�����

where D is a symmetric matrix of order n� and A� b� c are given matrices of orders

m � n� m � �� and � � n respectively� We let K denote the set of feasible solutions

of this problem� If D is PSD� this is a convex quadratic program� and if K �� �� the
application of the complementary pivot algorithm discussed in Sections ���� ��� on the

LCP corresponding to this QP will either terminate with the global minimum for this

problem� or provide a feasible half�line along which Q�x� diverges to ���

Here� we do not assume that D is PSD� so ����� is the general QP� In this case

there can be local minima which are not global minima �see Section �
�� for de�nitions

of a global minimum� local minimum�� the problem may have KKT points which are

not even local minima �for example� for ���� verify that x � 
 is a KKT point�

and that this is not even a local minimum for that problem if D is not copositive��

The method discussed at the beginning of Section ��� is a total enumeration method

�enumerating over all the faces of K� applicable when K is bounded� In this section we

do not make any boundedness assumption on K� We prove that if Q�x� is unbounded

below on K� there exists a half�line in K along which Q�x� diverges to ��� We also

prove that if Q�x� is bounded below on K� then ����� has a �nite global minimum

point� This result was �rst proved by M� Frank and P� Wolfe ��
���� but our proofs

are based on the results of B� C� Eaves ������ We also show that the complementary
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pivot method applied on an LCP associated with ����� will terminate with one of

three possible ways

�i� establish that K � �� or
�ii� �nd a feasible half�line in K along which Q�x� diverges to ��� or

�iii� �nd a KKT point for ������

From the results in Chapter �� we know that �x � K is a KKT point for ����� i�

there exist vectors �y� �v � Rm and �u � Rn which together satisfy��� �u
�v

����
���D �AT

A 


������ �x
�y

��� �

��� cT

�b
���

�������� �u
�v

��� �
� 
�

��� �x
�y

��� �
� 
�

��� �u
�v

���T ��� �x
�y

��� � 


which is an LCP� We will call ��x� �y� �u� �v� a KKT solution corresponding to the KKT

point �x� For the sake of simplicity� we denote���u
v

��� by w� and

���x
y

��� by z

���D �AT

A 


��� by M� and

��� cT

�b
��� by q

n�m by N �

So� if � �w� �z� is complementary solution of the LCP ������ then ��z�� � � � � �zn� � �x is a

KKT point for ������

A KKT point �x for ����� is said to be a reduced KKT point for ����� if the set

of column vectors

�
M�j �

���D�j
A�j

��� � j such that �xj � 



is linearly independent�

Lemma ���� Let �x be a KKT point for ������� From �x� we can derive either a

reduced KKT point #x such that Q�#x� �� Q��x�� or a feasible half
line in K along which

Q�x� diverges to ���

Proof� Let
�
�w � ��u� �v�� �z � ��x� �y�

	
be a KKT solution associated with �x� Let J� �

fj � �wj � 
g� J� � fj � �zj � 
g� By complementarity J�  J� � f�� � � � � Ng� From

the fact that � �w� �z� is a KKT solution �i�e�� it satis�es ������ it can be veri�ed that

Q��x� � �
� �c�x� �yT b� � �

��c� b
T ��z� Consider the following LP

minimize �
� �c� b

T ��z

subject to w �Mz � q

wj � 
 for j � J�
zj � 
 for j � J�
wj �� 
 for j �� J�
zj �� 
 for j �� J�

�����
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If �w� z� is any feasible solution to this LP� from the constraints in ����� it is clear

that the corresponding x � �z�� � � � � zn� is in K� and that wT z � 
 �complementarity��

by this complementarity we have Q�x� � �
� �c� b

T �z�

There are only two possibilities for the LP ������ Either the objective function is

unbounded below in it� in which case there exists a feasible half�line� say f�w�� z�� �

��wh� zh� � � �� 
g along which the objective value diverges to �� �this implies that

the corresponding half�line fx� � �xh � � �
� 
g is in K and Q�x� diverges to �� on

it�� or that it has an optimum solution� in which case it has an optimum BFS� If � #w� #z�

is an optimum BFS of ������ the corresponding #x is a reduced KKT point for �����

and Q�#x� � �
��c� b

T �#z ��
�
� �c� b

T ��z � Q��x��

Lemma ���� If the QP has a global optimum solution� it has a global optimum solu


tion �x satisfying the property that the set of vectors

����D�j
A�j

��� � j such that �xj � 



is linearly independent�

Proof� Follows from Lemma �����

Lemma ���� For given D� A there exists a �nite set of matrices L�� � � � � Ll� each

of order n � N � such that for any c� b if x is a reduced KKT point of ������� then

x � Lt

��� cT

�b
��� for some t�

Proof� Let x be a reduced KKT point for ������ Let
�
w � �u� v�� z � �x� y�

	
be the

corresponding KKT solution� Then �w� z� is a BFS of an LP of the form ������ Since

it is a BFS� there exists a basic vector and associated basis B for ����� such that this

�w� z� is de�ned by

nonbasic variables � 


basic vector � B��q

The matrix Lt can have its jth row to be 
 if xj is a nonbasic variable� or the rth row

of B��if xj is the rth basic variable in this basic vector� By complementarity� there

are only �N systems of the form ������ and each system has a �nite number of basic

vectors� so the collection of matrices of the form Lt constructed as above is �nite and

depends only on D� A� So� for any q� any reduced KKT point must be of the form Ltq

for some Lt in this �nite collection�

Theorem ���� Assume that K �� �� Either the QP ������ has a global minimum�

or there exists a feasible half
line in K along which Q�x� diverges to ���

Proof� Let f	p � p � �� �� � � �g be an increasing sequence of positive numbers diverging
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to ��� such that K � fx � ex �� 	�g �� �� Consider the QP

minimize cx� �
�x

TDx

subject to Ax �� b

x �� 


ex �� 	p

����
�

For every p in this sequence� ����
� has a non�empty bounded solution set� and hence

has a global nimimum� By Lemma ����� it has a global minimum which is a reduced

KKT point for ����
�� Applying Lemma ���� to the QP ����
�� we know that there

exists a �nite collection of matrices fL�� � � � � Llg independent of the data in the right

hand side constants vector in ����
�� such that every reduced KKT point for ����
� is

of the form

Lt

������� cT

�b
	p

������� � Lt

������� cT

�b



�������� 	pLt

������� 



�

������� ������

for some t� So� for each p � �� �� � � �� there exists a t between � to l such that the global

minimum of ����
� for that p is of the form given in ������� Since there are only a �nite

number l� of these t�s� there must exist a t� say t�� which gives the global minimum for

an in�nite number of p�s� Let the subsequence corresponding to these p�s in increasing

order be P � fp�� p�� � � �g� Let

#x � Lt�

������� cT

�b



������� � �y � Lt�

������� 



�

�������
Then the global minimum for ����
� is x�pr� � #x� 	pr �y when p � pr� for r � �� �� � � ��

So� the optimum objective value in this problem is Q
�
x�pr�

	
� Q

�
#x� 	pr �y

	
� and this

is of the form a� � a�	pr � a�	
�
pr
� The quantity 	pr is monotonic increasing with r�

so the set of feasible solutions of ����
� for p � pr becomes larger as r increases� so

Q
�
x�pr�

	
is monotonic decreasing with r� These facts imply that either a� � 
 or

a� � 
 and a� �
� 
� If a� � 
 or a� � 
 and a� � 
� Q

�
x�pr�

	
diverges to �� as

r tends to ��� in this case f#x � ��y � � �
� 	p�g is a half�line in K along which Q�x�

diverges to ��� On the other hand� if a� � a� � 
� Q�x� is bounded below by a� on

K� and in this case #x� 	pr �y is a global minimum for ����� for any r�

The Algorithm

To compute a KKT point for ������ apply the complementary pivot method on the

LCP ��� F � of order n�m� �� where

� �

������� cT

�b
qn�m��

������� � F �

������� D �AT e
A 
 

�eT 
 


�������
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where qn�m�� is treated as a large positive valued parameter without giving any speci�c

value for it �i�e�� qn�m�� is treated as being larger than any numer with which it is

compared�� with the original column vector of the arti�cial variable z� taken to be

������� � � � ���� 
� � Rn�m��� By Lemma ���� it can be veri�ed that the matrix M

de�ned above is an L��matrix� If the complementary pivot method terminates in a

secondary ray� by Theorem ��	� we conclude that

�Ax �
� �b

ex �
� qn�m��

x �
� 


is infeasible for qn�m�� arbitrarily large� that is

Ax �
� b

x �
� 


is infeasible� So ����� is infeasible� if ray termination occurs in the complementary

pivot algorithm when applied on the LCP ��� F ��

Suppose the complementary pivot method terminates with a complementary so�

lution
�
�w � � �wj�� �z � ��zj�

	
where �w� �z � Rn�m��� If �wn�m�� � 
� �zn�m�� � 
�

it can be veri�ed that
�
� �w�� � � � � �wn�m�� ��z�� � � � � �zn�m�

	
is a complementary solution

for the LCP


��� cT

�b
��� �

���D �AT

A 


����� that is� it is a KKT solution for ����� and

�x � ��z�� � � � � �zn�
T is a KKT point for ������

On the other hand� if �wn�m�� � 
 and �zn�m�� � 
 in the terminal complementary

BFS� the basic variables are a�ne functions of the large positive parameter qn�m���

Let �x � ��z�� � � � � �zn�
T � �y � ��zn��� � � � � �zn�m�� It can be veri�ed that Q��x� � �

� �c�x �

bT y�� �
�qn�m���zn�m�� and as qn�m�� tends to ��� this diverges to ��� Hence in

this case� Q�x� is unbounded below on K� and a feasible half�line along which Q�x�

diverges to �� can be obtained by letting the parameter qn�m�� tend to �� in the

solution �x�

When D is not PSD� it is possible for ����� to have some KKT points� even when

Q�x� is unbounded below on K� Thus in this case the fact that this algorithm has

terminated with a KKT point of ����� is no guarantee that Q�x� is bounded below

on K�

���� Computing a Global Minimum�

or Even a Local Minimum in

Nonconvex Programming Problems May be Hard

Consider the smooth nonlinear program �NLP�
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minimize ��x�

subject to gi�x� �� 
� i � � to m
������

where each of the functions is a real valued function de�ned on Rn with high degrees

of di�erentiability� ������ is convex NLP if ��x� is convex and gi�x� are concave for all

i� nonconvex NLP� otherwise�

A global minimum for ������ is a feasible solution �x for it satisfying ��x� �� ���x�

for all feasible solutions x of the problem� See Section �
��� For a convex NLP� under

some constraint quali�cations �see Appendix �� necessary and su�cient optimality

conditions are known� Given a feasible solution satisfying the constraint quali�cation�

using these optimality conditions� it is possible to check e�ciently whether that point

is a �global� optimum slution of the problem or not�

For a smooth nonconvex nonlinear program� the problem of computing a global

minimum� or checking whether a given feasible solution is a global minimum� are hard

problems in general� To establish these facts mathematically� consider the subset sum

problem� a hard problem in discrete optimization� which is known to be NP�complete

�see reference ������ for a complete discussion of NP�completeness�� given postive

integers d�� d�� � � � � dn� is there a solution to

nP
j��

djyj � d�

yj � 
 or � for all j

Now consider the quadratic programming problem �QP�

minimize

�
nP

j��
djyj � d�

��
�

nP
j��

yj��� yj�

subject to 
 �� yj �� �� j � � to n �

Because of the second term in the objective function� QP is a nonconvex quadratic

programming problem� Clearly� the subset�sum problem given above has a feasible

solution i� the global minimum objective value in QP is zero� Since the problem of

checking whether the subset�sum problem is NP�complete� computing the global mini�

mum for QP� a very special and simple case of a smooth nonconvex NLP� is an NP�hard
problem �see reference ������ for a complete discussion of NP�hardness�� This shows

that in general� the problem of computing a global minimum in a smooth nonconvex

NLP may be a hard problem� See also Section �
�� where some of the outstanding

di�cult problems in mathematics have been formulated as those of �nding global min�

ima in smooth nonconvex NLPs �for example� there we show that the well known

Fermat�s last Theorem in number theory� unresolved since ��� AD� can be posed

as the problem of checking whether the global minimum objective value in a smooth

nonconvex NLP� ��
���� is zero or greater than zero��
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Since the problem of computing a global minimum in a nonconvex NLP is a hard

problem� we will now study the question whether it is at least possible to compute a

local minimum for such a problem by an e�cient algorithm�

For nonconvex NLPs� under constraint quali�cations� some necessary conditions

for a local minimum are known �see Section �
�� for the de�nitions of a local minimum�

and Appendix � for a discussion of necessary conditions for a local minimum� and there

are some su�cient conditions for a point to be a local minimum� But there are no

simple conditions known� which are both necessary and su�cient for a given point to

be a local minimum� The complexity of checking whether a given feasible solution is

a local minimum in a nonconvex NLP� is not usually addressed in the literature� Many

textbooks in NLP� when they discuss algorithms� leave the reader with the impression

that these algorithms converge to a global minimum in convex NLPs� and to a local

minimum in nonconvex NLPs� The documentations distributed for many professional

NLP software packages also create the same impression� This impression could be quite

erroneous� in the general case� In this section we study this problem by examining the

computational complexity of determining whether a given feasible solution is not a local

minimum� and that of determining whether the objective function is not bounded below

on the set of feasible solutions� in smooth continuous variable� nonconvex NLPs� For

this purpose� we use the very special instance of an nonconvex quadratic programming

problem studied in K� G� Murty and S� N� Kabadi ��
���� with integer data� which

may be considered as the simplest nonconvex NLP� It turns out that the questions of

determining whether a given feasible solution is not a local minimum in this problem�

and to check whether the objective function is not bounded below in this problem� can

both be studied using the discrete techniques of computational complexity theory� and

in fact these questions are NP�complete problems �see reference ������ for de�nition of

NP�completeness�� This clearly shows that in general� it is a hard problem to check

whether a given feasible solution in a nonconvex NLP is even a local minimum� or to

check whether the objective function is bouned below� This indicates the following�

when a nonlinear programming algorithm is applied on a nonconvex NLP� unless it

is proved that it converges to a point satisfying some known su�cient condition for a

local minimum� claims that it leads to a local minimum are hard to verify in the worst

case� Also� in continuous variable smooth nonconvex minimization� even the down�to�

earth goal of guaranteeing that a local minimum will be obtained by the algorithm �as

opposed to the lofty goal of �nding the global minimum� may be hard to attain�

We review the known optimality conditions for a given feasible solution �x to ������

to be a local minimum� Let J � fi � gi��x� � 
g� Optimality conditions are derived

under the assumption that some constraint quali�cations �CQ� see Appendix �� are

satis�ed at �x� which we assume�
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First Order Necessary Conditions for �x to be a Local Minimum

for ������

There must exist a ��J � ���i � i � J� such that

r���x�� P
i�J

��irgi��x� � 


��i �� 
� for all i � J �
������

Given the feasible solution �x� it is possible to check whether these conditions hold�

e�ciently� using Phase I of the simplex method for linear programming�

Second Order Necessary Conditions for �x to be a Local Minimum

for ������

These conditions include ������� Given ��J satisfying ������ together with �x� let L�x�

��J� � ��x��Pi�J ��igi�x�� In addition to ������ these conditions require

yTHy �� 
� for all y � fy � rgi��x�y � 
 for each i � Jg ������

where H is the Hessian matrix of L�x� ��J� with respect to x at x � �x� Condition ������

requires the solution of a quadratic program involving only equality constraints� which

can be solved e�ciently� It is equivalent to checking the positive semide�niteness of

a matrix which can be carried out e�ciently using Gaussian pivot steps �see Section

�������

Su�cient Conditions for �x to be a Local Minimum for ������

Given the feasible solution �x� and ��J which together satisfy ������� the most general

known su�cient optimality condition states that if

yTHy � 
 for all y � T� ����	�

where T� �
�
y � y �� 
 and rgi��x�y � 
 for each i � fi � i � J and ��i � 
g� and

rgi��x�y �� 
 for each i � fi � i � J and ��i � 
g�� then �x is a local minimum for �������

Unfortunately� when H is not positive semide�nite� the problem of checking whether

����	� holds� leads to a nonconvex QP� which� as we will see later� may be hard to

solve�

Aside from the question of the di�culty of checking whether ����	� holds� we can

verify that the gap between conditions ������ and ����	� is very wide� particulary when

the set fi � i � J and ��i � 
g �� �� In this case� condition ������ may hold� and even if

we are able to check ����	�� if it is not satis�ed� we are unable to determine whether �x

is a local minimum for ������ with present theory�

Now we will use a simple inde�nite QP� related to the problem of checking whether

the su�cient optimality condition ����	� holds� to study the following questions �
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i� Given a smooth nonconvex NLP and a feasible solution for it� can we check

whether it is a local minimum or not e�ciently (

ii� At least in the simple case when the constraints are linear� can we check

e�ciently whether the objective function is bounded below or not on the set

of feasible solutions (

Let D be an integer square symmetric matrix of order n� The problem of checking

whether D is not PSD involves the question

�is there an x � Rn satisfying xTDx � 
 (� �����

This can be answered with an e�ort of at most nGaussian pivot steps� by the techniques

discussed in Section ������ This leads to an O�n�� algorithm for this problem� At the

termination of this algorithm� it is in fact possible to actually produce a vector x

satisfying xTDx � 
� if the answer to ����� is in the a�rmative�

All PSD matrices are copositive� but a matrix which is not PSD may be copositive�

Testing whether the given matrix D is not copositive involves the question

�is there an x �� 
 satisfying xTDx � 
 (� ������

If D is not PSD� no e�cient algorithm for this question is known �the computational

complexity of the enumerative method of Section ����� grows exponentially with n in

the worst case�� In fact we show later that this question is NP�complete� To study

this question� we are naturally lead to the NLP

minimize Q�x� � xTDx

subject to x �� 

������

We will show that this problem is an NP�hard problem�

We assume that D is not PSD� So Q�x� is nonconvex and ������ is a nonconvex

NLP� It can be considered the simplest nonconvex NLP� We consider the following

decision problems�

Problem �� Is x � 
 not a local minimum for ������ (

Problem �� Is Q�x� not bounded below on the set of feasible solu�

tions of ������ (

Clearly� the answer to problem � is in the a�rmative i� the answer to problem � is�

We will show that both these problems are NP�complete� To study problem �� we can

replace ������ by the NLP

minimize Q�x� � xTDx

subject to 
 �� xj �� �� j � � to n
������

Lemma ��� The decision problem �is there an �x feasible to ������ which satis�es

Q��x� � 
�� is in the class NP �see �	���� for the de�nition of the class NP of decision

problems��
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Proof� Given an x feasible to ������� to check whether Q�x� � 
� can be done by

computing Q�x� which takes O�n�� time� Also� if the answer to the problem is in

the a�rmative� an optimum solution �x of ������ satis�es Q��x� � 
� There is a linear

complementarity problem �LCP� corresponding to ������ and an optimum solution for

������ must correspond to a BFS for this LCP� Since there are only a �nite number

of BFSs for an LCP� and they are all rational vectors� a nondeterministic algorithm

can �nd one of them satisfying Q�x� � 
� if it exists� in polynomial time� Hence� this

problem is in the class NP�

Lemma ���� The optimum objective value in ������ is either � or �� ���L where L

is the size of D� �i�e�� the total number of binary digits in all the data in D��

Proof� Since the set of feasible solutions of ������ is a compact set and Q�x� is contin�

uous� ������ has an optimum solution� The necessary optimality conditions for ������

lead to the following LCP���u
v

����
��� D I
�I 


������x
y

��� �

��� 

e

��� ����
�

���u
v

��� �
� 
 �

���x
y

��� �
� 
 � ������

���u
v

���T ���x
y

��� � 
 ������

It can be veri�ed that whenever �u� v� x� y� satis�es ����
�� ������ and ������� xTDx �

�eT y� a linear function� where e is the column vector of all ��s in Rn� There exists

an optimum solution of ������ which is a BFS of ����
�� ������� By the results under

the ellipsoid algorithm �see� for example Chapter � in this book� or Chapter �	 in

������� in every BFS of ����
�� ������� each yj is either 
 or �� ��L� If the optimum

objective value in ������ is not zero� it must be � 
� and this together with the above

facts implies that an optimum solution x or ������ corresponds to a BFS �u� v� x� y�

of ����
�� ������ in which �eT y � 
� All these facts clearly imply that the optimum

objective value in ������ is either 
 or �� ���L�

We now make a list of several decision problems� some of which we have already

seen� and some new ones which we need for establishing our results�

Problem �� Is there an x �� 
 satisfying Q�x� � 
 (

Problem �� For any positive integer a�� is there an x � Rn satisfy�

ing eTx � a�� x �� 
 and Q�x� � 
 (

Now consider a subset sum problem with data d�� d�� � � � � dn� which are all positive

integers� Let � be a positive integer � �
�
d�

�Pn

j�� dj

���
n�� Let l be the size of this
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subset sum problem� that is� the total number of binary digits in all the data for the

problem� Let � be a positive rational number � ��nl
�
� The subset sum problem is �

Problem 	� Subset sum problem� Is there a y � �yj� � Rn satis�

fying
Pn

j�� djyj � d�� 
 �� yj �� �� j � � to n� and y

integer vector (

We now de�ne several functions involving nonnegative variables y � �y�� � � � � yn�
T

and s � �s�� � � � � sn�
T � related to the subset sum problem�

f��y� s� �

�� nX
j��

djyj � d�

�A�

� �

�� nX
j��

�yj � sj � ���

�A�
nX

j��

yjsj

�

�� nX
j��

djyj

�A�

�

nX
j��

yjsj � �
nX

j��

�yj � sj�
�

� �d�

�� nX
j��

djyj

�A� ��
nX

j��

�yj � sj� � n� � d��

f��y� s� � f��y� s� � �d�

�� nX
j��

djyj��� yj�

�A
�

�� nX
j��

djyj

�A�

� �
nX

j��

�yj � sj�
� �

nX
j��

yjsj

� �d�

�� nX
j��

djy
�
j

�A� ��
nX

j��

�yj � sj� � n� � d��

f��y� s� �

�� nX
j��

djyj

�A�

� �
nX

j��

�yj � sj�
� �

nX
j��

yjsj

� �d�

�� nX
j��

djy
�
j

�A� d�� � n�

f��y� s� �

�� nX
j��

djyj

�A�

� �
nX

j��

�yj � sj�
� �

nX
j��

yjsj

� �d�

nX
j��

djy
�
j �



d�� � n�

n�

��� nX
j��

�yj � sj�

�A�

f
�y� s� � f��y� s��
� �

n�

��� nX
j��

�yj � sj�

�A�
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Let P � f�y� s� � y �� 
� s �� 
�
Pn

j���yj � sj� � ng� Consider the following additional

decision problems

Problem � Is there a �y� s� � P satisfying f��y� s� �� 
 (

Problem �� Is there a �y� s� � P satisfying f��y� s� �� 
 (

Problem �� Is there a �y� s� � P satisfying f��y� s� �� 
 (

Problem �� Is there a �y� s� � P satisfying f
�y� s� � 
 (

Theorem ���� Problem � is an NP
hard problem �see �	���� for the de�nitions of

an NP
hard problem��

Proof� Since f��y� s� is a sum of nonnegative terms whenever �y� s� � P� if ��y� �s� � P

satis�es f��y� s� �� 
� then we must have f���y� �s� � 
� this clearly implies from the

de�nition of f��y� s�� that the following conditions must hold�

nX
j��

dj �yj � d�� �yj�sj � 
 and �yj � �sj � �� for all j � � to n �

These conditions clearly imply that �y is a solution of the subset sum problem and that

the answer to problem 	 is in the a�rmative� Conversely if  y � � yj� is a solution to

the subset sum problem� de�ne  s � � sj� where  sj � ��  yj for each j � � to n� and it

can be veri�ed that f�� y�  s� � 
� This veri�es that problems 	 and  are equivalent�

Whenever �y is a 
&� vector� we have �yj � �y�j for all j� and this implies that

f���y� s� � f���y� s� for any s� So� from the above arguments� we see that if ��y� �s� � P

satis�es f���y� �s� �� 
� then f���y� �s� � f���y� �s� � 
� If 
 �� yj �� �� we have �d�djyj���yj�
�
� 
� If �y� s� � P� and yj � �� then 	

� �yj � sj � ��� � �d�djyj��� yj� �� 
� since � is

large �from the de�nition of ��� Using this and the de�nitions of f��y� s�� f��y� s�� it

can be veri�ed that for �y� s� � P� if f��y� s� �� 
 then f��y� s� �� 
 too� These facts

imply that problems  and � are equivalent�

Clearly� problems � and � are equivalent�

From the de�nition of � �since it is su�ciently small� and using Lemma ���� one

can verify that problems � and � are equivalent�

Problem � is a special case of problem �� Since problem 	 is NP�complete� from

the above chain of arguments we conclude that problem � is NP�hard�

Theorem ���� Problem � is NP
complete�

Proof� The answer to problem � is in the a�rmative i� the answer to the decision

problem in the statement of Lemma ���	 is in the a�rmative� So� from Lemma ���	

we conlcude that problem � is in NP� From Theorem ����� this shows that problem �

is NP�complete�
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Theorem ���� Problem � is NP
complete�

Proof� Problems � and � are clearly equivalent� this result follows from Theorem �����

Theorem ���� Both problems � and � are NP
complete�

Proof� Problems � and � are both equivalent to problem �� so this result follows from

Theorem ���
�

Theorem ���� Given an integer square matrix D� the decision problem �is D not

copositive �� is NP
complete�

Proof� The decision problem �is D not copositive (� is equivalent to problem �� hence

this result follows from Theorem �����

Can We Check Local Minimality E�ciently

In Unconstrained Minimization Problems 	

Let ��x� be a real valued smooth function de�ned on Rn� Consider the unconstrained

problem

minimize ��x� � ������

A necessary condition for a given point �x � Rn to be a local minimum for ������ is

�see Appendix ��

r���x� � 
� H����x�� is PSD ������

where H����x�� is the Hessian matrix �the matrix of second order partial derivatives�

of ��x� at �x� A su�cient condition for �x to be a local minimum for ������ is

r���x� � 
� H����x�� is positive de�nite� ����	�

Both conditions ������ and ����	� can be checked very e�ciently� If ������ is satis�ed�

but ����	� is violated� there are no simple conditions known to check whether or not �x

is a local minimum for ������� Here� we investigate the complexity of checking whether

or not a given point �x is a local minimum for ������� and that of checking whether ��x�

is bounded below or not over Rn�

As before� let D � �dij� be an integer square symmetric matrix of order n� Con�

sider the unconstrained problem�

minimize h�u� � �u�� � � � � � u
�
n�D�u�� � � � � � u

�
n�

T �����

Clearly� ����� is an instance of the general unconstrained minimization problem �������

Consider the following decision problems�

Problem �
� Is �u � 
 not a local minimum for ����� (

Problem ��� Is h�u� not bounded below on Rn (
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We have� for i� j � � to n

�h�u�

�uj
� �uj

�
�u�� � � � � � u

�
n�D�j

	
��h�u�

�ui�uj
� �uiujdij � i �� j

��h�u�

�u�j
� ��u�� � � � � � u

�
n�D�j � �u�j djj

where D�j is the jth column vector of D� So� �u � 
 satis�es the necessary conditions

for being a local minimum for ������ but not the su�cient condition given in ����	��

Using the transformation xj � u�j � j � � to n� we see that ����� is equivalent to

������� So problem � and �
 are equivalent� Likewise� problems � and �� are equivalent�

By Theorem ����� we conclude that both problems �
 and �� are NP�hard� Thus� even
in the unconstrained minimization problem� to check whether the objective function is

not bounded below� and to check whether a given point is not a local minimum� may

be hard problems in general� This also shows that the problem of checking whether a

given smooth nonlinear function �even a polynomial� is or is not locally convex at a

given point� may be a hard problem in general�

What Are Suitable Goals for Algorithms in Nonconvex NLP 	

Much of nonlinear programming literature stresses that the goal for algorithms in

nonconvex NLPs should be to obtain a local minimum� Our results here show that in

general� this may be hard to guarantee�

Many nonlinear programming algorithms are iterative in nature� that is� beginning

with a initial point x�� they obtain a sequence of points fxr � r � 
� �� � � �g� For some of

the algorithms� under certain conditions� it can be shown that the sequence converges

to a KKT point for the original problem� �a KKT point is a feasible solution at which

the �rst order necessary conditions for a local minimum� ������� hold�� Unfortunately�

there is no guarantee that a KKT point will be a local minimum� and our results point

out that in general� checking whether or not it is a local minimum may be a hard

problem�

Some algorithms have the property that the sequence of points obtained is ac�

tually a descent sequence� that is� either the objective function� or a measure of the

infesibility of the current solution to the problem� or some merit function or criterion

function which is a combination of both� strictly decreases along the sequence� Given

xr� these algorithms generate a yr �� 
 such that the direction xr��yr� � �� 
� is a de�

scent direction for the functions discussed above� The next point in the sequence xr��

is usually taken to be the point which minimizes the objective or criterion function

on the half�line fxr � �yr � � �
� 
g� obtained by using a line minimization algorithm�

On general nonconvex problems� these methods su�er from the same di�culties� they

cannot theoretically guarantee that the point obtained at termination is even a local
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minimum� However� it seems reasonable to expect that a solution obtained through a

descent process is more likely to be a local minimum� than a solution obtained purely

based on necessary optimality conditions� Thus a suitable goal for algorithms for non�

convex NLPs seems to be a descent sequence converging to a KKT point� Algorithms�

such as the sequential quadratic programming methods discussed in Section ����� and

those discussed in Chapter �
� reach this goal�

���� Exercises

�� Let ��x� be a convex function de�ned on Rn� which is known to be unbounded

below on Rn� Does there exist a half�line along which ��x� diverges to �� ( Either

prove that it does� or construct a counterexample� Does the answer change if ��x� is

known to be a di�erentiable convex function (

��� Consider the problem
Minimize ��x�

Subject to Ax �� b

where A is a matrix of order m�n� and ��x� is a convex function� Suppose it is known

that ��x� is unbounded below in this problem� Does there exist a feasible half�line along

which ��x� diverges to �� ( Either prove that it does� or construct a counterexample�

Does the answer change if ��x� is a di�erentiabl convex function (

��� If the data in the LCP �q�M� satis�es

i� M �MT �
� 
� and

ii� q �MT z �� 
� z �� 
 is feasible�

prove that the complementary pivot algorithm will terminate with a solution when

applied on the LCP �q�M��

�Philip C� Jones ������

��� LetGj be the set
�
�w� z� � w�Mz � q� w �

� 
� z �� 
� wizi � 
 for all i �� j
�
� and

let G �
S
�Gj � j � � to n�� If M is PSD or a P �matrix� prove that G is a connected

subset of Rn� If �q�M� is the LCP corresponding to the following quadratic program�

show that G is not connected�

minimize cx� �
�x

TDx

subject to 
 �� x �� u

where D �

��������� �� ��
�� �	 ��
�� �� �

�������� u �

������� �

�

�


�������� cT �

������� �
�
	

��������

�W� P� Hallman and I� Kaneko ����	��



���
� Exercises ���

��� Prove that the complementary pivot algorithm will process the LCP �q�M� if M

is a Z�matrix�

�R� Saigal �������

���� Let fA��� � � � � A�n��g be a linearly independent set of column vectors in Rn� Let

x � fy�� � � � � yrg be another �nite set of column vectors in Rn� and let b � Rn be

another given column vector� It is required to choose A�n � x so that the minimum

distance from b to PosfA��� � � � � A�ng is a small as possible� Develop an e�cient algo�

rithm for doing it�

���� Let cM �

����� �
� ��

��� �  q �

�����
��
��� �

Show that the LCP � q�cM� has a solution� However� show that all the variants of the

complementary pivot algorithm discussed in this Chapter are unable to �nd a solution

to this LCP � q�cM��

���� Let �P � be a linear programming problem� and �Q� the corresponding linear

complementary problem as obtained in Section ���� It has been suggested that the

sequence of solutions generated when the LCP� �Q�� is solved by the complementary

pivot method� is the same as the sequence of solutions generated when the LP� �P �� is

solved by the self�dual parametric algorithm �see Section ���� of ������� Discuss� and

examine the similarities between the self�dual parametric algorithm applied to �P � and

the complementary pivot method applied on �Q��

���� Let

M �

����������
� � � �
� � � �

�� � 	 ��
� �� � �

���������� � q �

����������
��
�
�
�

���������� �

i� Prove that M is strictly copositive�

ii� Show that the LCP �q�M� has an in�nite number of complementary feasible so�

lutions�

���� Given a square matrix M of order n� let K�M� denote the union of all the

complementary cones in C�M�� Prove thatK�M� is convex i�K�M� � fq � q�Mz �� 
�

for some z �� 
g�
�B� C� Eaves ������

��� Let a�� � � � � an� b be positive integers satisfying b � maxfa�� � � � � ang� Let
q�n� �� � �a�� � � � � an��b� b�T



��� Chapter �� The Complementary Pivot Algorithm

M�n� �� �

���������������

 


�In ���
���


 

eTn �� 


�eTn 
 ��

���������������
where In is the identity matrix of order n� and eTn is the row vector in Rn all the entries

in which are ���� Consider the LCP �q�n����M�n���� of order n��� Are any of the

algorithms discussed in this chapter able to process this LCP ( Why ( If not� develop

an algorithm for solving this LCP using the special structure of the matrix M �

���� Consider the quadratic program

minimize �x� � �x� �
�
� ��x

�
� � �x�x� � �x���

subject to �x� � �x� � x� � �

�x� � �x� � x� � 

xj �� 
 for all j �

Formulate this program as an LCP of order � and write down this LCP clearly� Does

a solution of this LCP lead to a solution of this quadratic program ( Why (

It is required to solve this LCP using the variant of complementary pivot method

in which the column vector of the arti�cial variable is ��� �� �� �T � Obtain the canonical

tableau corresponding to the initial almost complementary basic vector� and then carry

out exactly one more pivot step in this algorithm�

���� Suppose B �
� 
� and the linear programs

i� Maximize cTx� subject to Ax �� b� x �� 
 and

ii� Minimize bT y� subject to �A�B�T y �� c� y �� 


have �nite optimum solutions� Show that the complementary pivot algorithm termi�

nates with a complementary feasible solution for the LCP �q�M� with

q �

����c
b

��� � M �

��� 
 �A� B�T

�A 


��� �

�G� B� Dantzig and A� S� Manne �����

���� Let """ be a nonenmpty closed convex subset of Rn� For each x � Rn let P��x�

denote the nearest point in """ to x in terms of the usual Euclidean distance� Prove the

following �
�i� jjP��x�� yjj� �� jjx� yjj� for all x � Rn� y � """ �

�ii� jjP��x�� P��y�jj� �� jjx� yjj� for all x� y � Rn �

�Y� C� Cheng �����



���
� Exercises ���

���� Let G and H be symmetric PSD matrices of order n and m respectively� Consider

the following quadratic programs �

maximize cx� �
�
xTGx� �

�
yTHy

subject to Ax�Hy �� b

x �
� 


and
minimize bT y � �

�x
TGx� �

�y
THy

subject to Gx� AT y �� cT

y �� 


Prove that if both the problems are feasible� then each has an optimal solution� and

the optimum objective values are equal� moreover� the optimal solutions can be taken

to be the same�

�R� W� Cottle ���	� and W� S� Dorn ������

���� Let M be a nondegenerate square matrix of order n� Let d � Rn� d � 
 be

such that for every J � f�� � � � � ng� if dJ � �dj � j � J�� MJJ � �mij � i� j � J��

then �MJJ�
��dJ �

� 
� Then prove that if the LCP �q�M� is solved by the variant of

the complementary pivot algorithm discussed in Section ����� with �d as the original

column vector for the arti�cial variable z�� it will terminate with a solution of the LCP

after at most �n� �� pivot steps�

�J� S� Pang and R� Chandrasekaran �������

���� Consider the process of solving the LCP �q�M� by the complementary pivot

algorithm� Prove that the value of the arti�cial variable z� decreases as the algorithm

progresses� whenever M is either a PSD matrix or a P �matrix or a P��matrix� until

termination occurs�

�R� W� Cottle ���	� and B� C� Eaves ������

���� Consider the process of solving the LCP �q�M� by the variant of the comple�

mentary pivot algorithm discussed in Section ����� with the column vector d � 
 as

the initial column vector associated with the arti�cial variable z�� Prove that in this

process� there exists no secondary ray for all d � 
 � q i� M is an L��matrix� Using

this prove that the variant of the complementary pivot algorithm discussed in Section

����� with the lexico minimum ratio rule for the dropping variable section in each step�

will always terminate with a complementary solution for all q� no matter what d � 


is used� i� M is an L��matrix�

�B� C� Eaves ������
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���� Consider the convex quadratic programming problem

minimize Q�x� � cx� �
�x

TDx

subject Ax �
� b

x �
� 


where D is a symmetric PSD matrix� If the problem has alternate optimum solution

prove the following �

�i� the set of optimum solutions is a convex set�

�ii� �y � x�TD�y � x� � 
 and actually �y � x�TD � 
 for every pair of optimum

solutions x and y� of the problem�

�iii� the gradient vector of Q�x�� rQ�x� is a constant on the set of optimum solutions�

�iv� the set of optimum solutions is the intersection of the constraint set with some

linear manifold�

�M� Frank and P� Wolfe ��
�����

���� Let A�� B�� two given matrices of orders m � n each� be the loss matrices in

a bimatrix game problem� Prove that the problem of computing a Nash equilibrium

strategy pair of vectors for this bimatrix game� can be posed as the LCP �q�M�� where

q �

����em
en

��� � M �

��� 
 A
BT 


���
where A � 
 and B � 
� Prove �use Lemma ���� that the complementary pivot

algorithm will terminate with a solution when applied on this LCP�

�B� C� Eaves ������

��� Consider the LCP �q�M� of order n� Let C� be the set of feasible solutions of

the system
w �Mz �q

w� z ��


wjzj �
� j � � to n�

If q is nondegenerate in the LCP �q�M� �i�e�� if in every solution �w� z� of the system

of linear equations �w�Mz � q�� at least n variables are nonzero� prove that C� is a

disjoint union of edge paths� What happens to this result if q is degenerate (

���� In Merrill�s algorithm for computing a Kakutani �xed point discussed in Section

������ we de�ned the piecewise linear map in the top layer of the special triangulation

of Rn � �
� �� by de�ning for any vertex V �

��� v
�

���� f�V � �

��� f�v�
�

��� where f�v�

is an arbitrary point chosen from the set F�v�� Examine the advantages that could

be gained by de�ning f�v� to be the nearest point �in terms of the usual Euclidean

distance� in the set F�v� to v�



���
� Exercises ��

���� Let M � q be given matrices of orders n�n and n�� respectively� If yTMy�yT q

is bounded below on the set fy � y �
� 
g� prove that the LCP �q�M� has a comple�

mentary solution� and that a complementary solution can be obtained by applying the

complementary pivot algorithm on the LCP of order �n� �� with data

q �

��� q
qn��

��� � M �

��� M e
�eT 


���
where qn�� � 
� with the initial column vector associated with the arti�cial variable

z� to be ���� � � � ���� 
� � Rn���

�B� C� Eaves ������

���� Consider the general quadratic program ������ If Q�x� is unbounded below on

the set of feasible solutionsK of this problem� prove that there exists a feasible half�line

through an extreme point of K along which Q�x� diverges to ���

�B� C� Eaves ������

���� Let M be a given square matrix of order n� Let fB��� � � � � B�rg be a given set

of column vectors in Rn� It is required to check whether xTMx is �� 
 for all x �
PosfB��� � � � � B�rg� Transform this into the problem of checking the copositivity of a

matrix�

Can the problem of checking whether xTMx is �� 
 for all x � fx � Ax �� 
g where
A is a given matrix of order m� n� be also transformed into the problem of checking

the copositivity of a matrix ( How (

���� �Research Problem� Application to pure 
�� Integer Programming

Consider the pure 
�� integer programming problem

minimize cx

subject to Ax � b

Dx �
� d

xj � 
 or � for all j

where x � Rn� and c� A� b� D� d are the data in the problem� In the interval 
 �� xj �� ��

the function xj���xj� is non�negative� and is zero i� xj is either 
 or �� Using this we

can transfom the above discrete problem into a continuous variable optimization by a

penalty transformation as given below

minimize cx� 	�
nP

j��

xj��� xj��

subject to Ax � b

Dx �� d


 �� xj �� �� j � � to n
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where 	 is a large positive penalty parameter� This is now a quadratic programming

problem �unfortunately� it is a concave minimization problem and may have lots of

local minima� in fact it can be veri�ed that every integer feasible solution is a local

minima for this problem�� Check whether any of the algorithm for LCP discussed here

are useful to approach the integer program through the LCP formulation of the above

quadratic program�

���� Consider the system

w �Mz � q

w� z �� 


where M is a given square matrix of order n� Let C� be the set of feasible solutions of

this problem satisfying the additional conditions

wjzj � 
� j � � to n �

Assuming that q is nondegenerate in this system �i�e�� that in every solution �w� z� of

the system of equations �w�Mz � q�� at last n variables are non�zero�� study whether

C� can contain an edge path terminating with extreme half�lines at both ends� when

M is a copositive plus matrix�

���� �Research Problem� � Consider the general quadratic programming problem

����� of Section ������ and let K be its set of feasible solutions�

Develop necessary and su�cient conditions for Q�x� to be unbounded below on

K� Develop an e�cient procedure to check whether Q�x� is unbounded below on K�

In ������ the objective function is said to be strongly unbounded below� if it

remains unbounded below whatever the vector c may be� as long as all the other data

in the problem remains unchanged� Develop necessary and su�cient conditions for

and an e�cient procedure to check this strong unboundedness�

Extend the enumeration procedure for solving the general quadratic programming

problem under the assumption of a bounded feasible set discussed in Section ���� to

the case when K is unbounded�

The method discussed in Section ��� for solving this problem� may be viewed as a

total enumeration method �enumerating over all the faces of K�� Develop an e�cient

method for computing a lower bound for Q�x� onK� and using it� develop a branch and

bound method for solving this problem �this will be an e�cient partial enumeration

method�� �See B� C� Eaves ����� for some useful information on this problem��

���� Let M be a square matrix of order n which is D � E where

D is symmetric and copositive plus

E is copositive�



���
� Exercises ���

Let q � Rn� If the system Dx � ET y �
� �q� y �

� 
 is feasible� prove that the com�

plementary pivot algorithm will terminate with a solution when applied on the LCP

�q�M��

�P� C� Jones �������

���� Let � �w� �z� be the solution of the LCP �q�M��

i� If M is PSD� prove that �zT q �� 
�

ii� If the LCP �q�M� comes from an LP prove that �zT q � 
�

��� Prove that if M is a copositive plus matrix of order n� and q � Rn then the

optimum objective value in the following quadratic program is zero� if the problem has

a feasible solution�
minimize Q�x� � xT �Mx� q�

subject to Mx �q �� 


x �
� 


���� In Section ������ we have seen that if a quadratic function Q�x� is bounded

below on a convex polyhedron� then Q�x� has a �nite global minimum point on that

polyhedron� Does this result hold for a general polynomial function (

�Hint� Examine the fourth degree polynomial function f�x� � x����x�x����� de�ned

over R���

�L� M� Kelly�

���� Apply the Complementary pivot method on the LCP with the following data�

a� q �

���������
�	
��

������� � M �

������� � � �
� � �
� � �

�������
b� q �

���������
��
��

������� � M �

������� � � 

�� �� 

�� �� ��

�������
c� q �

���������
��
��

������� � M �

��������� � ��
� �� �

�� � ��

������� �

Verify that �z�� z�� z�� is a complementary feasible basic vector for �c��

Also� solve �a� by the variant of the complementary pivot method discussed in

Section ����
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Chapter �

SEPARATION PROPERTIES�

PRINCIPAL PIVOT TRANSFORMS�

CLASSES OF MATRICES

In this chapter we present the basic mathematical results on the LCP� Many of these

results are used in later chapters to develop algorithms to solve LCPs� and to study

the computational complexity of these algorithms� Here� unless stated otherwise� I

denotes the unit matrix of order n� M is a given square matrix of order n� In tabular

form the LCP �q�M� is

w z q

I �M q

w �
� �� z �� �� wT z � � �����

De�nition� Subcomplementary Sets of Column Vectors

A vector �y�� � � � � yi��� yi��� � � � � yn� where yr � fwr� zrg for r � �� � � � � i��� i��� � � � � n

is known as a subcomplementary vector of variables for the LCP ������ The com	

plementary pair �wi� zi� is known as the left�out complementary pair of variables

in the subcomplementary vector �y�� � � � � yi��� yi��� � � � � yn�� Let A�j be the column

vector associated with yj in ������ The ordered set �A��� � � � � A�i��� A�i��� � � � � A�n� is

known as a subcomplementary set of column vectors for the LCP ������ and

�I�i��M�i� is the left�out complementary pair of column vectors in this sub	

complementary set of column vectors�

Sometimes we have to refer to subcomplementary sets which are complementary

sets with several elements missing� For this� we adopt the following notation� Let

J � f�� � � � � ng� J �� �� J a proper subset� The vector �yj 
 j � J� where yj � fwj � zjg
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for all j � J is said to be a subcomplementary vector of variables for ����� associated

with the subset J� Let tj be the complement of yj and let A�j be the column vector

associated with yj in ������ and let B�j be the complement of A�j � for j � J� Then

fA�j 
 j � Jg is said to be a subcomplementary set of column vectors associated with

J� and fB�j 
 j � Jg is its complement� The subcomplementary vector �tj 
 j � J� is

the complement of the subcomplementary vector �yj 
 j � J��

��� LCPs ASSOCIATED WITH PRINCIPALLY

NONDEGENERATE MATRICES

If y � �y�� � � � � yn� is a complementary vector of variables for ������ de�ne

Z�y� � fj 
 j such that yj � zjg

W�y� � fj 
 j such that yj � wjg �
�����

Theorem ��� If y is a complementary vector of variables for ������ it is a com�

plementary basic vector i� the principal subdeterminant of M corresponding to the

subset Z�y� is nonzero�

Proof� Let the cardinality of Z�y� be r� Let A be the complementary matrix associated

with y� For j �W�y�� A�j � I�j and for j � Z�y�� A�j � �M�j � If r � �� A � I and its

determinant is �� If r � �� by expanding the determinant of A in terms of its elements

in the jth column for each j �W�y� in some order� we see that the determinant of A

is ����r �principal subdeterminant of M corresponding to the subset Z�y��� Since y is

a complementary basic vector i the determinant of A is nonzero� the result follows�

As an example� let n � �� and consider the LCP �q�M�� Let y � �w�� z�� w�� z��

be a complementary vector of variables for this problem� The corresponding comple	

mentary matrix is ����������
� �m�� � �m��

� �m�� � �m��

� �m�� � �m��

� �m�� � �m��

����������
and its determinant is determinant

����m�� �m��

�m�� �m��

���� which is non	zero i the princi	
pal subdeterminant ofM corresponding to the subset Z�y� � f�� �g is non	zero� Thus�

in this problem� y is a complementary basic vector i the principal subdeterminant of

M corresponding to the subset Z�y� is non	zero�

Corollary ��� Every complementary vector of variables is a basic vector for �����

i� M is a nondegenerate matrix� This follows from Theorem ��� and the de�nition of

nondegeneracy of a matrix�
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Corollary ��� The complementary cone associated with the complementary vector

of variables y for ����� has a nonempty interior i� the principal subdeterminant of M

corresponding to the subset Z�y� is nonzero�

Proof� If A is the corresponding complementary matrix� the complementary cone is

Pos�A�� and it has nonempty interior i the determinant of A is nonzero� So the result

follows from Theorem ����

Corollary ��� Every complementary cone in the class C�M� has a nonempty interior

i� M is a nondegenerate matrix� This follows from Corollary ��	�

Theorem ��� The LCP �q�M� has a �nite number of solutions for each q � Rn i�

M is a nondegenerate matrix�

Proof� Let � �w� �z� be a solution of the LCP �q�M�� Let A�j � �M�j if �zj � �� I�j
otherwise� and �j � �zj if �zj � �� �wj otherwise� Then �A��� � � � � A�n� is a complementary

set of column vectors and q �
Pn

j�� �jA�j � In this manner each solution of the

LCP �q�M� provides an expression of q as a nonnegative linear combination of a

complementary set of column vectors� There are only �n complementary sets of column

vectors� If q � Rn is such that the LCP �q�M� has an in�nite number of distinct

solutions� there must exist a complementary set of column vectors� say �A��� � � � � A�n��

such that q can be expressed as a nonnegative linear combination of it in an in�nite

number of ways� So there exist at least two vectors �t � ��t�� � � � � �
t
n�

T �
� �� t � �� �

such that �� �� �� and q � A�� � A��� So A��� � ��� � �� and since �� ��

��� fA��� � � � � A�ng is linearly dependent� By Theorem ���� this implies that M is

degenerate�

Conversely suppose M is degenerate� So� by Theorem ���� there exists a com	

plementary set of column vectors� say fA��� � � � � A�ng which is linearly dependent� So

there exists a � � ���� � � � � �n� �� � such that
Pn

j�� �jA�j � �� Let � � Maximum

fj�j j 
 j � � to ng� Since � �� �� � � �� De�ne q � �
Pn

j��A�j � Let �y�� � � � � yn� be the

complementary vector associated with �A��� � � � � A�n�� De�ne a solution �w���� z����

by
Complement of yj � �� j � � to n

yj � � � ��j � j � � to n �
�����

Then �w���� z���� is a solution of the LCP �q�M� for each � �� � �� �� and since � �� ��

each of these solutions is distinct� So if M is degenerate� there exist a q � Rn such

that the LCP �q�M� has an in�nite number of distinct solutions�
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Example ���

Consider the following LCP

w� w� z� z�

� � �� �� ��

� � �� �� ��

w�� w�� z�� z� �� �� w�z� � w�z� � �

We have
q � �������T � ��M��� � ��M���

� � ��M���� ��M��� �

These facts imply that �w�� w�� z�� z�� � ��� �� ���� ����T is a complementary solution

to this LCP for all � �� � �� ��

The set of q for which the number of complementary solutions for the LCP �q�M�

is in�nite� is always a subset of the union of all degenerate complementary cones�

Also if the LCP �q�M� has an in�nite number of complementary solutions� q must be

degenerate in it �that is� q can be expressed as a linear combination of �m� �� or less

column vectors of �I 
 �M���

Result ��� If q is nondegenerate in the LCP �q�M� of order n �that is� if in

every solution to the system of equations w �Mz � q� at least n of the variables in

the system are non	zero�� every complementary solution of the LCP �q�M� must be

a complementary BFS� and so the number of complementary solutions to the LCP

�q�M� is �nite and �� �
n�

Proof� In every complementary solution of the LCP �q�M� at most n variables can

be positive by the complementarity constraint� and hence exactly n variables have to

be positive by the nondegeneracy of q� that is one variable from every complementary

pair of variables must be strictly positive� Consider a complementary solution �w� z�

in which the positive variable from the complementary pair fwj � zjg is yj say� for j � �

to n and suppose yj has value yj � � in the solution� Let A�j � I�j if yj � wj � or

�M�j otherwise� So

q �
nX

j��

yjA�j �

If fA��� � � � � A�ng is linearly dependent� let the linear dependence relation be

� �
nX

j��

�jA�j
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where � � ���� � � � � �n�
T �� �� Suppose �� �� �� Let � � ��y�	���� then y� � ��� � ��

From the above two equations� we have

q �
nX

j��

�yj � ��j�A�j �
nX

j��

�yj � ��j�A�j

that is� q is expressed as a linear combination of fA��� � � � � A�ng which is a subset of

n� � columns of �I
��� �M�� contradicting the nondegeneracy of q� So fA��� � � � � A�ng

must be linearly independent� that is A � �A��
��� ��

��� A�n� is a complementary basis�

and hence the representation of q as a linear combination of the columns of A is unique�

and �w� z� is a complementary BFS� Thus under the nondegeneracy assumption of q�

every complementary solution for the LCP �q�M� must be a complementary BFS�

Since the total number of complementary bases is �� �
n� this implies that there are at

most �n complementary solutions in this case�

��� PRINCIPAL PIVOT TRANSFORMS

Let y � �yj� be a complementary basic vector associated with the complementary

basis A for ������ Let tj be the complement of yj for j � � to n �i� e�� tj � wj if

yj � zj � tj � zj if yj � wj�� Let B�j be the complement of A�j for j � � to n� and

B � �B��� � � � � B�n�� Obtain the canonical tableau of ����� with respect to the basic

vector y� and after rearranging the variables suppose it is

basic vector y� � � � yn t� � � � tn

y I �D q �����

Then the matrix D is known as the principal pivot transform �PPT in abbrevi	

ation� of M associated with the complementary basic vector y or the corresponding

complementary basis A of ������ Clearly D � �A��B� Also ����� can be viewed as the

system of equations of an LCP in which the complementary pairs are �yj � tj�� j � � to

n� Remembering that the variables in ����� are just the variables in ����� arranged in

a dierent order� we can verify that the canonical tableau of ����� with respect to its

basic vector �w�� � � � � wn� is ������ This clearly implies that M is a PPT of D� Hence

the property of being a PPT is a mutual symmetric relationship among square matrices

of the same order�
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Example ���

Consider the LCP �q�M� where

M �

����������
�� �� � ��
�� � �� ��
� �� � ��
� �� � �

���������� �

The LCP �q�M� is

w� w� w� w� z� z� z� z�

� � � � � � � � q�

� � � � � �� � � q�

� � � � � � �� � q�

� � � � � � � �� q�

wj � zj �� �� wjzj � � for all j�

�z�� w�� z�� w�� is a complementary basic vector for this problem� The canonical tableau

with respect to it is

z� w� z� w� w� z� w� z�

� � � � � � � � q��

� � � � �� �� � � q��

� � � � � �� �� �� q��

� � � � � � � �� q��

Thus the matrix

D �

����������
�� �� � ��
� � �� ��
� � � �
� �� � �

����������
is a PPT of M and vice versa�

Each complementary basic vector for ����� leads to a PPT of M � We thus get a

class of matrices containing M � such that each matrix in the class is a PPT of each

other matrix in the class� Some of the matrices in the class may be equal to the others

as matrices �for example� it can be veri�ed that every PPT of I is equal to I�� This

class of matrices is known as the principal pivot transform class of M �
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Single and Double Principal Pivot Steps

If y � �y�� � � � � yn� is a complementary basic vector for ������ then yr can be replaced in

this basic vector by its complement� to yield another complementary basic vector for

������ i the rth diagonal element in the PPT ofM corresponding to y is nonzero� If this

condition is satis�ed� the pivot operation of replacing yr by its complement� is known

as a single principal pivot step in the rth position in the complementary

basic vector y�

Suppose for r �� s� the rth and sth diagonal elements in M � � �m�
ij�� the PPT of

M corresponding to the complementary basic vector y� are both zero� Then it is not

possible to make a single principal pivot step either in the rth position� or in the sth

position� in the complementary basic vector y� However� supposem�
rs �� � andm

�
sr �� ��

In this case we can perform two consecutive pivot steps� in the �rst one replacing yr
in the basic vector by the complement of ys� and in the second one replacing ys in the

resulting basic vector by the complement of yr� In the canonical tableau obtained at

the end of these two pivot steps� the column vector associated with the complement of

ys is I�r and the column vector associated with the complement of yr is I�s� So� now

interchange rows r and s in the canonical tableau� After this interchange it can be

veri�ed that in the new canonical tableau the column vector associated with the basic

variable from the jth complementary pair� in the new complementary basic vector� is

I�j � for all j �including j � r and s�� This operation �one pivot step in position �r� s�

replacing yr in the basic vector by the complement of ys� followed by another pivot step

in position �s� r� replacing ys in the resulting basic vector by the complement of yr�

followed by an interchange of rows r and s in the resulting canonical tableau� is called

a double principal pivot step in positions r and s in the complementary

basic vector y� Clearly� this double principal pivot step in positions r and s can

only be carried out if the order two determinant

���m�
rr m�

rs

m�
sr m�

ss

��� �� �� If this order two

determinant is nonzero� and one of its diagonal entries� say m�
rr� is nonzero� carrying

out the double principal pivot in positions r and s in the complementary basic vector

y� can be veri�ed to have exactly the same eect as carrying out two single principal

pivot steps� �rst in position r in y� and then in position s in the complementary basic

vector resulting from the �rst� In general� in the algorithms discussed in the following

chapters� a double principal pivot in positions r and s will only be performed if the

diagonal entry in the PPT of M in at least one of the two positions r and s is zero

�i� e�� either m�
rr � � or m

�
ss � � or both��
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Example ���

Consider the following LCP

basic

variable w� w� w� w� z� z� z� z�

w� � � � � �� � �� �� q�

w� � � � � �� � � � q�

w� � � � � � � �� �� q�

w� � � � � � �� � � q�

wj � zj �� �� and wjzj � � for all j

In this problem� in the complementary basic vector w� single principal pivot steps

are only possible in positions � and �� Carrying out a single principal pivot in the

complementary basic vector w in position � leads to the following

basic

variable z� w� w� w� w� z� z� z�

z� � � � � �� �� � � q��

w� � � � � �� �� � � q��

w� � � � � � � �� �� q��

w� � � � � � � � �� q��

In the above canonical tableau� we have also rearranged the column vectors so that the

basic variables� and the nonbasic variables� appear together and in their proper order�

We can make a double principal pivot step in the complementary basic vector w� in

positions �� � in this problem� because the determinant of the �� � matrix

��� � �
�� �

���
is non	zero� Carrying out this double principal pivot step requires replacing the basic

variable w� in the basic vector �w�� w�� w�� w�� by z�� then replacing the basic variable

w� in the resulting basic vector �w�� z�� w�� w�� by z�� and �nally interchanging rows �

and � in the resulting canonical tableau� This is carried out below�
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basic

variable w� w� w� w� z� z� z� z�

w� � � � � �� � �� � q��

z� � � � � �� � � � q��

w� � � � � �� � �� � q��

w� � � � � � �� � � q��

w� � � � � �� � � � q���

z� � � � � �� � � � q���

w� � � � � �� � �� � q���

z� � � � �� �� � �� � q���

w� � � � � �� � � � q���

z� � � � �� �� � �� � q���

w� � � � � �� � �� � q���

z� � � � � �� � � � q���

Block Principal Pivoting

Consider the LCP �q�M�� ������ Let J � f�� � � � � ng be such that MJJ� the principal

submatrix of M corresponding to the subset J� is nonsingular� De�ne the complemen	

tary vector y � �yj� by

yj �

�
wj � for j �� J
zj � for j � J

and let A be the complementary matrix corresponding to y� Since MJJ is nonsingular�

A is a basis� Let tj be the complement of yj for each j � � to n� and let t � �tj��

Multiplying ����� on the left by A�� and rearranging the variables leads to the LCP

y t

I �D q�

y� t � �� yT t � �

where
DJJ � �MJJ�

��� D
JJ
� ��MJJ�

��M
JJ

D
JJ
�M

JJ
�MJJ�

��� D
JJ
�M

JJ
�M

JJ
�MJJ�

��M
JJ

q�J � ��MJJ�
��qJ� q

�

J
� q

J
�M

JJ
�MJJ�

��qJ �
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Here J � f�� � � � � ng n J� and M
JJ
is the submatrix �mij 
 i � J� j � J�� etc�� and

qJ � �qj 
 j � J�� etc� D is of course the PPT of M corresponding to the complemen	

tary basic vector y� The above LCP �q�� D� is said to have been obtained from the

LCP �q�M� in ����� by a block principal pivot step in positions J �or by block

principal pivoting on �MJJ� in ������

Corollary ��
 If M is a nondegenerate matrix� a single principal pivot step in any

position is always possible in every complementary basic vector�

Proof� Follows from Corollary ��� and the argument used in Theorem ����

Corollary ��� A square matrix M of order n is nondegenerate �that is� principally

nondegenerate to be speci�c� i� every diagonal entry in every PPT of M is non�zero�

Proof� Follows from Corollary ����

Theorem ��� If M is a PD or a P �matrix� or a nondegenerate matrix in general


starting with a complementary basic vector y� � �y��� � � � � y
�
n�� any other complemen�

tary basic vector y� � �y��� y
�
�� � � � � y

�
n� for ������ can be obtained by performing a

sequence of single principal pivot steps�

Proof� In these cases� by Corollary ��� every complementary vector of variables is a

complementary basic vector� Hence if y� and y� have n� r common variables� each of

the variables in y� which is not in y�� can be replaced by its complement� to lead to

y� after r single principal pivot steps�

Theorem ��
 All PPTs of a nondegenerate matrix are nondegenerate�

Proof� Let M be nondegenerate� Let y� �y be distinct complementary vectors of vari	

ables associated with the complementary matrices A� �A respectively in ������ Since M

is nondegenerate� A is a complementary basis� Let ����� be the canonical tableau of

����� with respect to y� So D is the PPT of M corresponding to y� We will now prove

that D is nondegenerate� Look at ������ The complementary matrix corresponding to

the complementary vector of variables �y in ����� is A�� �A� and this matrix is nonsingu	

lar since both A and �A are� Hence �y is a complementary basic vector for ������ Since �y

is an arbitrary complementary vector of variables� this implies that all complementary

vectors of variables in ����� are basic vectors�

Hence by Corollary ���� D is nondegenerate�

Theorem ��� All PPTs of a P �matrix are P �matrices�

Proof� Let M � �mij� be a P 	matrix of order n� Consider a single principal pivot

step on ����� in any position� say position �� The pivot matrix corresponding to this

pivot step is P � which is the same as the unit matrix of order n� with the exception

that its �rst column vector is ���	m����m��	m��� � � � ��m�n	m���
T � Let M � be the
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PPT of M obtained after this pivot step� Let J � fj�� � � � � jrg � f�� � � � � ng� J �� ��

and let � be the principal subdeterminant of M � corresponding to the subset J� We

will now prove that � � �� We consider two cases separately�

Case �� � �� J� Let y � �y�� � � � � yn� where yj � wj if j �� J � f�g� or zj otherwise�

Let A� A be the complementary bases corresponding to y� in the original LCP �����

and in the canonical tableau for ����� obtained after the single principal pivot step

in position �� respectively� So A � PA� Let �� be the principal subdeterminant

of M corresponding to the subset f�g � J� We have � � ����r �determinant of

A� � ����r �determinant of PA� � ����r �determinant of P � �determinant of A� �

����r���	m�������r���� � ���	m��� � �� because m�� � � and �� � � since M is

a P 	matrix�

Case �� � � J� In this case let y � �y�� � � � � yn� where yj � zj if j � J n f�g�

or wj otherwise� Let A� A be the complementary bases corresponding to y� in the

original LCP ������ and in the canonical tableau for ����� obtained after the single

principal pivot step in position �� respectively� Then A � PA� Let �� be the prin	

cipal subdeterminant of M determined by the subset J n f�g� As in Case �� we have

� � ����r �determinant of A� � ����r �determinant of P � �determinant of A� �

����r���	m�������r���� � ���	m��� � �� since both ��� m�� are strictly positive

because M is a P 	matrix�

Hence the principal subdeterminant ofM � corresponding to the subset J is strictly

positive� This holds for all subsets J � f�� � � � � ng� So M � is itself a P 	matrix�

Thus the property of being a P 	matrix is preserved in the PPTs of M obtained

after a single principal pivot step on ������ By Theorem ��� any PPT of M can be

obtained by making a sequence of single principal pivot steps on ������ So� applying

the above result repeatedly after each single principal pivot step� we conclude that

every PPT of M is also a P 	matrix�

Theorem ��� If all the diagonal entries in every PPT of M are strictly positive�

M is a P �matrix�

Proof� By the hypothesis of the theorem all principal subdeterminants of M of order

� are strictly positive�

Induction Hypothesis� Under the hypothesis of the theorem� all principal subde	

terminants of M of order less than or equal to r are strictly positive�

We will now prove that under the hypothesis of the theorem� the induction hy	

pothesis implies that any principal subdeterminant of M of order r� � is also strictly

positive� Let �� be the principal subdeterminant of M corresponding to the subset

fj�� � � � � jr� jr��g � f�� �� � � � � ng� Carry out a single principal pivot step in position

jr�� in ����� and let M
� be the PPT of M obtained after this step� Since M � is a PPT

ofM it also satis�es the hypothesis of the theorem� So by the induction hypothesis� all

principal subdeterminants of M � of order r or less are strictly positive� and so �� the

principal subdeterminant of M � corresponding to the subset fj�� � � � � jrg� is � �� As in
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the proof of Theorem ��� we have � � ��	mjr���jr�� � that is �� � mjr���jr���� and

since mjr���jr�� � �� � � �� we have �� � �� So under the hypothesis of the theorem�

the induction hypothesis implies also that all principal subdeterminants of M of order

r�� are strictly positive� Hence by induction� all principal subdeterminants of M are

strictly positive� and hence M is a P 	matrix�

Corollary ��� The following conditions �i� and �ii� are equivalent

�i� all principal subdeterminants of M are strictly positive

�ii� the diagonal entries in every PPT of M are strictly positive�

Proof� Follows from Theorem ���� ����

Corollary ��� If M is a P �matrix� in making any sequence of single principal pivot

steps on ������ the pivot element will always be strictly negative�

Theorem ��� LetM � be a PPT ofM obtained after carrying out exactly one single

principal pivot step� Then M � is PD if M is PD� And M � is PSD if M is PSD�

Proof� Let M � �mij�� Let u � �u�� � � � � un�
T � Rn� De�ne v � �v�� � � � � vn�

T by

v �Mu � � � �����

Suppose M � � �m�
ij� is the PPT of M obtained after making a single principal pivot

step in ����� in position r� So mrr �� �� After this single principal pivot step in position

r� ����� becomes

�v�� � � � � vr��� ur� vr��� � � � � vn�
T �M ��u�� � � � � ur��� vr� ur��� � � � � un�

T � � � �����

For any u � Rn and v de�ned by ������ let 
 � �u�� � � � � ur��� vr� ur��� � � � � un��

� � �v�� � � � � vr��� ur� vr��� � � � � vn�� Since vr � Mr�u and mrr �� �� as u varies over

all of Rn� 
 also varies over all of Rn� Also� as u varies over all the nonzero points

in Rn� 
 does the same� Since ����� is obtained from ����� by a pivot step� they

are equivalent� So for any u � Rn and v de�ned by ������ ����� also holds� Now

uTMu � uT v � 
T � � 
TM �
� These facts imply that 
TM �
 �� � for all 
 � Rn i

uTMu �
� � for all u � Rn and 
TM �
 � � for all 
 �� � i uTMu � � for all u �� ��

Hence M is PD i M � is PD� And M � is PSD i M is PSD�

Theorem ��� Let M �� be a PPT of M obtained after carrying out exactly one

double principal pivot step� Then M �� is PD if M is PD� And M �� is PSD if M is PSD�

Proof� Let M � �mij�� Let u � �u�� � � � � un�
T � Rn� De�ne v � �v�� � � � � vn�

T by

������ Suppose M �� � �m��
ij� is the PPT of M obtained after making a double principal

pivot step in positions r and s� This implies that

� � determinant

����mss �msr

�mrs �mrr

��� �� � �
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as otherwise the double principal pivot step in positions r and s cannot be carried

out on ������ For any u � Rn and v de�ned by ����� de�ne 
 � �u�� � � � � us��� vs�

us��� � � � � ur��� vr� ur��� � � � � un�
T � � � �v�� � � � � vs��� us� vs��� � � � � vr��� ur� vr��� � � � � vn�

T �

Then after this double principal pivot step in positions r and s� ����� gets transformed

into

� �M ��
 � � � �����

Since ����� is obtained by performing two pivots on ������ they are equivalent� So for

any u � Rn and v de�ned by ������ ����� holds and we have uTMu � uT v � 
T � �


TM ��
� Also� since � �� �� as u varies over all of Rn� so does 
� and as u varies over

all nonzero points in Rn so does 
� These facts imply that 
TM ��
 �� � for all 
 � R
n

i uTMu �� � for all u � R
n and 
TM ��
 � � for all 
 �� � i uTMu � � for all u �� ��

Hence M �� is PD i M is PD� and M �� is PSD i M is PSD�

Theorem ��� If M is a PD matrix� all its PPTs are also PD�

Proof� By Theorem ��� when M is PD� every PPT of M can be obtained by carrying

out a sequence of single principal pivot steps on ������ By applying the argument

in Theorem ��� repeatedly after each single principal pivot step in the sequence� we

conclude that all PPTs of M are also PD� if M is�

Theorem ���	 IfM is PSD� any PPT of M can be obtained by making a sequence

of single or double principal pivot steps on ������ Also� all these PPTs of M are also

PSD�

Proof� Let y � �y�� � � � � yn� be a complementary basic vector of ������ Starting with

the complementary basic vector w� perform single principal pivot steps in position j for

as many j � Z�y� as possible in any possible order� If this leads to the complementary

basic vector y� we are done by repeated use of the result in Theorem ��� after each single

principal pivot step� Suppose y has not yet been obtained and no more single principal

pivot steps can be carried out in the remaining positions j � Z�y�� Let u � �u�� � � � � un�

be the complementary basic vector at this stage� Let U � fj 
 j such that uj �� yjg�

So U �� �� U � Z�y�� And for each j � U� we have uj � wj � yj � zj � Let tj denote

the complement of uj � j � � to n� Let the canonical tableau of ����� at this stage be

basic vector u�� � � � � un t�� � � � � tn q

u I �M � q� �����

M � is the PPT of M corresponding to U� it is PSD by repeated use of Theorem ����

We have �m�
jj � � for each j � U �as single principal pivot steps cannot be carried

out in these positions�� If U is a singleton set� this would imply that the set of column

vectors corresponding to y in ����� is linearly dependent� a contradiction� since y is a

complementary basic vector� So cardinality of U is �� �� Let r � U� Since m
�
rr � � and
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M � is PSD� by Result ��� we have m�
ri�m

�
ir � � for all i � � to n� Search for an s � U

such that m�
sr �� �� If an s like this does not exist� again the set of column vectors

corresponding to y in ����� is linearly dependent� and y is not a complementary basic

vector� a contradiction� So there always exists an s � U such that m�
sr �� �� Since

m�
rs �m�

sr � �� m
�
rs �� � too� So the determinant���m�

rr m�
rs

m�
sr m�

ss

���
is nonzero� and a double principal pivot step can be carried out in ����� in positions r� s�

The complementary basic vector obtained after this double principal pivot step contains

two more variables in common with y than u does� and the PPT ofM corresponding to

it is also PSD by Theorem ���� Delete r� s from U� In the resulting canonical tableau�

make as many single principal pivot steps in positions j � U as possible� deleting such

j from U after each step� Or make another double principal pivot step in positions

selected from U as above� and continue the same way until U becomes empty� At that

stage we reach the canonical tableau with respect to y� By repeated use of Theorems

���� ���� the PPT of M with respect to y is also PSD�

����� Principal Rearrangements of a Square Matrix

Let M be a given square matrix of order n� Let p � �i�� � � � � in� be a permutation of

��� � � � � n�� The square matrix P of order n whose rows are Ii��� Ii��� � � � � Iin� in that

order� is the permutation matrix corresponding to the permutation p� P is obtained

essentially by permuting the rows of the unit matrix I of order n using the permutation

p� The matrix M � � PMPT is known as the principal rearrangement of M according

to the permutation p� Clearly M � is obtained by �rst rearranging the rows of M

according to the permutation p� and in the resulting matrix� rearranging the columns

again according to the same permutation p�

As an example let n � �� and

p � ��� �� �� � M �

�������
m�� m�� m��

m�� m�� m��

m�� m�� m��

������� � P �

�������
� � �
� � �
� � �

�������
then

PM �

�������
m�� m�� m��

m�� m�� m��

m�� m�� m��

������� � M � � PMPT �

�������
m�� m�� m��

m�� m�� m��

m�� m�� m��

�������
and M � here is the principal rearrangement of M according to the permutation p�

The following results can be obtained directly using the de�nition� Let M � be

the principal rearrangement of M according to the permutation p associated with the

permutation matrix P � Then M � is a P 	matrix� i M is� For all y � Rn� yTMy �

�Py�TM ��Py�� So M � is a PSD� or PD� or NSD� or ND matrix i M has the same

property� Also� M � is principally degenerate �or nondegenerate� i M has the same

property�
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��� LCPs ASSOCIATED WITH P �MATRICES

Properties of P �Matrices

The following Theorems ����� ���� are important properties of P 	matrices due to

D� Gale and H� Nikaido �see reference ��������

Theorem ���� Let F � �fij� be a P �matrix of order n� Then the system of linear

inequalities

Fx �� �

x �� �
�����

has �x � �� as its unique solution�

Proof� The theorem is easily veri�ed to be true for n � �� We will prove the theorem

for all n by induction�

Induction Hypothesis� If T is a P 	matrix of order r �� n� �� then the system of

inequalities T
 �� �� 

�
� �� 
 � R

r has �
 � �� as its unique solution�

Under the induction hypothesis we will now prove that the statement of the the	

orem holds for the matrix F which is a P 	matrix of order n� Since F is a P 	matrix�

it is nonsingular� and hence F�� exists� Let B � F�� � �bij�� From standard results

in the theory of determinants �for example� see Chapter � in F� E� Hohn� Elementary

Matrix Algebra� Macmillan� �nd edition� ����� it is known that bii � �principal sub	

determinant of F corresponding to the subset f�� � � � � i� �� i� �� � � � � ng��determinant

of F � So bii � � for all i� since F is a P 	matrix� Thus each column of B has at least

one positive entry� Let x � Rn satisfy ������ Select a column of B� say B��� Let

� � minimumfxi	bi� 
 i such that bi� � �g� and suppose this minimum is attained by

i � s� So � � xs	bs� �� �� and �xj	bj��
�
� �� for all j such that bj� � �� From this

and the fact that x �
� �� we have � � ���� � � � � �n�

T � x� �B�� �� � and �s � �� Also

F� � Fx � �FB�� � Fx � �I�� �
� �� Let T be the matrix of order n � � obtained

by striking o the sth row and the sth column from F � Since F is a P 	matrix� its

principal submatrix T is also a P 	matrix� Let 
 � ���� � � � � �s��� �s��� � � � � �n�
T � Since

�s � � and F� �� �� we have T

�
� �� Also since �

�
� �� 


�
� � too� So T


�
� �� 


�
� ��

Since T is a P 	matrix of order n��� by the induction hypothesis� 
 � �� 
 � �� �s � �

together imply that � � �� So F� � �� that is F �x� �I��� � �� Then Fx � �I�� �� ��

However from ������ Fx �� �� So Fx � �� and since F is nonsingular� x � ��

Thus under the induction hypothesis the statement of the theorem also holds for

F which is a P 	matrix of order n� The statement of the theorem is easily veri�ed for

n � �� Hence� by induction� the statement of the theorem is true for all n�



��	 Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

Theorem ���� The Sign Nonreversal Property� Let F be a square matrix of

order n� For x � Rn let y � Fx� Then F is said to reverse the sign of x if xiyi �� � for

all i� If F is a P �matrix it reverses the sign of no vector except zero�

Proof� For this proof we need only to consider the case x � �� For if F reverses the

sign of an x ��� �� let J � fj 
 xj � �g� let D be the diagonal matrix obtained from

the unit matrix by multiplying its jth column by �� for each j � J� The matrix

F � � DFD is again a P 	matrix� since F � is obtained by simply changing the signs of

rows and columns in F for each j � J� And F � reverses the sign of �x � Dx� where

�x �� ��

Now suppose that x �� � and that F reverses the sign of x� Let P � fj 
 xj � �g�

Assume that P �� �� Let A be the principal submatrix of F corresponding to P� Let

� be the vector of xj for j � P� The fact that F reverses the sign of x implies that A

reverses the sign of �� Since � � �� this implies that A� �
� �� Since A is a P 	matrix

A� �
� �� �

�
� � implies � � � by Theorem ����� a contradiction� So x must be zero�

Unique Solution Property of LCPs

Associated with P �Matrices

Theorem ���� Let M be a P �matrix� The LCP �q�M� has a unique solution for

each q � Rn� Also� when the complementary pivot algorithm of Section 	�	 is applied

on the LCP �q�M�� it �nds the solution�

Proof� Suppose when the complementary pivot algorithm is applied on the LCP

�q�M� it ends in ray termination� As in the proof of Theorem ��� this implies that

there exists a zh � �� wh �
� �� z

h
�
�
� � satisfying w

h � Mzh � enz
h
� � w

h
i z

h
i � � for

all i� So zhi �Mi�z
h� � zhi z

h
� � �� This implies that z

h
i �Mi�z

h� � �zhi z
�
h
�
� � for all

i� So M reverses the sign of zh � �� which is a contradiction to Theorem ����� So�

when the complementary pivot method is applied on the LCP �q�M� associated with

a P 	matrix� it cannot end in ray termination� it has to terminate with a solution of

the LCP� This also proves that every P 	matrix is a Q	matrix�

Now we will prove that if M is a P 	matrix� for any q � Rn� the LCP �q�M� has

exactly one solution� by induction on n� the order of the problem�

Suppose n � �� M � �m��� is a P 	matrix� i m�� � �� In this case q � �q���

If q� �� �� �w � �w�� � �q��� z � �z�� � ���� is the only solution to the LCP �q�M��

If q� � �� �w � �w�� � ���� z � �z�� � ��q�	m���� is the only solution to the LCP

�q�M�� Hence the theorem is true for n � ��

Induction Hypothesis� Suppose any LCP of order �n� �� or less� associated with

a P 	matrix� has a unique solution for each of its right hand side constant vectors�

Now we will prove that under the induction hypothesis� the LCP �q�M� where

M is a P 	matrix of order n� has a unique solution for any q � Rn� We have shown

above that it has at least one solution� say � �w� �z�� For each j � � to n let uj � zj � if
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�zj � �� or wj otherwise� and let vj be the complement of uj � Then u � �u�� � � � � un�

is a complementary feasible basic vector of variables associated with the BFS � �w� �z�

for ������ Obtain the canonical tableau for ����� with respect to the complementary

feasible basic vector u� and suppose it is

u�� � � � � un v�� � � � � vn q

I �fM �q ������

�q �
� � by our assumptions here� ������ can itself be viewed as the LCP ��q�

fM�� one
solution of this LCP is �u � �u � �q� v � �v � ��� fM is a PPT of M � by Theorem ���� fM
is also a P 	matrix� So all the principal submatrices of fM are also P 	matrices� So the

principal subproblem of the LCP ��q�fM� in the variables �u�� � � � � ui��� ui��� � � � � un��
�v�� � � � � vi��� vi��� � � � � vn� is an LCP of order �n��� associated with a P 	matrix� and by

the induction hypothesis this principal subproblem has a unique solution� One solution

of this principal subproblem is ��u�� � � � � �ui��� �ui��� � � � � �un� �v�� � � � � �vi��� �vi��� � � � � �vn� �

��q�� � � � � �qi��� �qi��� � � � � �qn� �� � � � � �� �� � � � � ��� If the LCP ��q�fM�� ������� has an alternate
solution ��u� �v� �� ��u� �v� in which �vi � �� its principal subproblem in the variables

�u�� � � � � ui��� ui��� � � � � un�� �v�� � � � � vi��� vi��� � � � � vn� will have an alternate solution

��u�� � � � � �ui��� �ui��� � � � � �un� �v�� � � � � �vi��� �vi��� � � � � �vn�� a contradiction� So� if the LCP

��q�fM� has an alternate solution ��u� �v� �� ��u� �v�� then �vi must be strictly positive in it�
and by complementarity �ui must be zero� Since this holds for each i � � to n� �v � ��

�u � �� So �u � fM�v � �q� �u � �� �v � �� Since �q �� �� this implies that fM�v � ��q �� ��

�v � �� a contradiction to Theorem ����� since fM is a P 	matrix� Hence under the

induction hypothesis the LCP ��q�fM� has a unique solution� which implies that the
equivalent LCP �q�M� has a unique solution also� Since this holds for any q � Rn�

under the induction hypothesis� the LCP �q�M� of order n has a unique solution for

each q � Rn when M is a P 	matrix� Hence� by induction the theorem is true�

Theorem ���
 Let M be a given square matrix of order n� Suppose the LCP

�q�M� has at most one solution for each q � Rn� Then M is a P �matrix�

Proof� So� the number of solutions of the LCP �q�M� is either � or � and hence is �nite

for all q� which implies that M is nondegenerate by Theorem ���� So the determinant

of M is nonzero� and hence M�� exists�

Proof is by induction on n� the order of the matrix M � We �rst verify that the

theorem is true if n � �� In this case q � �q��� M � �m���� Since M is shown to

be nondegenerate under the hypothesis of the theorem� m�� �� �� If m�� � �� when

q� � �� �w � �q��� z � ��� �w � �� z � q�	�jm��j�� are two distinct solutions of the

LCP �q�M�� Hence under the hypothesis of the theorem m�� �� �� So� m�� � �� which

implies that the theorem is true when n � ��

Induction Hypothesis� If F is a square matrix of order r �� n� �� such that the

LCP �� F � has at most one solution for each  � Rr� then F is a P 	matrix�
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Under the hypothesis of the theorem� and the induction hypothesis� we will now

prove that M has to be a P 	matrix too�

Consider the principal subproblem of the LCP �q�M� in the variables � � �w��

� � � � wn�� 
 � �z�� � � � � zn�� This is an LCP of order n� � associated with the principal

submatrix ofM determined by the subset f�� � � � � ng� If there exists a �q � ��q�� � � � � �qn�T

for which this principal subproblem has two distinct solutions� namely� ��� 
� and

���� �
�� choose �q� to satisfy �q� �Maximumfj
Pn

j�� zjm�j j� j
Pn

j�� �zjm�j jg� and let w� �

�q� �
Pn

j�� zjm�j � z� � �� �w� � �q� �
Pn

j�� �zjm�j � �z� � �� w � �w�� w�� � � � � wn��

z � �z�� z�� � � � � zn�� �w � � �w�� �w�� � � � � �wn�� �z � ��z�� �z�� � � � � �zn�� �q � ��q�� �q�� � � � � �qn�
T �

Then �w� z�� � �w� �z� are two distinct solutions of the LCP ��q�M�� contradicting the

hypothesis of the theorem� So the principal subproblem of the LCP �q�M� in the

variables �� 
 has at most one solution for each of its right hand side constant vectors�

By the induction hypothesis this implies that the principal submatrix ofM determined

by the subset f�� � � � � ng is a P 	matrix�

A similar argument can be made for each principal subproblem of the LCP �q�M�

of order �n� ��� and this implies that all principal submatrices of M of order �n� ��

are P 	matrices� by the induction hypothesis� Hence all the principal subdeterminants

of M of order �� �n� �� are strictly positive� In particular� the diagonal entries of M

are strictly positive� It only remains to be proved that the determinant of M itself

is strictly positive� We have already seen that M�� exists� The canonical tableau of

����� with respect to the complementary basic vector �z�� � � � � zn� is

z w

I �M q ������

whereM �M�� and q � �M��q� The LCP in ������ has at most one solution for each

q � Rn� So by the previous arguments all diagonal entries in the matrixM have to be

strictly positive� However since M � �mij� �M��� m�� � �principal subdeterminant

of M corresponding to the subset f�� � � � � ng���determinant of M�� Since the principal

subdeterminant of M corresponding by the subset f�� � � � � ng has been shown to be

strictly positive� m�� � � implies that the determinant ofM is strictly positive� Hence

under the hypothesis of the theorem� and the induction hypothesis� the matrix M of

order n has to be a P 	matrix� So� by induction the theorem is true in general�

Corollary ��� Let M be a given square matrix of order n� If the LCP �q�M� has

at most one solution for each q � Rn� then it has exactly one solution for each q � Rn�

This follows from Theorems ����� ����

Theorem ���� Let M be a given square matrix of order n� The LCP �q�M� has

a unique solution for each q � Rn i� M is a P �matrix�

Proof� Follows from Theorems ����� �����
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Strict Separation Property

The strict separation property is a property of the matrix M � and does not depend

on the right hand side constants vector q� An LCP associated with the matrix M

�or the class of complementary cones C�M�� is said to satisfy the strict separation

property if the following conditions are satis�ed�

�i� Every subcomplementary set of column vectors is linearly independent�

�ii� If �A��� � � � � A�i��� A�i��� � � � � A�n� is any subcomplementary set of column vectors�

the hyperplane which is its linear hull strictly separates the points represented by

the left out complementary pair of column vectors �I�i��M�i��

From �i� and �ii�� it is clear that every complementary set of column vectors has

to be linearly independent for the strict separation property to be satis�ed�

Example ��


Let M �

��� � �
�� �

���� Here n � �� The points representing the column vectors of I�
�M are plotted in Figure ����

Since n � � here� in this case each subcomplementary set consists of exactly one

of the column vectors from fI��� I����M����M��g� The linear hull of any subcomple	

mentary set of vectors in this example is the straight line through the vector in that

subcomplementary set and the origin�

Consider the subcomplementary set of column vectors fI��g� The left out com	

plementary pair of column vectors in this set is �I����M���� The linear hull of fI��g�

which is the horizontal axis in Figure ���� strictly separates the points I����M��� since

neither of these points is on this straight line and they are on opposite sides of it� In

a similar manner it can be veri�ed that both properties �i� and �ii� discussed above

are satis�ed in this example� Hence any LCP associated with the matrix M in this

example satis�es the strict separation property�

Example ���

Let M �

��� � �
� �

���� Here again� n � �� The points representing the column vectors of
I� �M in this case are plotted in Figure ���� Consider the subcomplementary set of

column vectors fI��g in this example� Its linear hull is the vertical axis in Figure ����

and it strictly separates the left	out complementary pair of column vectors �I����M����

In a similar manner� it can be veri�ed that the strict separation property holds in this

case�
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2I

1I

M 2

M 1

Figure ��� Illustration of Strict Separation

1I

2I

M 1

M 2

Figure ��� Violation of the Strict Separation Property
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1I

M 2

2I

M 1

Figure ��� Another Example of Violation of the Strict Separation Property�

Example ���

Let M �

��� � �
� �

���� Here n � �� and the column vectors of I� �M are plotted in

Figure ���� Consider the subcomplementary set of column vectors f�M��g here� Both

the points in the left	out complementary pair �I����M��� are on the same side of the

linear hull of f�M��g here� and hence the strict separation property is not satis�ed by

the LCPs associated with the matrix M here�

Example ���

LetM �

��� � �
� �

���� See Figure ���� Consider the subcomplementary set of column vec	
tors f�M��g here� The point �M�� from the left	out complementary pair �I����M���

lies on the straight line which is the linear hull of the subcomplementary set of column

vectors f�M��g� So the strict separation property is not satis�ed in this example�

Corollary ��� If an LCP associated with the matrixM satis�es the strict separation

property� M is nondegenerate� This follows from the de�nitions�
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Theorem ���� The LCP associated with a matrixM satis�es the strict separation

property i� M is a P �matrix�

Proof� Suppose M is a P 	matrix� Property �i� required for strict separation property

is obviously satis�ed because M is nondegenerate �Corollary �����

Let �A��� � � � � A�i��� A�i��� � � � � A�n� be any subcomplementary set of column vec	

tors where A�j � fI�j ��M�jg for each j �� i� Let H be the hyperplane which is the

linear hull of fA��� � � � � A�i��� A�i��� � � � � A�ng� By Corollary ���� the complementary

sets of column vectors �A��� � � � � A�i��� I�i� A�i��� � � � � A�n� and �A��� � � � � A�i����M�i�

A�i��� � � � � A�n� are both linearly independent� and hence neither I�i nor �M�i lie on

the hyperplane H� Suppose both I�i and �M�i are on the same side of the hyper	

plane H in Rn� See Figure ���� In this case the interiors of the complementary

cones Pos�A��� � � � � A�i��� I�i� A�i��� � � � � A�n� and Pos�A��� � � � � A�i����M�i� A�i��� � � � �

A�n� have a nonempty intersection� and if q is a point in the intersection� then q is in

the interior of two complementary cones� and the LCP �q�M� has two distinct solu	

tions� a contradiction to Theorem ����� sinceM is a P 	matrix� So I�i and �M�i cannot

be on the same side of the hyperplane H� Since neither of these points is on H� and

they are not on the same side of H� these points are on either side of H� that is H

separates them strictly� Since this holds for any subcomplementary set of column vec	

tors and the corresponding left	out complementary pair of column vectors� the strict

separation property holds when M is a P 	matrix�

Suppose the strict separation property is satis�ed� By Corollary ��� M is non	

degenerate� So all the principal subdeterminants of M are nonzero� It remains to be

proved that they are all positive� Let y � �y�� � � � � yn� be any complementary vector of

variables for the LCP �q�M�� Let tj be the complement of yj for j � � to n� SinceM is

nondegenerate� �y�� � � � � yn� is a complementary basic vector of variables by Corollary

���� Obtain the canonical tableau of ������ with respect to the complementary basic

vector y� Suppose it is

y� � � � yn t� � � � tn q

I �M � q� ������

where M � � �m�
ij� is the PPT of M corresponding to the complementary basic vector

y� Now look at the subcomplementary vector of variables �y�� � � � � yi��� yi��� � � � � yn��

The column corresponding to yj in ������ is I�j � for j � � to n� For convenience�

call the coordinates along the axis of coordinates� as x�� � � � � xn� Since the column of

yj in ������ is I�j � the hyperplane in R
n which contains the columns of yj in ������ for

all j � �� � � � � i� �� i� �� � � � � n� is the coordinate hyperplane H � fx 
 xi � �g�
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A 1

nA

iI

nAiA -1 , . . . , }

A 1 iA +1{ , . . . , ,

0 = origin

H = linear hull of

q

M i

Figure ��
 I�i and �M�i are both on the same side of H� Interiors of the com	

plementary cones Pos�A��� � � � � A�i��� I�iA�i��� � � � � A�n� and Pos�A��� � � � � A�i���

�M�iA�i��� � � � � A�n� have a nonempty intersection�

Among the left	out complementary pair of column vectors �I�i��M �
�i�� since the ith

component in the column vector I�i is ��� it is on the side on H corresponding to the

inequality xi � �� So by the strict separation property� the point �M �
�i is on the side

of H corresponding to the inequality xi � �� which implies that �m�
ii � �� or M

�
ii � ��

Thus the ith diagonal element in M � is strictly positive� In a similar manner we see

that if the strict separation property holds� then all the diagonal elements in all PPTs

of M are strictly positive� By Theorem ��� this implies that M is a P 	matrix�

A class of convex polyhedral cones in Rn is said to partition Rn if

a� Every cone in the class has a nonempty interior�
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b� The union of the cones in the class is Rn�

c� The interiors of any pair of cones in the class are disjoint�

Theorem ���� Let M be a given square matrix of order n� The class of comple�

mentary cones C�M� partitions Rn i� M is a P �matrix�

Proof� If M is a P 	matrix� the result that the class of complementary cones C�M�

partitions Rn follows from Corollary ��� and Theorem �����

To prove the converse� suppose that C�M� partitions Rn� Since every comple	

mentary cone in C�M� has a nonempty interior� by Corollary ���� M must be nonde	

generate� Hence all complementary sets of column vectors are linearly independent�

If the strict separation property is not satis�ed� there exists a subcomplementary set

of column vectors� say �A��� � � � � A�i��� A�i��� � � � � A�n� such that the hyperplane H

which is its linear hull contains both the points in the left out complementary pair

�I�i��M�i� on the same side of it� As in the proof of Theorem ����� this implies that

the interiors of the complementary cones Pos�A��� � � � � A�i��� I�i� A�i��� � � � � A�n� and

Pos�A��� � � � � A�i����M�i� A�i��� � � � � A�n� have a nonempty intersection� a contradic	

tion� since C�M� partitions Rn� Hence� if C�M� partitions Rn� the strict separation

property is satis�ed� and by Theorem ���� this implies that M is a P 	matrix�

Hence the class of complementary cones C�M� partitions Rn iM is a P 	matrix�

Example ���

Let M �

��� � �
� �

���� The complementary cones are the quadrants in R�� drawn in

Figure ���� and obviously this class of complementary cones partitions Rn� For any n

in general C�I� is the class of orthants of Rn� and these obviously partition Rn� As

mentioned earlier the class of complementary cones is a generalization of the class of

orthants of Rn �orthants of Rn are the special class of complementary cones obtained

by taking M � I�� and C�M� possesses the property of partitioning Rn as long as M

is a P 	matrix� This was �rst proved by Samelson� Thrall and Wesler in �������

Corollary ���	 LetM be a given square matrix of order n� The following conditions

are mutually equivalent�

i� All principal subdeterminants of M are strictly positive�

ii� The LCP �q�M� has a unique solution for each q � Rn�

iii� The LCP �q�M� has at most one solution for each q � Rn�

iv� The diagonal entries in all PPTs of M are strictly positive�

v� LCPs associated with M satisfy the strict separation property�

vi� The class of complementary cones C�M� forms a partition of Rn�

Proof� Follows from Theorems ����� ����� ����� ��� and Corollaries ���� ����
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Theorem ���� Consider the LCP ����� in which M is a P �matrix� Suppose �w� z�

is the unique solution of the LCP with z� � �� Let � � �w�� � � � � wn�� 
 � �z�� � � � � zn��

If �y�� � � � � yn�� with yj � fwj � zjg for j � � to n� is a complementary feasible basic

vector for the principal subproblem of ����� in �� 

 �w�� y�� � � � � yn� is a complementary

feasible basic vector for ������

Proof� By Result ��� and Theorem ����� � � �w�� � � � � wn�� 
 � �z�� � � � � zn� is the

unique solution of the principal subproblem in �� 
� Since w� z is the unique solution

of ������ and z� � �� we have
Pn

j��m�jzj � q� � w� �� �� Under degeneracy� there

may be several complementary feasible basic vectors �all diering in the zero valued

basic variables� for the principal subproblem in �� 
� but the BFS corresponding to

each of them must be �� 
 by the uniqueness of the solution� Also� the column vector

of w� in ����� is I��� So� when we compute the basic solution of ����� corresponding

to the basic vector �w�� y�� � � � � yn�� we get wj � wj � zj � zj for j � � to n� z� � �

and w� �
Pn

j��m�jzj � q� � w� �
� �� which is the solution �w� z� of ������ So�

�w�� y�� � � � � yn� is a complementary feasible basic vector for ������

Higher Order Separation Theorems

Theorem ���� Let M be a P �matrix of order n and let J� J be a partition of

f�� � � � � ng with J� J both being nonempty� Let fA�j 
 j � Jg� fA�j 
 j � Jg be the

corresponding partition of a complementary set of vectors� Let fB�j 
 j � Jg be the

complement of the subcomplementary set fA�j 
 j � Jg� If H is a hyperplane in Rn

satisfying

i� H contains the origin � and all the vectors in the subcomplementary sets fA�j 


j � Jg�

ii� All the vectors in the subcomplementary set fA�j 
 j � Jg lie in one of the closed

half�spaces� H
�
�� de�ned by H� then at least one of the vectors in fB�j 
 j � Jg

lies strictly on the other side of H in the other open half�space H� de�ned by H�

Proof� Consider the system ������

w �Mz � � � ������

Perform principal pivot steps in ������ to transform the complementary set of vectors

fA�j 
 j � J�Jg into the set of unit vectors� This is a nonsingular linear transformation

that preserves separation properties� If uj denotes the variable in ������ associated with

A�j � and vj denotes its complement� this transforms ������ into

u�Mv � � ������

where M is also a P 	matrix because it is a principal pivot transform of the P 	matrix

M � Let M
JJ
denote the principal submatrix of M corresponding to the subset J� Let
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H � fx 

Pn

j�� ajxj � �g be the transform of H� Since A�j is transformed into I�j �

by �i� we have aj � � for each j � J� and by �ii� we have a
J
� �aj 
 j � J� �� �� So

the row vector a � �aj� �� � and since H is a hyperplane a � �� that is aJ � �� �A

vector y � �yj� � � means that each yj is nonnegative and at least one yj is strictly

positive�� For j � J� B�j is now transformed into �M �j � The vector �a��M �j� 
 j �

J� � �a
J
M

JJ
� Since M

JJ
is itself a P 	matrix and a

J
� �� by Theorem ���� at least

one of the components of a
J
M

JJ
is strictly positive� that is a��M �j� � � for at least

one j � J� That is� at least one of the �M �j for j � J lies in the open half	space

H
�
� fx 


Pm

j�� ajxj � �g not containing the unit vectors� In terms of the original

space this implies that at least one of the B�j � j � J is contained in the open half	space

H� de�ned by H not containing the complementary set of vectors fA�j 
 j � J � Jg�

Theorem ���	 Let M be a P �matrix of order n� J a nonempty proper subset of

f�� � � � � ng and let fA�j 
 j � Jg be a subcomplementary set of vectors� Let H be a

hyperplane in Rn that contains the origin � and all the vectors in the set fA�j 
 j � Jg�

Then H strictly separates at least one pair of the left out complementary pairs of

vectors fI�j ��M�jg for j � J � f�� � � � � ng n J�

Proof� Choose the subcomplementary set fA�j 
 j � Jg arbitrarily and transform the

system ������ into ������ as in the proof of Theorem ����� Using the notation in the

proof of Theorem ����� suppose this transforms H into H � fx 

Pn

j�� ajxj � �g�

Since A�j is transformed into I�j and H contains A�j for j � J� H must contain I�j
for j � J� that is aj � � for all j � J� Since H is a hyperplane� we must have a �� ��

that is a
J
� �aj 
 j � J� �� �� De�ne M

JJ
as in the proof of Theorem ����� it is a

P 	matrix as noted there� By the sign nonreversal theorem for P 	matrices of D� Gale

and H� Nikaido� Theorem ����� if �yj 
 j � J� � a
J
M

JJ
� ajyj � � for at least one j � J�

Since aj � � for j � J� these facts imply that there exists at least one j � J satisfying

the property that aI�j and a��M �j� have strictly opposite signs� that is H separates

the complementary pair of vectors fI�j ��M �jg strictly� In terms of the original space�

this implies that H strictly separates the complementary pair of vectors fI�j ��M�jg

for that j � J�

Comment ��� Theorem ��� is from K� G� Murty ������ ������ Theorem ��� is due

to A� W� Tucker ������� The proofs of Theorems ���� ��� given here are attributed to

P� Wolfe� The fact that the LCP �q�M� of order n has a unique solution for all q � Rn

is originally established ������� The inductive proof of Theorem ���� given here� and

Theorems ����� Corollary ��� are from K� G� Murty ������ ������

A Variant of the LCP

We now discuss some results from K� G� Murty ������� LetM be a given square matrix

of order n and q a given column vector of order n� Let J be a given subset of f�� � � � � ng�
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The generalized LCP with data q� M � J is the problem of �nding column vectors

w � Rn� z � Rn satisfying


w �Mz � q

wjzj � � for all j � � to n

wj � zj �� � for all j �� J

wj � zj �� � for all j � J �

������

We will use the notation �q�M�J� to denote this generalized LCP� Notice that if J � ��

the generalized LCP �q�M� �� is the same as the usual LCP �q�M� that we have been

discussing so far� We will now prove some results about the uniqueness of the solution

to this generalized LCP�

Theorem ���� Let M be a given square matrix of order n� and J a given subset

of f�� � � � � ng� With M � J �xed� the generalized LCP �q�M�J� has a unique solution

for each q � Rn i� M is a P �matrix�

Proof� In ������� make the following transformation of variables
 wi � ui for i �� J�

�ui for i � J� zi � vi for i �� J� �vi for i � J� After making these substitutions�

multiply both sides of the ith equation in it by �� for each i � J� Let u � �u�� � � � � un�
T �

v � �v�� � � � � vn�
T � After these transformation the problem becomes


u�Mv � q

u �� �� v
�
� �

uT v � �

������

where M is the matrix obtained from M by multiplying each entry in the ith row of

M by �� for each i � J� and then multiplying each entry in the ith column of the

resulting matrix by �� for each i � J� So the value of a principal subdeterminant of

M is exactly equal to the corresponding principal subdeterminant of M � Thus M is a

P 	matrix� i M is� The column vector q is obtained by multiplying the ith entry in q

by �� for each i � J� ������ is equivalent to ������� If � �w� �z� is a solution of ������� then

the corresponding �u� v� obtained as above is a solution of ������ and vice versa� But

������ is the usual LCP �q�M�� and hence by Theorem ���� it has a unique solution

for each q � Rn i M is a P 	matrix� Consequently ������ has a unique solution for

each q � Rn i M is a P 	matrix�

Now let M be a given square matrix of order n� and consider the usual LCP

�q�M�� ������ again� The column vector q is nondegenerate in ������ if q is not in

the linear hull of any set of �n� �� columns of �I��M�� There are �n complementary

sets of column vectors in the LCP �q�M�� and number these sets in some order� from

l � � to �n� Let Al denote the matrix whose columns are the columns in the lth

complementary set of column vectors �in that order�� for l � � to �n� If M is a P 	

matrix� by Corollary ���� Al is nonsingular and hence is a complementary basis for
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������ for each l � � to �n� Let A denote the set of all these complementary bases�

that is A � fAl 
 l � �� �� � � � � �
ng�

It is clear from the de�nitions� that if q is nondegenerate in the LCP �q�M� and

A is a complementary basis for the LCP �q�M� and �q � ��qj� � A��q� then �qj �� �

for each j � � to n� �Since �q � A��q� we have q � A�q �
Pn

j�� �qj A�j � If �qj � � for

some j� then q can be expressed as a linear combination of �n� �� column vectors of

�I
��� �M�� contradicting the hypothesis that q is nondegenerate in �������

We will now discuss some important results on the LCP �q�M� when M is a

P 	matrix and q is nondegenerate� from �������

Theorem ���� Let M be a given P �matrix of order n� and let q be nondegenerate

in the LCP �q�M�� Then for each subset J � f�� � � � � ng� there exists a unique com�

plementary basis A � A satisfying the property that if �q � ��qj� � A��q� then �qj � �

for all j � J and �qj � � for all j �� J�

Proof� Since q is nondegenerate� for any A � A all the components in A��q are

nonzero� Suppose �q � A��q is such that �qj � � for all j � J and �qj � � for all

j �� J� Let �y�� � � � � yn� be the complementary vector of variables corresponding to the

complementary basis A� Let � �w� �z� be the solution de�ned by


yj � �qj � for j � � to n

Complement of yj � �� for j � � to n �

Then � �w� �z� is a solution of the generalized LCP �q�M�J�� However� by Theorem �����

the generalized LCP �q�M�J� has a unique solution� since M is a P 	matrix� This

implies that there exists a unique complementary basis A � A such that if �q � A��q�

then �qj � � for all j � J and �qj � � for all j �� J�

Example ���

Let

fM��� �
�������
� � �
� � �
� � �

������� q �

�������
��
��
��

������� �

Here n � �� and there are eight complementary bases� Verify that fM��� is a P 	matrix�
The LCP �q�fM���� corresponding to this data will be discussed in Example ��� of
Chapter �� From there� we see that for A � A� q � A��q� the updated right hand side

constants vector is as tabulated below�
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Complementary Basic Vector qT � Transpose of the Updated

Corresponding to the Right Hand side Constants Vector

Complementary Basis

�w�� w�� w�� ����������

�w�� w�� z�� ������� ��

�w�� z�� z�� ���� �����

�w�� z�� w�� ���� �� ��

�z�� z�� w�� � ��������

�z�� z�� z�� � ����� ��

�z�� w�� z�� � �� �����

�z�� w�� w�� � �� �� ��

As an example let J � f�g� We verify that the complementary basis corresponding

to the complementary basic vector �z�� z�� z�� is the unique complementary basis in

this problem satisfying the property that the jth updated right hand side constant

is negative for j � J and positive for j �� J� In a similar manner� the statement of

Theorem ���� can be veri�ed to be true in this example for all subsets J � f�� �� �g�

����� One�to�One Correspondence Between Complementary

Bases and Sign Vectors

Given any vector of ��� and ��� sign symbols in Rn� Theorem ���� states that if M

is a P 	matrix of order n and q is nondegenerate in the LCP �q�M�� then there exists a

unique complementary basis for the LCP �q�M� satisfying the property that the signs

of the components in the updated right hand sides constants vector with respect to

that complementary basis� are exactly the given vector of signs�

Corollary ���� Let M be a given P �matrix of order n� and let q be a given column

vector which is nondegenerate for the LCP �q�M�� The number of complementary

basis A � A such that if �q � ��qi� � A��q� then exactly r of the qi are strictly negative�

is
�
n
r

�
� This follows from Theorem ��		�

Corollary ���� Let M be a given P �matrix of order n� and let q be a given column

vector which is nondegenerate for the LCP �q�M�� There is a one�to�one correspon�

dence between the �n complementary basic vectors for this problem� and the �n sign

vectors for the components in the updated q� This follows from Theorem ��		�
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The result in Theorem ��		 and Corollary ���	 displays the nice combinatorial

structure of the LCP �q�M� whenM is a P �matrix and q is nondegenerate� As we move

from one complementary basic vector to another� the sign pattern of the components in

the updated q vector changes distinctly� The problem of solving the LCP �q�M� in this

case� is the same as that of �nding the complementary basic vector that corresponds

to the sign vector consisting of all � signs under this one�to�one correspondence�

��� OTHER CLASSES OF MATRICES IN

THE STUDY OF THE LCP

In this section we provide a brief summary of some of the other classes of matrices

used by many researchers in the study of the LCP�

The Weak Separation Property

This is a property of the matrix M � and does not depend on the right hand side

constants vector q� An LCP associated with the matrix M �or the class of comple	

mentary cones C�M�� is said to satisfy the weak separation property if� given any

subcomplementary set of column vectors �A��� � � � � A�i��� A�i��� � � � � A�n�� there exists

a hyperplane H in Rn which contains the points �� and A�t� t � �� � � � � i��� i��� � � � � n�

and separates �not necessarily strictly� the points represented by the left out comple	

mentary pair of column vectors I�i� �M�i� See reference ������� As an example let

M �

��� � �
� �

���� The corresponding complementary cones are drawn in Figure ����
verify that the weak separation property holds� but not the strict separation property�

Also see Figure ����



���� Other Classes of Matrices in the Study of the LCP ���

1I

2I

-1

1

1-1

M 1

M 2

0
0

Figure ��� The Complementary Cones when M �

��� � �
� �

���� The Complementary
Cones PosfI����M��g� Posf�M��� I��g are both degenerate� they are the coordinate

lines� The Weak Separation Property Holds�
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1I

M 1

2I

1-1

M 2

0

1

Figure ��� The Complementary Cones when M �

��� � �
� �

���� The Cones
Pos�I����M���� Pos��M����M���� Pos��M��� I��� are all degenerate and their

Union is the Horizontal Coordinate Line� and the Nonnegative Half of the Ver	

tical Coordinate Line�

The square matrixM of order n is said to be a weak separation matrix if it satis�es

the weak separation property� Using arguments similar to those in the proof of Theorem

����� it can be veri�ed that M is a weak separation matrix i the diagonal entries in

M and all the PPTs of M are nonnegative� See reference ������� and also Exercise ����

P��Matrices� A square matrix M of order n belongs to this class i all its principal

subdeterminants are �� ��

The union of all the complementary cones in C�M� may not even be convex when

M is a P�	matrix� For example� consider M �

��� � �
� �

���� The complementary cones
for this case are plotted in Figure ���� The complementary pivot algorithm may not

be able to process the LCP �q�M� when M is a P�	matrix� For example� on the LCP

in which M is the matrix given above� and q � ���� ��T � the complementary pivot

algorithm ends up in ray termination� even though the LCP has a solution�

Z�Matrices� A square matrix M � �mij� of order n is said to be a Z	matrix i

mij �� � for every i �� j� A very e�cient special algorithm for solving the LCP �q�M�

whenM is a Z	matrix has been developed by R� Chandrasekaran� and this is discussed

in Section ����
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Matrices with Dominant Principal Diagonal� A square matrix M � �mij� of

order n belongs to this class if jmiij �
Pn

j��
j ��i

jmij j for each i � � to n�

Generalized Diagonally Dominant� A square matrixM is said to be a generalized

diagonally dominant if there exists a positive diagonal matrix T such that AT is strictly

diagonally dominant�

M�Matrices� A square matrix M of order n is said to be an M 	matrix if it is a

Z	matrix which is also a P�	matrix� In the literature these matrices are also called

K�	matrices in some references �see S� R� Mohan �������� Nonsingular M 	matrices are

precisely Z	matrices which are also P 	matrices �in the literature these are also known

as Minkowski	matrices or K	matrices and some authors refer to these as M 	matrices�

See the paper ������ by M� Fiedler and V� Ptak for the properties of these matrices� If

M is a nonsingular M 	matrix� then its inverse M�� �
� ���

Comparison Matrix� Given a square matrix M � �mij�� its comparison matrix is

A � �aij� where aii � jmiij for i � � to n and aij � �jmij j for all i �� j� i� j � � to n�

H�Matrix� A square matrix M is said to be a H	matrix if its comparison matrix

�which is a Z	matrix� is a P 	matrix�

Semi�Monotone Matrices E��Matrices�� The square matrix M of order n is

said to be semi	monotone i for all x � Rn� x � �� there exists an index i such that

xi � � and Mi�x �
� �� This class of matrices has also been called the class of L�	

matrices� The matrixM belongs to this class i the LCP �q�M� has a unique solution

whenever q � �� If M is symmetric� then it is semi	monotone i it is copositive�

Strictly Semi�Monotone Matrices� The square matrix M of order n belongs to

this class if for every x � Rn� x � �� there exists an index i such that xi � � and

Mi�x � �� Equivalently� let fM refer to any nonempty principal submatrix of M � or M
itself� Then M is strictly semi	monotone� i the system

fM �z � �
�z � �

has no solution �z� for all such fM � B� C� Eaves ������ calls this class of matrices L��
See also the papers ����� of R� W� Cottle and G� B� Dantzig� ������ by S� Karamardian�

and ������ of C� E� Lemke �Lemke calls this class of matrices E��

If M is symmetric� M is strictly semi	monotone i it is strictly copositive� A

matrixM is strictly semi	monotone if the LCP �q�M� has a unique solution whenever

q �� �� This class is the same as the class of Q or completely Q	matrices�

Fully Semi�Monotone� A square matrix of M of order n belongs to this class if

M and all its PPTs are semi	monotone� See R� W� Cottle and R� E� Stone �������

The square matrixM is fully semi	monotone i the LCP �q�M� has a unique solution

whenever q is in the interior of any nondegenerate complementary cone�
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S�Matrix� A matrix M � not necessarily square� belongs to this class if the system

Mx � �� x � �

has a solution x� See ������ by C� E� Lemke�

Q� or Completely Q�Matrices� A square matrix of order n belongs to this class

if the matrix� and all its principal submatrices are Q	matrices� In ����� R� W� Cottle

has proved that this class is exactly the same as the class of strictly semi	monotone

matrices� See Exercises ����� �����

V �Matrices� The square matrixM of order n belongs to this class if every principal

submatrix fM of M has the property that there is no positive column vector z such

that the last coordinate of fM �z is nonpositive and the remaining ones are zero� In
������ L� Van der Heyden constructed a new algorithm for the LCP and showed that

it will always obtain a solution to the LCP �q�M�� provided M is a V 	matrix� In �����

R� W� Cottle has proved that this class of matrices is the same as the class of strictly

semi	monotone matrices� or the class of Q	matrices� See Exercises ����� �����

Q��Matrices� A square matrix M of order n belongs to this class if the union of all

the complementary cones in C�M� is convex� In some early papers on the LCP this

class was denoted by K� We have the following theorem on this class of matrices�

Theorem ���� If M is a Q��matrix� the union of all the complementary cones in

C�M� is Pos�I��M��

Proof� Let K�M� denote the union of all the complementary cones in C�M�� Every

solution of the LCP �q�M� is a �w� z� satisfying w � Mz � q� w� z �� � and w
T z � ��

and hence �w� z� give the coe�cients in an expression for q as a nonnegative linear

combination of the columns of �I
��� �M�� So if q � K�M�� then q � Pos�I

��� �M��

that is� K�M� � Pos�I
��� �M�� Now� let ��� � fI�j ��M�j � j � � to ng� For any j � � to

n� if q � I�j � �w � I�j � z � �� is a solution of the LCP �q�M�� and if q � �M�j � �w � ��

z � I�j� is a solution of the LCP �q�M�� So ��� � K�M�� Since M is a Q�	matrix by

hypothesis ��� � K�M� implies that Pos����� � K�M�� that is� Pos�I
��� �M� � K�M��

All these facts together imply that K�M� � Pos�I
��� �M��

Q��Matrices� The square matrix M of order n belongs to this class if it� and all its

principal subdeterminants are Q�	matrices�

Adequate Matrices� A square matrix of order n belongs to this class if it is

a P�	matrix� and whenever a principal submatrix of M corresponding to a subset

fi�� � � � � irg � f�� � � � � ng is singular� the sets of vectors fMi� 
 i � fi�� � � � � irgg�

fM�i 
 i � fi�� � � � � irgg are both linearly dependent� This class of matrices has been

de�ned by A� W� Ingleton ������� He proved that if M is adequate� for any q � Rn�

there exists at most one w such that �w� z� is a solution of the LCP �q�M�� Also� if M

is invertible and adequate� it is a P 	matrix�
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L��Matrices� A square matrix of order n is said to be an L�	matrix if for each z � �

satisfying w � Mz �� � and w
T z � �� there exists a �z �� � satisfying �w � ���zTM�T �

w �
� �w

�
� �� z

�
� �z

�
� ��

E��d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class if z � � in every solution of the LCP �d�M�� Thus if M is an E��d� matrix�

the LCP �d�M� has the unique solution �w � d� z � �� if d �� �� and no solutions if

d ��� ��

E�d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class� if whenever �w� z� is a solution of the LCP �d�M� with z �� �� there exists

an x �� � such that y � �MTx �� �� and z
�
� x� w �

� y�

L�d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class if it is both an E�d�	matrix and also an E���	matrix�

L��d��Matrices� Let d � Rn be given� The square matrix M of order n belongs to

this class if it is both an E��d�	matrix and also an E����	matrix�

The classes of matrices E�d�� E��d�� L�d�� L��d� have been de�ned by C� B� Garcia

������� He has shown that if d � �� and M is an L�d� matrix� then the LCP �q�M�

can be processed by the variant of the complementary pivot algorithm in which the

original column of the arti�cial variable z� is taken to be �d�

Regular Matrices� The square matrix M of order n is said to be a regular matrix

�denoted by R	matrix� if there exists no z � Rn� t � R� satisfying

z �� �� t
�
� �

Mi�z � t � � if i is such that zi � �

Mi�z � t �� � if i is such that zi � ��

So the matrix M is a regular matrix i for all � �
� �� the only solution to the LCP

��e�M� is �w � �e� z � ��� S� Karmardian ������ introduced this class of matrices and

proved that all regular matrices are Q	matrices�

R��Matrices� These are matricesM for which the LCP ���M� has a unique solution�

This is exactly the class E���� de�ned earlier� These matrices have also been called

superregular matrices� If M belongs to this class there exists no z � Rn satisfying

z � �

Mi�z � � for i is such that zi � �

Mi�z �� � for i is such that zi � ��

This class includes all regular matrices� In particular the matrix M �

����� ��
�� ��

��� is
an R�	matrix� but not regular�

A degenerate complementary cone Pos�A��� � � � � A�n� is said to be strongly de�

generate if there exists � � ���� � � � � ��n� � � satisfying
Pn

j�� �jA�j � �� weakly
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degenerate if no such � exists� As an example� let

M �

�������
� �� ��
� �� ��

�� � �

������� �

For this matrixM � the degenerate complementary cone Pos��M����M��� I��� is strong	

ly degenerate because � � ��M��� � ��M���� The degenerate complementary cone

Pos�I��� I����M���� is weakly degenerate since it is impossible to express � as ��I�� �

��I�� � ����M��� with ��� ��� �� �� � and at least one of ��� ��� �� strictly � ��

Clearly� a square matrixM is an R�	matrix i there exists no strongly degenerate

complementary cone inC�M��

N�Matrix� A square matrix of order n belongs to this class if all its nonempty

principal subdeterminants are strictly negative� See M� Kojima and R� Saigal ������ in

which they prove that if M is an N 	matrix� then the LCP �q�M� has either �� �� � or

� solutions for any q�

U�Matrix� A square matrix of order n belongs to this class i the LCP �q�M� has a

unique solution whenever q is in the interior ofK�M� � the union of all complementary

cones in C�M�� See R� W� Cottle and R� E� Stone �������

INS�Matrices� A square matrixM of order n is said to be an INS	Matrix �Invariant

Number of Solutions� i the number of solutions of the LCP �q�M� is the same for

all q contained in the interior of K�M�� See R� W� Cottle and R� E� Stone �������

R� E� Stone ������ ������

INSk�Matrices� A square matrixM of order n is called an INSk	Matrix if for every

q in the interior of K�M�� the LCP �q�M� has exactly k distinct solutions�

W �Matrices� LetM be a given real square matrix of order n� For any J � f�� � � � � ng

de�ne the complementary matrix A�J� associated with the subset J to be the square

matrix of order n in which

�A�J���j �

�
�M�j � if j � J
I�j � if j �� J �

The matrix M is said to be a W 	matrix i

Pos�A�J�� 	 Pos�A�J�� � f�g

for every J � f�� � � � � ng and J � f�� � � � � ng n J� This de�nition is due to M� W� Jeter

and W� C� Pye� they have shown that every W 	matrix is a U 	matrix�
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��� Exercises

��� Let M be a given square matrix of order n� Let ��� � f�� � � � � ng� If S � ��� de�ne

f�S� � �� if S � �

� principal subdeterminant of M corresponding to S� if S �� ��

Prove that M is a weak separation matrix i there exists no nonempty subset S � ���

satisfying the property that for some j � S� f�S� and f�Snfjg� are both non	zero and

have strictly opposite signs� Using it� prove that a square matrix is a weak separation

matrix i the diagonal entries of all its PPTs are �� ��

Prove that every nondegenerate weak separation matrix is a P 	matrix and that

every square matrix which is not a weak separation matrix must have a negative

principal subdeterminant� Show that all P�	matrices are weak separation matrices�

Prove that if the LCP �q�M� has more than one solution� and M is a weak

separation matrix� then q �� � �K� G� Murty ������ �������

��� Prove that the two de�nitions given for strictly semi	monotone matrices are equiv	

alent�

��� Prove that every copositive plus matrix which contains a strictly positive column

vector� is a Q	matrix�

��
 Prove that all PPTs of a P�	matrix are P�	matrices�

��� Prove that the square matrixM of order n is a P�	matrix i for all y � R
n� y �� ��

there exists an i such that yi �� � and yi�Mi�y� �� � �Fiedler and Ptak ��������

��� If M is a P�	matrix� prove that there exists an x � � such that Mx �
� �

�B� C� Eaves ��������

��� If M is a P�	matrix and x � � satis�es Mx � �� prove that there exists a y � �

such that yTM � ��

��� If M is a P�	matrix and �q�M� has a nondegenerate complementary BFS� then

prove that it is the unique complementary feasible solution� Construct a numerical

example to show that the converse could be false �B� C� Eaves ��������

��� Prove that every Q	matrix is an S	matrix �C� E� Lemke ��������
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���	 Prove that if M is a square matrix of order n which is an S	matrix� and every

�n � �� � �n � �� principal submatrix of M is strictly semi	monotone then M itself

is strictly semi	monotone� using this prove that the class of strictly semi	monotone

matrices is the same as the class of completely Q	matrices �R� W� Cottle �������

���� Prove that the classes of matrices� strictly semi	monotone� Q� V � are the same

�R� W� Cottle �������

���� IfM is a square symmetric matrix of order n� prove that the following conditions

are equivalent�

�i� M is strictly copositive�

�ii� M is strictly semi	monotone�

�iii� for all q �� �� the LCP �q�M� has a unique solution �F� Pereira ��������

���� If M is a square matrix of order n which is principally nondegenerate� prove

that the number of complementary feasible solutions for the LCP �q�M� has the same

parity �odd or even� for all q � Rn which are nondegenerate� As an example� when

M �

�������
�� � �
� �� �
� � ��

�������
show that the number of complementary feasible solutions for the LCP �q�M� is always

an even number �� � whenever q is nondegenerate �K� G� Murty ������ �������

���
 Prove that if the number of complementary feasible solutions for the LCP �q�M�

is a constant for all q which are nondegenerate� then that constant must be equal to

�� and M must be a P 	matrix� �K� G� Murty ������ �������

���� If yT q�yTMy is bounded below on the set y �� �� then prove that the LCP �q�M�

has a solution and it can be computed by using the complementary pivot algorithm

�B� C� Eaves ��������

���� Let q� M be matrices of orders n � �� n � n respectively� If there exists an

x � Rn� x � � such that qTx � �� MTx �
� �� prove that the LCP �q�M� has no

solution �C� B� Garcia ��������

���� Prove that the classes of matrices E�d� and E��d� are the same whenever either

d � �� or d � � �C� B� Garcia ��������

���� Prove that the semi	monotone class of matrices is
T
d�� E�d�� Also� prove that
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the class L of matrices is
T
d�� L�d�� Verify that the matrix

M �

�������
� � �
� �� �

�� �� �

�������
is an L�d� matrix for d � ��� �� ��T � but not an L	matrix �C� B� Garcia ��������

���� Let d � � and suppose M is an L��d� matrix� For any q � Rn� prove that when

the variant of the complementary pivot algorithm in which the original column of the

arti�cial variable z� is taken to be �d� is applied on the LCP �q�M�� it terminates

with a solution of the LCP �S� Karamardian� ������� C� B� Garcia ��������

���	 Let M be a copositive plus matrix� Prove that the set of solutions of the LCP

�q�M� is nonempty and bounded i the optimum objective value in the following LP

is zero

Maximize eTu

Subject to MTu �� �

qTu �� �

u �� � �

In particular� prove that if M is copositive plus and the LCP �q�M� has a nonde	

generate complementary BFS� then the set of solutions of the LCP �q�M� is bounded

�O� L� Mangasarian ��������

���� Let M be a copositive plus matrix� If the system
 Mx � �� x �� � has a solution

x � Rn� prove that the set of solutions of the LCP �q�M� is nonempty and bounded�

for every q � Rn �O� L� Mangasarian ������� J� Parida and K� L� Roy ��������

���� Prove that every regular matrix is a Q	matrix �S� Karamardian ��������

���� Prove that if M is a P�	matrix then the following are equivalent

�i� M is an R�	matrix�

�ii� M is a regular matrix�

�iii� M is a Q	matrix�

�M� Aganagic and R� W� Cottle �������

���
 IfM is a P 	matrix� prove that the systemMx � �� x � � has a feasible solution�
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���� LetM be a P 	matrix of order n and let q � Rn� Consider the quadratic program


minimize zT �Mz � q�

subject to Mz � q �� �

z �� � �
������

Prove the following

�i� ������ has a unique local minimum z which is the global minimum with objective

value �� In this case �w �Mz � q� z� is the unique solution of the LCP �q�M��

�ii� If z is the unique local minimum for ������� let � � zT � � � �Mz � q�T � Then

�z� �� �� is the unique KKT point for ������ �Y� C� Chang �������

���� The square matrix M of order n is a nonsingular M 	matrix i the following

property holds� Let �w� z� be the solution of the LCP �q�M�� Then z is the unique

vector in the region X � fz 
 Mz � q �� �� z
�
� �g satisfying z � X and z �� z for any

z � X �R� W� Cottle and A� F� Veinott� Jr� ��������

���� Let M be a Z	matrix which is also a P 	matrix of order n� and q�� q� � Rn

satisfying q� �� q�� If �wi� zi� is a solution of the LCP �qi�M� for i � �� �� prove that

z� �� z� �R� W� Cottle� G� H� Golub� and R� S� Sacher ��������

���� Let M be an N 	matrix� Then prove that either M � � or there exists a d � �

such that Md � �� Also prove that a square matrix M is an N 	matrix i all proper

principal subdeterminants of M�� are positive and the determinant of M�� is � �

�M� Kojima and R� Saigal ��������

���� Let M be an N 	matrix� Prove the following� If M � �� �q�M� has no solutions

for q ��� � and exactly two solutions for q � �� If M �� �� and q �� �� the LCP �q�M�

has a unique solution� If M �� �� and q � �� the LCP �q�M� has � or � solutions� If

M �� �� q � � and qi � � for at least one i� the LCP �q�M� has exactly two solutions

�M� Kojima and R� Saigal ��������

���	 If M is an M 	matrix prove that the union of all the degenerate complementary

cones is the set of all q � Rn for which the LCP �q�M� has an in�nite number of

solutions� Also� in this case� prove that the LCP �q�M� has in�nitely many solutions

i q is in the boundary of K�M�� which is the union of all complementary cones in

C�M� �S� R� Mohan ��������

���� Prove that every U 	matrix is a fully semi	monotone matrix �R� W� Cottle and

R� E� Stone ��������
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���� Prove that the LCP �q�M� has an even number of solutions for each q � Rn

which is nondegenerate� if there exists a z � � such that zM � �� or equivalently if

�x � �� y � �� is the only solution to the system

Ix�My � �

x� y �� �

�R� Saigal ��������

���� Consider the LCP �q�M� where M is an adequate matrix� If �w� z�� � �w� �z� are

any two solutions of this LCP� prove that w � �w �A� W� Ingleton ��������

���
 Let M be a square nondegenerate matrix of order n� For some q� � Rn� if the

LCP �q��M� has a unique solution �w�� z�� and w� � z� � �� then prove that M is a

Q	matrix �A� W� Ingleton ��������

���� If M is an L	matrix and an R�	matrix prove that it must also be an R	matrix

and a Q	matrix�

Prove that if M is R�	matrix which is copositive� then it must be an R	matrix

and a Q	matrix�

If M is an L�	matrix and a Q	matrix� prove that it must be an R�	matrix�

If M is an L	matrix� prove that the following are equivalent


�i� M is a Q	matrix�

�ii� M is an R	matrix�

�iii� M is an R�	matrix� and

�iv� M is an S	matrix�

Is every Q	matrix which is an L�	matrix� also an R�	matrix� �J� S� Pang ��������

���� Prove that copositive plus and strictly copositive matrices are L	matrices�

���� Prove that every P�	matrix is semi	monotone� and that every Q	matrix is an

S	matrix�

���� IfM is an L	matrix� prove that it is a Q	matrix i it is an S	matrix �B� C� Eaves

��������

���� Prove that the system
 Mx � �� x � �� is inconsistent if eitherM is an L�	matrix

and a Q	matrix� or M is a Q	matrix which is copositive�

If M is an L�	matrix and a Q	matrix� prove that every nonzero z that leads to

solution of the LCP ���M� must have at least two nonzero components�
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IfM is a Q	matrix which is copositive� prove that any vector z satisfying zTMz �

� and �M �MT �z � �� and leads to a solution of the LCP ���M� must be the zero

vector�

If M is a Q	matrix which is symmetric and copositive� prove x � � is the only

feasible solution to the system
 Mx � �� x �� ��

If M is a Q	matrix which is symmetric and copositive plus� prove that it must be

strictly copositive�

If M is a copositive plus matrix prove that the following are equivalent


�i� M is a Q	matrix�

�ii� M is a R	matrix�

�iii� M is a R�	matrix�

�iv� M is an S	matrix�

In addition� if M is also symmetric� then prove that each of the above is equivalent to

�v� M is strictly copositive�

�vi� x � � is the only feasible solution of the system
 Mx � �� x �� �

�J� S� Pang ��������

��
	 Let M be a nondegenerate Q	matrix of order n� Prove that the number of

distinct solutions of the LCP �q�M� is �� �
n � � for any q � Rn �A� Tamir ��������

��
� If M is a square matrix all of whose principle subdeterminants are negative and

there exists an x � � such that Mx � �� then M is a Q	matrix �R� Saigal ��������

��
� Prove that any square matrix of order � with all diagonal entries zero cannot be

a Q	matrix� Show that this result is not true for higher order matrices by considering

M �

����������
� � �� �
� � � ��

�� �� � �
�� �� � �

����������
which is a Q	matrix since M�� � � �M� Jetter and W� Pye ��������

��
� If M is a square matrix of order n such that there exists a z � � satisfying

zTM � � then the LCP �q�M� has an even number of solutions for all nondegenerate

q �R� Saigal ��������

��

 If M is copositive plus and the LCP �q�M� has a solution �w� z� which is a

nondegenerate BFS of �w�MZ � q� w �
� �� z

�
� ��� prove that the set of solutions of

the LCP �q�M� is a bounded set� However� show that the existence of a nondegenerate
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BFS solution is not necessary for the set of solutions of the LCP �q�M� to be bounded�

�Hint
 try q �

�����
��

���� M � ��� � �
� �

��� �O� L� Mangasarian ��������
��
� If M is a copositive plus matrix of order n� for any q � Rn� the set of solutions

of the LCP �q�M� is nonempty and bounded if the following system has a solution

x � Rn�

Mx� q � �� x �� � ������

�O� L� Mangasarian ��������

��
� If M is a copositive Q	matrix� prove that the system

Mx � �

x � �

is inconsistent�

��
� If M is a symmetric� copositive plus Q	matrix� prove that M must be strictly

copositive �J� S� Pang ��������

��
� If M is a copositive plus matrix of order n� the solution set of the LCP �q�M�

is nonempty and bounded for each q � Rn i M is a Q	matrix� This happens i the

system �Mx � �� x �� �� has a solution x � R
n �O� L� Mangasarian ��������

��
� If the nondegenerate matrix M is the limit of a convergent sequence of non	

degenerate Q	matrices� prove that M is a Q	matrix �M� Aganagic and R� W� Cottle

�������

���	 Suppose M is a Q	matrix of order n� Let J � f�� � � � � ng be such that Mj� �� �

for a j � J� Then the principal submatrix ofM determined by the subset f�� � � � � ngnJ

must be a Q	matrix�

���� Let M be a Q	matrix of order n� If fA��� � � � � A�j��� A�j��� � � � � A�ng is a sub	

complementary set� there exists a hyperplane H in Rn containing � and all the vectors

in this subcomplementary set such that I�j and �M�j do not lie in the same open half	

space corresponding to this hyperplane H� Also� if M is a nondegenerate Q	matrix�

there exists a hyperplane H of the type described above� which strictly separates I�j
and �M�j �M� Aganagic and R� W� Cottle �������

���� If M is a Q�	matrix satisfying the property that the LCP �q�M� has a unique

solution for each q in the interior of K�M�� prove that M must be a P�	matrix� Also�
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if M is a P�	matrix with only one zero principal subdeterminant and has the property

that K�M� �� Rn� then prove that K�M� is a closed half	space and that the LCP

�q�M� has a unique solution whenever q is in the interior of K�M� �R� W� Cottle and

R� E� Stone ��������

���� If M is a symmetric matrix of order n satisfying

mii � � for all i

mij �� � for all j �� i

prove that M is copositive i it is PSD�

���
 Prove that the LCP �q�M� has a unique solution for all q � � i for all x � �

there exists an i such that xi � �� y � �y�� � � � � yn�
T �Mx and yi �� ��

���� If M is a symmetric matrix of order n� the following are equivalent

�i� M is copositive�

�ii� for all x � � there exists an i such that xi � � and y � �y�� � � � � yn�
T � Mx�

yi �� ��

�iii� �q�M� has a unique solution for all q � ��

���� If M is a symmetric matrix of order n� the following are equivalent

�i� M is strictly copositive�

�ii� M is a Q	matrix and the LCP �q�M� has a unique solution for all q � fI��� � � � � I�ng

�F� J� Pereira ��������

���� Prove that a H	matrix with positive diagonals is a P 	matrix �J� S� Pang ��������

���� Prove that M 	matrices and generalized diagonally dominant matrices are H	

matrices�

���� Prove that if M is a strictly semi	monotone matrix and q is nondegenerate in

the LCP �q�M�� then the LCP �q�M� has an odd number of solutions �B� C� Eaves

��������

���	 Prove that a square matrix M of order n is a Z	matrix i for each q � Rn

for which the set X�q�M� � fx 
 Mx � q �
� �� x �

� �g �� �� there exists a least

element �x � X�q�M� �given K � Rn� an element x � K is said to be a least element

in K if x �
� x for all x � K� If a least element exists� it is clearly unique� satisfying

�xT �M �x� q� � � �A� Tamir ��������
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���� Prove that a square matrix M of order n is a nonsingular M 	matrix �i� e�� a

Z	matrix which is also a P 	matrix� i for each q � Rn� the set X�q�M� � fx 
Mx� q
�
� �� x

�
� �g has a least element �x which is the only vector in X�q�M� satisfying

xT �Mx� q� � � �R� W� Cottle and A� F� Veinott� Jr� ��������

���� Prove that a square matrix which has either a zero row or a zero column cannot

be a Q	matrix�

���� IfM is a Q	matrix and PSD� isMT also a Q	matrix� �Hint
 Check

��� � ��
� �

�����
���
 Let M be a PSD matrix and A a PD matrix of order n� Let �w���� z���� denote

the solution of the LCP �q�M � �A� for some q � Rn and � � �� If the LCP �q�M�

has a solution� prove that the limit����z��� exists� and if this limit is z� it is the point

that minimizes the norm kAzk in the set fz 
 �w � Mz � q� z� is a solution of the

LCP �q�M�g� If the LCP �q�M� has no solution� prove that limit����kz���k � �


�A� Gana �������

���� Let �M be a Z matrix� A well	known theorem states that if there exists an

x �
� � such that x

TM � � in this case� then M�� exists and �M�� �
� �� Using this

theorem� prove the following


�a� If M satis�es all the above properties� there exist yij �� � for all i� j such that

I�j �
nX
i��

��yij�M�i� for all j �

�Hint
 Use the fact that M�� �
� ���

�b� Under the same conditions on M � Pos�I
��� �M� � Pos��M��

�c� Under the same conditions on M the LCP �q�M� has a solution i �M��q �
�

�� Also� if �M��q �
� �� then a solution to the LCP is �w� z� � ����M

��q�

�R� Saigal��

���� Let M be a square matrix of order n satisfying the property �if Mx �
� �� then

x must be nonnegative�� Prove the following�

�a� M�� must exist�

�b� �M�� �
� �� �Hint
 Use the fact that �M�M

�����j � I�j �� ���

�c� In this case Pos��M� � Pos�I��

���� LetM be an arbitrary square matrix of order n� Consider the LCP �q�M�� Prove

that the following property �the LCP has a solution whenever q is such that the system



�
	 Chapter �� Separation Properties� Principal Pivot Transforms� Classes ���

w �Mz � q� w �
� �� z

�
� � has a feasible solution and for all such q the LCP has a

solution in which w � �� holds i Pos��M� � Pos�I� �i� e�� Pos�I
��� �M� � Pos��M���

Also prove that this property holds i for all x such that Mx �
� �� x must be

nonnegative �A� K� Rao��

���� Let M be a square matrix of order n with non	positive o	diagonal elements�

If M is a P 	matrix� prove that it has a nonnegative inverse �M� Fiedler and V� Ptak

��������

���� Let M be a square matrix of order n� Let q � Rn� The matrix M is said to

be a Q�	matrix if the LCP �q�M� has a complementary feasible solution whenever the

system
w �Mz � q

w �
� �� z

�
� �

has a feasible solution�

i� Prove thatM is a Q�	matrix i the union of all the complementary cones in C�M�

is a convex set�

ii� Prove that the matrixM is aQ�	matrix i the LCP �q�M� satis�es
 �if q
�� q� � Rn

are such that �q��M� has a complementary feasible solution� and q� �� q�� then

�q��M� also has a complementary feasible solution� �A� K� Rao��

���	 If M is a square matrix which is positive semide�nite� and q is nondegenerate in

the LCP �q�M�� prove that the number of solutions of the LCP �q�M� is either � or ��

���� If M is a square matrix of order n which is positive semide�nite� prove that the

intersection of the interiors of any pair of complementary cones in C�M� is empty�

���� If M is a square matrix of order n which is positive semide�nite� and q lies in

the interior of a complementary cone in C�M�� prove that the LCP �q�M� has a unique

solution�

���� Let M be a M 	matrix �i� e�� a Z	matrix which is also a P�	matrix�� Let w����

z��� be the solution of the LCP �q�M � �I�� If the LCP �q�M� has a solution� prove

that limit����z��� exists� and if this limit is z� it is the least element of fz 
 z �
�

��Mz � q �� �g �i� e�� z
�
� z for all z in this set�� If the LCP �q�M� does not have a

solution� then limit����kz���k is �
 �A� Gana �������

���
 Consider the LCP �q�M� of order n� Suppose the matrix M is not a P 	matrix�

but its principal submatrix of order n � � obtained by deleting row i and column i
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from it is a P 	matrix for a given i� Discuss an e�cient algorithm for computing all the

solutions of this LCP �V� C� Prasad and P� K� Sinha ��������

���� Let M be a square nondegenerate matrix� Prove that the number of com	

plementary feasible solutions for the LCP �q�M�� is either even for all q that are

nondegenerate� or odd for all q that are nondegenerate �K� G� Murty ��������

���� Given q � Rn and a square matrixM of order n� q is said to be nondegenerate

with respect to M � if q does not lie in the linear hull of any set of n�� or less column

vectors of �I
��� �M��

Let M be a nondegenerate Q	matrix of order n satisfying the property for some

q � Rn which is nondegenerate with respect toM � the LCP �q�M� has an odd number

of solutions� Prove that small perturbations in the entries of M still leave it as a

nondegenerate Q	matrix �A� Tamir��

���� Let M be a square matrix of order � and let I be the identity matrix of order

�� Prove that M is a Q	matrix i the LCPs ��I���M� and ��I���M� both have

complementary feasible solutions �L� M� Kelly and L� T� Watson ��������

���� Let

M �

�������
� �� �
� �� �
� ��� ����

������� � �q �

�������
�
�

��

�������
and let I be the identity matrix of order �� Show that the LCPs ��I���M�� ��I���M��

��I���M� all have complementary feasible solutions� but the LCP ��q�M� does not have

a complementary feasible solution� This clearly shows that the result in Exercise ����

cannot be generalized for n � � �L� M� Kelly and L� T� Watson ��������

���� Consider the following matrix

M��� �

����������
�� �� ��� ���� �
� � � � �� � �
�� �� ��� �
� � � � � �

����������
and let I be the identity matrix of order ��

�a� Show that M��� is a nondegenerate matrix for all � �� � � ��

�b� Show that M��� is a Q	matrix�

�c� Show that M��� is not a Q	matrix for � � � � �� In particular� let q��� �

�� � ����I�� � ������������� �����������T � Show that the LCP �q����M���� has

no complementary feasible solution when � � � � ��
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These results clearly establish that small perturbations in its elements might

change a nondegenerate Q	matrix into a nondegenerate non Q	matrix �L� M� Kelly

and L� T� Watson ��������

���	 LetM be a given square matrix of order n� Prove that the set of complementary

feasible solutions for the LCP �q�M� is a bounded set for every q � Rn� i �w� z� �

��� �� is the unique solution of the LCP ���M��

���� The set of nondegenerate Q	matrices is closed in the relative topology of the set

of nondegenerate matrices�

Let M be a given nondegenerate Q	matrix of order n� Let � � �� and let �M be

a square matrix of order n satisfying the properties that

a� M � ��M is a nondegenerate Q	matrix for all � �� � � ��

b� M � ��M is nondegenerate�

Then prove that M � ��M is also a Q	matrix�

Using the same arguments� prove the following
 Suppose M��M�� � � � is a given

in�nite sequence of nondegenerate Q	matrices satisfying the property that it converges

to a limit� M � If M is also nondegenerate� prove that M is a Q	matrix �L� T� Watson

������� and M� Aganagic and R� W� Cottle �������

���� Let M be a square matrix of order n satisfying the following properties


a� mij �� � for all i �� j� and mii �� ��

b� There exists a row vector � � Rn satisfying � � � and �M � ��

Property b� is easily satis�ed by � � e� if a� holds and jmiij �
P

j ��imij for each i�

Prove the following


i� If M satis�es properties a�� b� above� then Pos�I� � Pos��M��

ii� If M satis�es properties a�� b� above� then either the LCP �q�M� has a

solution in which w � �� or it has no solution at all�

iii� If M satis�es properties a�� b� above� the LCP �q�M� has a solution i

�Mz � q

z �� �

has a solution� And if z is a feasible solution of the above system then

�w � �� z� is a solution of the LCP �q�M��

iv� If M satis�es conditions a�� b� above� and if q � �� the the LCP �q�M� has

�n distinct solutions �R� Saigal ��������

���� Consider the LCP �q�M� where M is a square matrix of order n all of whose

nonempty principal subdeterminants are strictly negative� Prove the following
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i� The matrix ����������������

�� � �� � � � �
� �� � �� � � �

�� � �� � � � �
� �� � �� � � �
���

���
���

��� ��

����������������
satis�es the property that all its nonempty principal subdeterminants are strictly

negative�

ii� If all the nonempty principal subdeterminants of M are strictly negative� either

M � � or there exists an x � � satisfying Mx � ��

�iii� All the nonempty principal subdeterminants of M are strictly negative i all the

proper principal subdeterminants ofM�� are strictly positive and the determinant

of M�� is strictly negative�

�iv� If all the nonempty principal subdeterminants of M are strictly negative and

M � �� then the LCP �q�M� has a solution whenever q �
� �� and no solution

whenever q ��� �� Also when q � �� it has exactly two solutions�

v� If all the nonemtpy principal subdeterminants of M are strictly negative and

M �� �� then the LCP �q�M�

a� has a unique solution whenever q ��� ��

b� has exactly three solutions whenever q � ��

c� has exactly two solutions� with one solution degenerate� whenever q �� � with

at least one qi � ��

Hence establish that any matrix M �� � whose nonempty principal subdetermi	

nants are strictly negative� is a Q	matrix�

Also prove that in this case� if q � �� and wi � � in some solution of the LCP �q�M��

then that wi � � in all other solutions of the LCP �q�M��

vi� Whenever M is such that all the nonempty principal subdeterminants of M are

strictly negative� the LCP �q�M� has either �� �� � or � solutions for any q � Rn

�M� Kojima and R� Saigal ��������

���
 If M is a Q	matrix� prove that the system

Mz � �

z �� �

has a solution z�

���� LetM be a given square matrix of order n� For j � � to n� let A�j � fI�j ��M�jg�

Then �A��� � � � � A�n� is a complementary set of column vectors for the LCP �q�M� and

we call the matrix with A��� � � � � A�n as its columns in this order� a complementary

submatrix of �I
��� �M�� Obviously there are �

n such matrices� and let these be

A�� � � � � A�
n

� On these� some may be nonsingular and some singular� Let there be
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l nonsingular complementary submatrices� and let all the �n � l remaining comple	

mentary submatrices be singular� Rearrange the complementary submatrices in the

sequence A�� � � � � A�
n

� so that the �rst l of these are nonsingular� and all the remaining

are singular� So the complemenatry cone Pos�At� has a nonempty interior i � �� t �� l�

and has an empty interior if l� � �� t �� �
n�

Prove that M is a Q	matrix i

l�
t��

Pos�At� � Rn

that is� i the union of all the complementary cones with a nonempty interior is Rn�

���� Using the same notation as in Exercise ���� for any �xed i between � to n�

the subcomplementary set of column vectors �At
��� � � � � A

t
�i��� A

t
�i��� � � � � A

t
�n� is linearly

independent for � �
� t �� l� and let Ht

i denote the hyperplane in R
n which is the

subspace of Rn containing all the column vectors in this subcomplementary set�

If there exists an i between � to n such that I�i and �M�i are both in one of the

open half	spaces determined by Ht
i� for each t � � to l� then prove that M is not a

Q	matrix�

���� A Finite Procedure for Checking Whether a Given Square Matrix M

of Order n is a Q�Matrix

Using the same notation as in Exercise ����� let Dt be �At��� for t � � to l� For

each t � � to l� select one of the rows of Dt� for example the itth for t � � to l� leading

to the set of row vectors fDt
it� 
 t � � to lg� For each t� it can be chosen in n dierent

ways� and hence there are nl dierent sets of row vectors fDt
it� 
 t � � to lg obtained

in this manner� For each such sets de�ne the following system of linear inequalities in

the variables q � �q�� � � � � qn�
T

Dt
it�q � �� t � � to l � ������

So there are nl dierent systems of inequalities of the form ������ depending on the

choice of the rows from the matrices Dt�

�i� ������ is a system of l strict linear inequalities in n variables q�� � � � � qn� Prove

that the system ������ has a feasible solution q� i the following system ������ is

infeasible

lX

t��

�tD
t
it� � �

lX
t��

�t � �

�t �
� � for all t � � to l

������



���� Exercises �
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that is� it has no feasible solution � � ��t��

�ii� Prove thatM is aQ	matrix i each of the nl systems of the form ������ is infeasible�

that is� none of them has a feasible solution q�

�iii� Remembering that l �� �
n� construct a �nite procedure for checking whether a

given square matrixM of order n is a Q	matrix� using the above results� Comment

on the practical usefulness of such a procedure �D� Gale� see �������

���� A square matrixM is called a Q�	matrix if the union of all complementary cones

in C�M� is a convex set�

�i� Prove that M is a Q�	matrix i w�Mz � q� w �
� �� z

�
� � has a feasible solution

implies that the LCP �q�M� has a complementary feasible solution�

�ii� Prove that M is a Q�	matrix i

�q��M� has a complemenatry feasible solution

implies

�q�M� has a complemenatry feasible solution for all q �� q� �

�iii� Prove that every ���	matrix is a Q� matrix� Also develop necessary and su�cient

condition for a �� � matrix to be a Q�	matrix�

�iv� Consider the matrices

M �

�������
�� � �
� �� �
� � ��

������� � q �

�������
���
�
�

������� �

Show that w � Mz � q� w �
� �� z

�
� � has a feasible solution� but the LCP

�q�M� has no complementary feasible solution� Also� in this case verify that all

the proper principal submatrices of M are Q�	matrices �by �i�� this implies that

there are matrices which are not Q�	matrices� but all of whose proper submatrices

are Q�	matrices��

���� A Finite Characterization for Q��Matrices

Given a square matrix M of order n� using the notation and results in Exercises

����� ����� prove that M is a Q�	matrix i

Pos�I
��� �M� �

l�
t��

Pos�At� �

Using this� show that M is a Q�	matrix� i each of the following n
l systems

lX
t��

�tD
t
it� �� � �

��M �
� �

lX
t��

�t � �

� �
� �� �

�
� �
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are infeasible �i� e�� none of them have a feasible solution ��� ���� This provides a

method for checking whether a given square matrix of order n� is a Q�	matrix or not�

using at most a �nite amount of computation�

���	 Prove that every PPT of a Q	matrix is a Q	matrix�

���� Let M be a square matrix of order n� Prove that all nonempty principal sub	

matrices of M are Q	matrices i any of the following three equivalent conditions hold�

i� For all nonempty principal submatrices M of M �including M itself�� the system

My �� �

y � �

has no solution�

ii� For every vector x � �� there exists an index j such that xj � � and �Mx�j � ��

iii� For every q �
� � the LCP �q�M� admits the unique solution �w� z� � �q� ��

�R� W� Cottle �������

���� Row and Column Scalings of Matrices

Given a square matrix of order n� multiply its rows by positive numbers ��� � � � �

�n respectively� Multiply the columns of the resulting matrix by positive numbers

��� � � � � �n respectively� The �nal matrix M
�� is said to have been obtained from M

by row scaling using the positive vector of scales � � ���� � � � � �n�� and column scaling

using the positive vector of scales � � ���� ��� � � � � �n��

�i� Prove that� to every LCP associated with the matrix M � there is a correspond	

ing LCP associated with the matrix M �� that can be obtained by dividing each

constraint by a suitable positive number and appropriate scaling of the variables

�i� e�� choose appropriate units for measuring it�� and vice versa�

�ii� Prove that M is a P 	matrix i M � is�

�iii� Assume thatM is an asymmetric P 	matrix which is not a PD matrix� It is possible

that M � is PD �e� g�� let M �

��� � �
��� �

���� Obtain M � using � � ����� ���

� � ��� �� and verify that the resulting matrix is PD�� If M is either a lower

triangular or an upper triangular P 	matrix� show that positive scale vectors �� �

exists� such that the resulting matrix is PD�

�iv� Let

M �

�������
� �� ��
� � �
� �� �

�������
where � is a positive number� Verify that M is a P 	matrix� When � is su�ciently

small� prove that there exist no positive scale vectors �� � which will transform

this matrix into a PD matrix by scaling�
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If M is a P 	matrix which is not PSD� the LCP �q�M� is equivalent to the

nonconvex quadratic program

Minimize zT �Mz � q�

Subject to z �� �

Mz � q �� � �

And yet� if we can �nd positive row and column scale vectors �� � that will

convert M into a PD matrixM � by scaling� this problem can be transformed

into an equivalent convex quadratic programming problem� For this reason�

the study of scalings of P 	matrices that transform them into PD matrices is

of interest� Prove that every P 	matrix of order � can be scaled into a PD	

matrix� Characterize the class of P 	matrices which can be transformed into

PD matrices by scaling �R� Chandrasekaran and K� G� Murty��

���� Let D be a given square matrix of order n and let I be the unit matrix of order

n� Let c� b be given column vectors in Rn� Let

q �

��� c
b

��� � M �

��� D I
�I �

��� �

With this data� prove that LCP �q�M� always has a solution� and that the solution is

unique if D is a P 	matrix �B� H� Ahn �������

���
 LetM be a Z	matrix of order n� Prove thatM is a P 	matrix if the LCPs ���M�

and �en�M� have unique solutions�

���� Let M be a given square matrix of order n� and let D be an arbitrary diagonal

matrix with positive diagonal elements� Prove that the following are equivalent�

i� M is a P 	matrix�

ii� �I � E�D � EM is a P 	matrix for all diagonal matrices E � �Eij� of order n

satisfying � �� Eii �� � for all i�

iii� �I � E�D � EM is nonsingular for all diagonal matrices E � �Eij� of order n

satisfying � �� Eii �� � for all i �M� Aganagic �������

���� Develop an e�cient method based on the complementary pivot algorithm to

check whether a given square matrix is an M 	matrix �K� G� Ramamurthy ��������

���� Prove that a Z	matrix which is also a Q	matrix must be a P 	matrix� Also prove

that every M 	matrix is a U 	matrix�

���� Prove that a symmetric matrix is semi	monotone i it is copositive� Prove that

a symmetric matrix M is strictly semi	monotone i it is strictly copositive�
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���� If M is a fully semi	monotone matrix and �w� z� is a solution of the LCP �q�M�

and w � z � �� prove that �w� z� is the unique solution of this LCP�

���		 �Research Problem� Given a square matrix M of order n� develop �nite sets

of points ���� and ���� in R
n� constructed using the data in M � satisfying the properties

�i� M is a Q	matrix if the LCP �q�M� has a solution for each q � �����

�ii� M is a Q�	matrix if the LCP �q�M� has a solution for each q � �����

���	� Let M be a P 	matrix of order n� Let J � f�� �� � � � � ng� J � f�� �� � � � � ng n J�

Let �A�j 
 j � J� be a subcomplementary vector corresponding to J� For each j � J�

let fA�j � B�jg � fI�j ��M�jg� Is the following conjecture  �there exists a hyperplane

containing the linear hull of �A�j 
 j � J� which separates the convex hull of fA�j 
 j �

Jg from the convex hull of fB�j 
 j � Jg��  true�

���	� Let M be a square matrix of order n� M is said to be totally principally

degenerate i all its principal subdeterminants are zero� Prove that M is totally

principally degenerate i it is a principal rearrangement of an upper triangular matrix

with zero diagonal elements� Use this to develop an e�cient algorithm to check whether

a matrix is totally principally degenerate �T� D� Parsons ��������

���	� Let M be a square matrix of order n which is not an R�	matrix �i� e�� the LCP

���M� has �w � �� z � �� as the unique solution�� Show that there exists a square

matrix �M � � �mij� of order n� satisfying

�mnn � � and

�min � � or � for all i � � to n� �

such that for any q � Rn� the LCP �q�M� can be transformed into an equivalent LCP

��q� �M�� by performing a block principal pivot step� some principal rearrangements� and

row scalings�

Use this to show the following

a� Every Q	matrix of order � must be an R�	matrix�

b� Every Q	matrix which is also a PSD matrix� must be an R�	matrix�

Verify that the result in �a� does not generalize to n � �� using the matrix

M �

�������
� � � �
� � � �
�� �� �

������� �
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Chapter �

PRINCIPAL PIVOTING METHODS

FOR LCP

In this chapter we discuss several methods for solving the LCP based on principal

pivot steps� One common feature of these methods is that they do not introduce any

arti�cial variable� These methods employ either single or double principal pivot steps�

and are guaranteed to process LCPs associated with P �matrices or PSD�matrices or

both� We consider the LCP �q�M� of order n� which is the following in tabular form�

w z q

I �M q

w� z �� �� wT z � � ���	�

��� PRINCIPAL PIVOTING METHOD I

This method is most useful for solving LCPs �q�M� in which M is a P �matrix� It

only moves among complementary basic vectors for ���	� which are infeasible� and

terminates when a complementary feasible basic vector is obtained� It employs only

single principal pivot steps� The initial complementary basic vector for starting the

method is w � �w�� � � � � wn��

In this method� the variables may change signs several times during the algorithm�

before a complementary solution is obtained in the �nal step�

In a general step� let q � �q�� � � � � qn�
T be the updated right hand side constants

vector in the present canonical tableau of ���	�� If q �� �� the present complementary
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basic vector is feasible and the present BFS of ���	� is a solution of the LCP �q�M��

terminate� If q ��� �� let

r � Maximum fi 
 i such that qi � �g � �����

Make a single principal pivot step in position r� that is� replace the present basic

variable in the complementary pair �wr� zr� by its complement� If this pivot step

cannot be carried out because the pivot element is zero� the method is unable to

continue further� and it terminates without being able to solve this LCP� Otherwise

the pivot step is carried out and then the method moves to the next step�

Example ���

M �

�������
	 � �
� 	 �
� � 	

������� q �

�������
�	
�	
�	

������� �

The various canonical tableaus obtained in solving this LCP �q�M� by Principal Piv�

oting Method I are given below� In each tableau the pivot element is inside a box�

Basic

Variable w� w� w� z� z� z� q

w� 	 � � �	 � � �	

w� � 	 � �� �	 � �	

w� � � 	 �� �� �	 �	

w� 	 � � �	 � � �	

w� � 	 � �� �	 � �	

z� � � �	 � � 	 	

w� 	 � � �	 � � �	

z� � �	 � � 	 � 	

z� � � �	 �� � 	 �	

w� 	 � � �	 � � �	

z� � �	 � � 	 � 	

w� � �� 	 � � �	 	
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Basic

Variable w� w� w� z� z� z� q

z� �	 � � 	 � � 	

z� � �	 � � 	 � �	

w� � �� 	 � � �	 �	

z� �	 � � 	 � � 	

z� � �	 � � 	 � �	

z� �� � �	 � � 	 	

z� �	 � � 	 � � 	

w� �� 	 � � �	 � 	

z� � � �	 � � 	 �	

z� �	 � � 	 � � 	

w� �� 	 � � �	 � 	

w� �� � 	 � �� �	 	

The solution of this LCP �q�M� is therefore �w�� w�� w�� z�� z�� z�� � ��� 	� 	� 	� �� ���

Theorem ��� Suppose M is a given P �matrix of order n� When Principal Pivoting

Method I is applied on the LCP �q�M�� it terminates with a complementary feasible

basic vector for it in a �nite number of pivot steps� Also� a complementary basic vector

which appeared once in the course of this method never reappears in subsequent steps�

Proof� The proof is by induction of n� Since M is a P �matrix� and all the pivot steps

in the method are principal pivot steps� by Theorem ��� and Corollary �� all the

pivot steps required are possible� and the pivot element in all the pivot steps is strictly

negative� If n is equal to 	� the theorem is easily veri�ed to be true� and the method

terminates after at most one pivot step� We now set up an induction hypothesis�

Induction Hypothesis� Suppose F is a P �matrix of order s and p � Rs� For

s �� n� 	� Principal Pivoting Method I applied on the LCP �p� F � solves it in a �nite

number of pivot steps without cycling�

We will now show that the induction hypothesis implies that Principal Pivot�

ing Method I solves the LCP �q�M� of order n in a �nite number of steps with�

out cycling� Consider the principal subproblem of the LCP �q�M� in the variables

� � �w�� � � � � wn�
T � � � �z�� � � � � zn�

T � If Principal Pivoting Method I is applied on

this subproblem� by the induction hypothesis� it terminates in a �nite number of pivot

steps with a complementary feasible basic vector for it� Let �yl�� y
l
�� � � � � y

l
n�� l � 	 to
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k be the sequence of complementary basic vectors for this subproblem obtained under

this method�

When Principal Pivoting Method I is applied on the original LCP �q�M�� w� is a

basic variable in the initial complementary basic vector w� The question of replacing

w� from the basic vector will only arise for the �rst time when a complementary basic

vector �w�� y�� � � � � yn� associated with a complementary basis B� for ���	� is reached�

satisfying the property that if q � B��
� q� then q� �

� �� � � � � qn �
� � �i� e�� �y�� � � � � yn�

must be a complementary feasible basic vector for the principal subproblem in the

variables �� ��� When such a complementary basis B� is obtained for the �rst time in

the method� if q� � �� w� is replaced from the basic vector by z�� and the method is

continued� On the other hand if q� �� �� B� is a complementary feasible basis for ���	�

and the method terminates� Hence the �rst k basic vectors obtained when Principal

Pivoting Method I is applied on ���	� must be �w�� y
l
�� � � � � y

l
n�� l � 	 to k�

By Theorem �	� the LCP �q�M� has a unique solution� Suppose it is � �w� �z�� We

consider two possible cases separately�

Case �� �z� � ��

Since �yk� � � � � � y
k
n� is a complementary feasible basic vector for the principal subprob�

lem in the variables �� �� the hypothesis in this case� and Theorem �	� imply that

�w�� y
k
� � � � � � y

k
n� must be a complementary feasible basic vector for the LCP �q�M��

Hence in this case the method solves the LCP �q�M� in a �nite number of steps�

without cycling�

Case �� �z� � ��

In this case Theorem �	 implies that every complementary basic vector of the form

�w�� y�� � � � � yn� must be an infeasible basic vector for ���	�� Let B� be the comple�

mentary basis for ���	� corresponding to �w�� y
k
� � � � � � y

k
n�� If q � �qi� � B��

� q� then

q� � �� q� �
� �� � � � � qn �

� �� since �yk� � � � � � y
k
n� is a complementary feasible basic vec�

tor for the principal subproblem in the variables �� �� Hence� the next basic vec�

tor obtained in Principal Pivoting Method I applied on the LCP �q�M� must be

�z�� y
k
� � � � � � y

k
n� � �u�� � � � � un� � u� say� Let v � �v�� � � � � vn� where vj is the com�

plement of uj � j � 	 to n� Let the canonical tableau of ���	� with respect to u be

u v q

I �fM �q ����

fM is the PPT of M corresponding to the complementary basic vector u� and by

Theorem ��� fM is also a P �matrix� By our assumptions in this case� ���� is the system

of equations in an LCP ��q�fM� with �ui� vi� as the complementary pair of variables

for i � 	 to n� which has a unique solution in which v� is zero� The subsequent

complementary basic vectors obtained in the Principal Pivoting Method I applied

on the LCP �q�M� are exactly those which will be obtained when the LCP ��q�fM��
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which has the property that v� � � in its unique solution� is solved by the same

method starting with u as the initial complementary basic vector� Applying the result

established under Case 	 to ����� we conclude that when Principal Pivoting Method I

is continued from ����� u� � z� remains as a basic variable� and after a �nite number

of principal pivot steps� a complementary feasible vector will be obtained� Also no

cycling ever occurs�

This proves that under the induction hypothesis� the statement of the theorem

holds for the LCP �q�M� which is of order n� The theorem has been veri�ed for n � 	�

Hence it holds for all n by induction�

When M is a P �matrix� all the pivot elements in pivot steps encountered under

Principal Pivoting Method I applied on the LCP �q�M� will be strictly negative� by

Corollary ��� If row r is the pivot row� just before this pivot step the updated right

hand side constant in row r is strictly negative �and this is the bottom most row with

this property at this stage� and just after this pivot step� the updated right hand side

constant in row r becomes strictly positive�

The pivot row choice rule ����� in Principal Pivoting Method I is only one of

the rules which guarantee �nite termination when M is a P �matrix� Actually� let

�i�� i�� � � � � in� be any permutation of �	� �� � � � � n�� Select this permutation at the be�

ginning of the method arbitrarily� but keep it �xed during the method� Suppose�

instead of selecting r as in ������ it is selected by the following rule


s � Maximum ft 
 t such that qit � �g� r � is � �����

The rule ����� selects row r as the last row in which the updated right hand side con�

stant vector is strictly negative when the rows are listed in the �xed order �i�� i�� � � � � in��

The rule ����� becomes rule ����� if the permutation �i�� � � � � in� is �	� �� � � � � n�� It

can be veri�ed that Principal Pivoting Method I with the rule ����� for selecting

r� instead of ������ again solves the LCP �q�M� in a �nite number of steps with�

out cycling� if M is a P �matrix� The proof is very similar to the proof of Theorem

��	� Instead of looking at the principal subproblem of the LCP �q�M� in the vari�

ables ��w�� � � � � wn�� �z�� � � � � zn��� look at the principal subproblem in the variables

��w�� � � � � wi���� wi���� � � � � wn�� �z�� � � � � zi���� zi���� � � � � zn��� and change the wording

of the induction hypothesis to account for the new rule ����� of the choice of r in the

method� Row i� plays the same role as row 	 did in the proof of Theorem ��	�

Computational experience indicates that by the proper selection of the permuta�

tion of the rows �i�� � � � � in� and the use of ����� for choosing r in the Principal Pivoting

Method I� its computational e�ciency can be improved substantially� Verify that on

the problem in Example ��	 above� if the permutation of rows �i�� i�� i�� � ��� � 	�

is used together with the rule ����� for the choice of r� Principal Pivoting Method I

solves that problem after exactly one pivot step� whereas the original version of the

method illustrated in Example ��	 took seven pivot steps� However� no rules have been

developed yet for the choice of the row permutation �i�� � � � � in� depending on the data
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in q�M � to guarantee that Principal Pivoting Method I solves the LCP �q�M� most

e�ciently�

Even with rule ����� for pivot row choice� the performance of Principal Pivoting

Method I on LCPs �q�M� in whichM is a positive de�nite matrix� was superior to other

methods in computational tests� See� for example� reference ���		� of M� M� Kostreva�

The interesting fact is that when M is a P �matrix� Principal Pivoting Method I solves

the LCP �q�M�� whether q is degenerate or not� in a �nite number of pivot steps

without cycling� without the explicit use of any techniques for resolving degeneracy�

like perturbation of the right hand side constants vector�

It is not necessary to calculate the canonical tableaus of ���	� in each pivot step to

implement Principal Pivoting Method I� Since it does not require the columns of the

basis inverse other than the pivot column in any step� an implementation of this method

using either the product form of the inverse� or the elimination form of the inverse would

be the most convenient to use� when solving problems on a digital computer� Such an

implementation improves the numerical stability and also the computational e�ciency

of the method�

When M is a general matrix �not a P �matrix�� Principal Pivoting Method I may

be forced to terminate without obtaining a complementary feasible basic vector for the

LCP �q�M� if the required single principal pivot step cannot be performed in some

step because the corresponding diagonal element in the PPT of M at that stage is

zero� However� if M is a nondegenerate matrix �and not a P �matrix�� all the required

single principal pivot steps in Principal Pivoting Method I can always be carried out

by Theorem ��� But in this case the pivot elements in some single principal pivot

steps under the method may be strictly positive� In such a pivot step� the updated

right hand side constant in the pivot row remains negative even after the pivot step�

and if the method is continued after such a pivot step� the same complementary basic

vector may reappear and cycling occurs� Thus� Principal Pivoting Method I seems to

be most useful only for solving LCPs �q�M� where M is a P �matrix�

Comment ��� This method and the �niteness proof for it in the case when M is a

P �matrix are taken from ���	�� of K� G� Murty�

����� Extension to an Algorithm for the

Nonlinear Complementarity Problem

In ����� G� J� Habetler and M� M� Kostreva have extended the Principal Pivoting

Method I into an algorithm for solving the nonlinear complementary problem �	�����

Let f�x� � �f��x�� � � � � fn�x��
T � where each fi�x� is a real valued function de�ned on

Rn� f is said to be a P 
function� if for all x �� y � Rn� there exists an i such that

�xi � yi��fi�x� � fi�y�� � �� Given f and J � f	� �� � � � � ng de�ne gJ�x� � �gJj �x���

where
gJj �x� � xj for j �� J

� fj�x� for j � J�
�����
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The P �function f is said to be a nondegenerate P 
function� if gJ�x� de�ned as in

����� is a function from Rn onto Rn for each subset J � f	� � � � � ng� If M is a given

square matrix of order n� from Theorems �		� �	� it follows that the a�ne function

Mx� q is a nondegenerate P �function i� M is a P �matrix�

Consider the system of equations gJ�x� � �� If this system has a solution x� then x

is said to be a complementary point associated with the subset J� A complementary

point x clearly satis�es the complementary condition xT f�x� � � in �	����� If f�x� is a

nondegenerate P �function� it can be shown �see references ����� ��	�� ��	�� that there

exists a unique complementary point associated with any subset J � f	� � � � � ng� and

that the NLCP �	���� has a unique complementary feasible solution� The algorithm

discussed here is guaranteed to solve the NLCP �	���� when f�x� is a nondegenerate

P �function�

For any J � f	� � � � � ng� the solution of the system

gJ�x� � � �����

can be found by iterative methods for solving systems of nonlinear equations such as

Newton�Raphson method �see Section ����� and �	����� Newton�Raphson method

begins with an initial point x� and generates a sequence of points by the iteration

xr�� � xr � �rgJ�xr����gJ�xr�� We will denote the solution of ����� by the symbol

x�J��

The Algorithm

Start with J � �� In a general step suppose J is the current subset of f	� � � � � ng� Find

the associated complementary point x�J�� If x�J� � f�x�J�� �� �� then the solution of

NLCP �	���� is xj�J�� terminate� If x�J� � f�x�J�� ��� �� �nd r � min �fj 
 xj�J� �

f�x�J�� � �g� De�ne �J � J n frg if r � J� J � frg otherwise� go to the next step with
�J as the new subset and continue�

In ����� G� J� Habetler and M� M� Kostreva have proved that if f�x� is a nonde�

generate P �function� this algorithm �nds the unique solution of the NLCP �	���� in

a �nite number of steps� Computational tests have indicated that this algorithm is

quite e�cient if implemented with an e�cient and robust method for solving systems

of nonlinear equations of the form ������

����� Some Methods which Do not Work For LCP

Y� Bard�s Method

A method similar to Principal Pivoting Method I was suggested by Y� Bard �see ���	��

pages 	�� � 	���� His method is the following
 start with w � �w�� � � � � wn� as the

initial complementary basic vector�
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In a general step� let q � �q�� � � � � qn�
T be the updated right hand side constants

vector in the canonical tableau of ���	� with respect to the current complementary

basic vector� If q �
� �� the present BFS of ���	� is a solution of the LCP �q�M��

terminate� If q ��� �� let r be such that qr � Minimum fqi 
 i such that qi � �g� If

there is a tie� select an r among those tied� arbitrarily� Make a single principal pivot

step in position r� If this pivot step cannot be carried out because the pivot element

is zero� the method is unable to continue further� and it terminates without being able

to solve this LCP� Otherwise the pivot step is carried out� and the method moves to

the next step�

This method can cycle even when M is a P �matrix� as this following example

constructed by L� Watson indicates�

Example ���

Let

M �

�������
	� � ��
� ��	 ����
� ��� ��	

������� � q �

�������
	�
	

� 	

������� �

It can be veri�ed that M is a P �matrix� When this method is applied on the LCP

�q�M�� ���	� with this data� the following complementary basic vectors are obtained�

Complementary qT � Transpose of the r � Position of the

Basic Vector Updated Right Hand Side Single Principle Pivot Step

Constants Vector at this Stage

�w�� w�� w�� �	�� 	��	� 

�w�� w�� z�� ��	���� 	�� 	

�z�� w�� z�� �	��	� 	�� �

�z�� z�� z�� ��� 	���	�� 

�z�� z�� w�� ��	� 	�� 	� 	

�w�� z�� w�� �	���	���� �

�w�� w�� w�� �	�� 	��	� 

Hence the method cycles� even though the choice of r in each step in this example was

unambiguous� Let

M �

�������
���	 ���	 �

���� ��	 � ��
���� ���� 	��

������� � q �

�������
���	

����
	��

������� �

Verify that M is PD� Apply Y� Bard�s method on the LCP �q�M� with this data and

verify that the method cycles� even though the choice of r in each step of the method

is unambiguously determined�
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The Least Recently Considered Pivot Row Choice

Rule for Principal Pivoting Method I

Here the pivot row� r� is chosen by the following� Arrange the rows in any speci�c

order at the beginning of the algorithm� say 	� �� � � � � n� and �x this order� In Step 	�

choose the pivot row to be the �rst row with a negative right hand side constant� when

the rows are examined in the speci�c order 	� �� � � � � n� To choose the pivot row in any

subsequent step� identify which row was the pivot row in the previous step� Suppose

it was row i� Now examine the rows in the speci�c order i� 	� � � � � n� 	� � � � � i� 	� and

choose the �rst one with a negative updated right hand side constant as the pivot row�

This rule circles through the rows in the speci�c order beginning with the pivot

row of the previous step� until it �nds the �rst row eligible to be the pivot row in this

step and chooses it� A rule similar to this for choosing the entering column in the

primal simplex algorithm for linear programming problems has been found to make

it signi�cantly more e�cient� Hence this rule was proposed for the pivot row choice

in Principal Pivoting Method I� with the hope that it will be computationally more

e�cient� With this rule� the method does not work� unfortunately� Consider the LCP

�q�M� in Example ���� When this method is applied on that problem� it can be veri�ed

that it goes through exactly the same pivot steps as in Example ��� and cycles�

A Block Pivoting Method for the Linear Complementarity Problem

Let M be a square matrix of order n� Consider the following method for solving

the LCP �q�M�� Start with any complementary basic vector for ���	�� say� w �

�w�� � � � � wn��

In a general step let y � �y�� � � � � yn� be the present complementary basic vector�

and let q � �q�� � � � � qn� be the updated right hand side constants vector in the canonical

tableau of ���	� with respect to y� If q �
� �� the present BFS is a solution of the

LCP �q�M�� terminate� If q ��� �� de�ne the complementary vector of variables u �

�u�� � � � � un� by
uj � yj if qj �� �

� complement of yj� if qj � � �

If u is not a complementary basic vector �i� e�� if the complementary set of column

vectors corresponding to u is linearly dependent�� the method terminates without being

able to solve this LCP� If u is a complementary basic vector� a block pivot is made to

obtain the canonical tableau with respect to the new complementary basic vector u�

and the method moves to the next step�

Unfortunately this method can cycle even when M is a P �matrix and q is nonde�

generate� as illustrated by the following example constructed by L� Watson� Let


M �

�������
	 � ��

�� 	 �
�� � �

������� � q �

�������
	

�	
�

������� �
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When this method is applied on the LCP �q�M� beginning with the basic vector

w � �w�� w�� w��� we get the following sequence of basic vectors completing a cycle�

Complementary qT � Transpose of the

Basic Vector Updated Right Hand Side Constants Vector

�w�� w�� w�� �	��	���

�w�� z�� z�� ��	��� 	�

�z�� w�� z�� ��� 	��	�

�w�� w�� w�� �	��	���

In the LCP �q�M� if M is a P �matrix� and q is a nondegenerate the results in Theorem

��� indicate that the �n complementary basic vectors for the problem are in one to

one correspondence with the �n� n dimensional vectors of � and � sign symbols

�these are the signs of the components in the updated right hand side constants vector

with respect to the complementary basic vector�� The LCP �q�M� is equivalent to the

problem of �nding the complementary basic vector corresponding to the sign vector

consisting of all ��� sign symbols� under this one to one correspondence� This gives

the problem a combinatorial �avor� It may be possible to develop an e�cient algorithm

to solve the LCP �q�M� under these conditions� based on this result�

��� THE GRAVES� PRINCIPAL

PIVOTING METHOD

We will now discuss a principal pivoting method for solving LCPs developed by

Robert L� Graves in ������ This method is useful for solving LCPs �q�M� in which

M is PSD� Consider the LCP �q�M� where M is a given PSD matrix of order n�

���	�� This method deals only with complementary basic vectors for ���	�� beginning

with w � �w�� � � � � wn� as the initial complementary basic vector� It uses only single

or double principal pivot steps� All the complementary basic vectors obtained in the

method� excepting possibly the terminal one� will be infeasible� When a complementary

feasible basic vector for ���	� is obtained� the method terminates� In this method also�

variables may change signs several times during the algorithm�

The method requires a nonsingular square matrix of order n� say B� all of whose

rows are lexicopositive initially� Any nonsingular square matrix of order n� whose rows

are lexicopositive� can be used as the matrix B in the method� Whenever any pivot

steps are carried out on ���	�� the same row operations are also carried out on the

matrix B� Even though the row vectors of B are lexicopositive initially� they may not
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possess this property subsequently� after one or more pivot steps� In our discussion of

this method� we will choose B to be I� the identity matrix of order n� When B is

chosen as I� the updated B at any stage of the method will be the matrix consisting of

the columns of w in the canonical tableau of ���	� at that stage� and clearly� this will

be the inverse of the complementary basis at that stage� Thus choosing B to be I is

very convenient� because� all the computations in the method can then be performed

e�ciently using the basis inverse�

Instead of choosing B as I� if it is choosen as some general nonsingular matrix

of order n whose rows are lexicopositive� the method is operated in the same way as

below� with the exception that �i� is to be replaced by the ith row of the update of

the matrix B� In this general method� the lexicopositivity of B is required so that the

statement of the corresponding version of Theorem ��� discussed below� holds in Step

	 of this general method� We will now describe the method with B � I�

The Graves� Principal Pivoting Method

The initial complementary basic vector is w � �w�� � � � � wn�� In a general step� let

y � �y�� � � � � yn�� where yj � fwj � zjg for each j � 	 to n� be the present complementary

basic vector� Let � � ��ij� be the inverse of the complementary basis corresponding

to y� Let q be the present updated right hand side constants vector� that is� q � �q�

If q �� �� y is a complementary feasible basic vector for ���	� and the present BFS is a

solution of the LCP �q�M�� Terminate� If q ��� �� de�ne the row vector f � �f�� � � � � fn�

in this step to be f � lexico maximum f�i��qi 
 i such that qi � �g� Since � � ��ij� is

nonsingular� this lexico maximum is uniquely determined� and suppose it is attained

by i � r� So f � ��r���qr� This is known as the f
vector in this step� Row r in the

canonical tableau of ���	� with respect to the present complementary basic vector� is

known as the crucial row in this step� Let tr denote the complement of yr and let

A�r be the column vector corresponding tr in the original tableau ���	�� The updated

column of tr is A�r � �A�r � �a�r� � � � � anr�
T � say� If arr �� �� perform a single principal

pivot step in position r in the present complementary basic vector y and go to the next

step� If

arr � �� and air �� � for all i �����

under the assumption that M is PSD� ���	� does not even have a nonnegative solution

�this is proved in Theorem ��� below� and hence� the LCP �q�M� has no solutions�

Terminate� If arr � � and air � � for at least one i� �nd lexico maximum f��i� �

qi��r��qr���air 
 i such that air � �g� Let s be the i which attains this lexico maximum

�it is shown in Theorem �� bleow� that this s is unique�� Perform a double principal

pivot step in positions r and s in the present complementary basic vector y �we show

in Theorem �� below that this is possible under the assumption that M is PSD�� and

go to the next step�
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Example ���

Consider the following LCP associated with a PSD matrix�

w� w� w� w� z� z� z� z�

	 � � � �	 � �	 	 ��

� 	 � � �� � � �	 ��

� � 	 � 	 �� �  �

� � � 	 �� 	 � � 	

wj � zj �� �� for all j� wjzj � � for all j

We denote the f �row in the kth step by fk� We denote the inverses of the various

complementary bases obtained in the method as �k� k � 	� �� � � � �

The symbol A�j represents the present updated column of the entering variable�

First Inverse Tableau

Basic �� � Inverse of the Updated q

Variable Complementary Basis

w� 	 � � � ��

w� � 	 � � ��

w� � � 	 � �

w� � � � 	 	

Step �� The f �row in this step is lexico maximum f��	� �� �� ��������� 	� �� ����g�

����	��� �� ��� So r � � and row � is the crucial row� The present basic variable in the

crucial row is w�� its complement z� has the updated column vector A�� � ��� ����� 	�T �

Since a�� � �� we compute lexico maximum f��	� �� �� �� � ��������	��� �� ������

���� �� �� 	�� ����	��� �� ���g and this is attained by s � 	� So we carry out a double

principal pivot step in positions �� 	� This leads to
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Second Inverse Tableau

Basic �� � Inverse of the Updated q

Variable Complementary Basis

z� � �	�� � � �

z� 	�� �	�� � � �	

w� 	 � 	 � ��

w� �	�� ��� � 	 �

Step �� The f �vector here is lexico maximum f��	����	��� �� �����	� �� 	� ����g �

��	��� 	��� �� ��� So r � � and the second row is the crucial row again� The present

basic variable in the crucial row is z�� its complement w� has the updated column

��I�� � ��	����	��� ������T � Since a�� � �	�� �� �� we perform a single principal

pivot step in position �� This leads to

Third Inverse Tableau

Basic �� � Inverse of the Updated q

Variable Complementary Basis

z� �	 � � � �

w� �� 	 � � �

w� 	 � 	 � ��

w� �� � � 	 �

Step �� From the third inverse tableau we get f� � lexico maximum f��	� �� 	� ����g

� ��	��� ���	��� ��� So r �  and the crucial row is row  in this step� The basic

variable in the crucial row is w�� and the updated column vector of its complement�

z�� is A�� � ����	� �� ����T � �	� ���	��	�T � Since a�� � �	 �� �� we have to carry

out a single principal pivot in position  in this step� This leads to
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Fourth Inverse Tableau

Basic �� � Inverse of the Updated q

Variable Complementary Basis

z� � � 	 � �

w� � 	 � � � �

z� �	 � �	 � �

w� � � �	 	 		

Step �� From the fourth inverse tableau we get f� � lexico maximum f���� 	� �� ����g

� ��	����	����	� ��� r � � and row � is the crucial row� w� is the present basic

variable in the crucial row� the updated column vector of its complement� z�� is A�� �

����� ����� 	�T � ������� ����T � Since a�� � �� �� �� we do a single principal pivot

in position �� This leads to

Fifth Inverse Tableau

Basic �� � Inverse of the Updated q

Variable Complementary Basis

z� �	 �	�� �	 � �

z� �	�� �	�� �	 � 	

z� �	 � �	 � �

w� ���� ��� �� 	 	�

Since the updated q vector is now nonnegative� �z�� z�� z�� w�� is a complementary

feasible basic vector� The BFS
 �w�� w�� w�� w�� z�� z�� z�� z�� � ��� �� �� 	�� �� 	� �� �� is

a solution of this LCP� Terminate�

Example ���

Consider the LCP for which the original tableau is given below �M can be veri�ed to

be a PSD matrix in this problem��
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w� w� w� w� z� z� z� z� q

	 � � � �	 	 �	 �	 �

� 	 � � �	 �	 � �� �

� � 	 � 	 � �	 � ��

� � � 	 	 � � � �	

wj � zj �� �� and wjzj � �� for all j

Step �� The initial complementary basic vector is �w�� w�� w�� w��� We compute f� �

lexico maximum f���� �� 	� ��������� �� �� 	�g� ��� �� ���	�� So r � �� and the crucial

row is row �� w� is the present basic variable in the crucial row� and the updated

column vector of its complement� z�� is
 A�� � ��	���� �� ��T � a�� � �� and we

�nd that ai� �
� � for all i� So condition ����� is satis�ed in this step� The method

therefore terminates with the conclusion that the LCP has no solution� Actually� the

constraint corresponding to the fourth row is w� � z� � �z� � �	� which by itself has

no nonnegative solution� This clearly implies that this LCP �q�M� has no solution�

Proof of the Method

Theorem ��� If M is PSD and condition ����� is satis�ed in some step of the

Graves� principal pivoting method applied on ���	�� there exists no feasible solution to

w �Mz � q� w �
� �� z �� ��

Proof� Let y � �y�� � � � � yn� where yi � fwj � zjg for each j � 	 to n� be the comple�

mentary basic vector in the step in which condition ����� is satis�ed�

Let t � �t�� � � � � tn� where tj is the complement of yj for j � 	 to n� Let the

canonical tableau with respect to the complementary basic vector y be

y t

I A q

Let row r be the crucial row in this step� By ������ arr � � and air �� � for all i� Since

M is PSD� its PPT �A is also PSD� and hence by Result 	�� air � ari � � for all i�

So ari �� � for all i� So the equation corresponding to the crucial row� row r� in the

present canonical tableau� is yr�
Pn

i�� ariti � qr� Since qr � � �as row r is the crucial

row� and ari �� � for all i� this by itself has no nonnegative solution� This implies that

there exists no �w� z� satisfying w �Mz � q� w �
� �� z �� ��
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Theorem ��� In some step of the Graves� principal pivoting method applied on

���	�� if the crucial row is row r� and a single principal pivot in position r cannot be

carried out� and if condition ����� is not satis�ed� then the position s is determined

unambiguously� Also� if M is PSD� then a double principal pivot in positions r� s is

possible in this step�

Proof� Let y be the complementary basic vector in the step under discussion� Let

� � ��ij� be the inverse of the complementary basis associated with y� Let q � �q�

Let �A be the PPT of M corresponding to y� The hypothesis in the theorem implies

that arr � �� Suppose i � h� k both tie for the lexico maximum for determining s�

Then ��h� � qh��r��qr���ahr � �k� � �qk��r��qr���akr� which is a contradiction to the

nonsingularity of the basis inverse �� So s is determined unambiguously�

Now� let A�s be the updated column vector associated with the complement of ys�

The double principal pivot step of replacing yr� ys in the complementary basic vector

y by their complements� is possible i� the order two determinant

��� ass asr
ars arr

��� �� ��

Since arr � �� asr � � in this case� and ars � �asr �� �� this order two determinant is

nonzero� So the double principal pivot in positions r and s is possible in this step�

Theorem ��� Let M be a PSD matrix� Let �� be the inverse of the complementary

basis� and �q the updated right hand side constants vector� in some step of the Graves�

principal pivoting method applied on ���	�� If row l is the crucial row in this step� then

��i� � �qi� ��l���ql� for all i �� l � �����

Proof� Since the method begins with w as the initial complementary basic vector� the

inverse of the initial complementary basis is I� all of whose rows are lexicopositive�

From this� and from the de�nition of the crucial row in Step 	 of the method� it can

be veri�ed that the statement of the theorem holds true in Step 	 of the method� We

now show that if the statement of the theorem holds in a step� say step k� then it also

holds in the next step k � 	�

Suppose �� is the inverse of the complementary basis and �q the updated right

hand side constants vector in step k � 	 of the method� where k �
� 	� In the previous

step� step k� let y be the complementary basic vector� and let � be the inverse of the

complementary basis corresponding to y� Let row r be the crucial row in step k� Let

q � �q� it is the updated right hand side constants vector in step k� Suppose the

statement of the theorem holds true in step k� that is


�i� � qi��r��qr� for all i �� r � �����

Let tj be the complement of yj for j � 	 to n and let �A be the PPT of M corre�

sponding to the complementary basic vector y� Since M is PSD� by Theorem �	�� �A

is also a PSD matrix� So� by Results 	��� 	�� we have
 aii �� � for all i� and if aii � ��

then aij � aji � � for all j� Since rows r� l are the crucial rows in steps k� k � 	� we

have qr � �� �ql � ��
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If the pivot step in step k is a single principal pivot step in position r� we have

arr � �� �qr � qr�arr � � �which implies that l �� r� by the above facts�� ��r� � �r��arr�
��i� � �i� � �r��air�arr�� for i �� r� �qi � qi � qr�air�arr�� for i �� r� From ����� we have

�i�qr � qi�r�� This implies that for all i �� r� ��i� � �r��air�arr��qr � �qi � qr�air�

arr���r�� that is� ��i�qr � �qi�r�� Since arr � �� this implies that for all i �� r� ��i�qr�

arr � �qi�r��arr� So ��i� �qr � �qi ��r�� or� ��i� � �qi� ��r���qr�� since �qr � �� for all i �� r� From

this we get � ��i���qi� � � ��r���qr� for all i �� r satisfying �qi � �� Putting i � l in this

�since �ql � �� we get � ��l���ql� � � ��r���qr�� This and the previously proved statement

that ��i� � �qi� ��r���qr� together imply ����� for all i �� l such that �qi �� �� For i �� l such

that �qi � �� ����� holds by the de�nition of the crucial row in step k�	� Thus� in this

case� ����� holds in step k � 	 if it holds in step k�

If the pivot in step k is a double principal pivot step in positions r� s� we have

qr � �� arr � �� asr � �� ars � �asr � �� It can be veri�ed that this pivot step yields

��r� � ��s� � �r��ass�ars���asr � ��s� � �r��ars

��i� � �i� � �r��ais�ars�� ��s� � �r��ass�ars���air�asr� � for all i �� r� s

�qr � �qs � qr�ass�ars���asr � �qs � qr�ars

�qi � qi � qr�ais�ars�� �qs � qr�ass�ars���air�asr� � for all i �� r� s �

���	��

We will now prove that� for i �� s


��i� � �qi��r��qr� � ���		�

First consider the case where i �� r or s� Substituting for ��i� �qi and cancelling common

terms� we verify that if air �� ��

��i� � �qi

��r�
qr

�
� air

�
	

air

�
�i� � qi

��r�
qr

��
�

	

asr

�
�s� � qs

��r�
qr

���
� ���	��

If air � �� from the choice of s and the fact that asr � �� we conclude that the right

hand side of ���	�� is lexicopositive and hence ���		� holds� On the other hand if

air � �� then from the choice of s we conclude that the right hand side of ���	�� is

lexicopositive� and hence again ���		� holds� If air � �� from ���	�� we have ��i� �

�qi��r��qr� � �i� � qi��r��qr� and by ����� this implies that ���		� holds in this case

too� So ���		� holds for all i �� r� s� Now consider i � r� From ���	�� we verify that
��r� � �qr��r��qr� � ��s� � qs��r��qr���asr � � from ����� and the fact that asr � ��

So ���		� holds for i �� s� Since l is the crucial row in step k � 	� and �qs � �� we

know that l �� s� So from ���		� we have ��l� � �ql��r��qr� and since �ql � �� this yields

� ��l���ql� � ��r��qr�� Using this in ����� we get ��i� � �qi� ��l���ql� for all i such that i �� s

and �qi � �� which yields ����� for this i� If i is such that �qi � �� ����� follows from

the choice of the crucial row in step k � 	� since row l is the crucial row in step k � 	�

If i is such that i �� s and �qi � �� ����� follows from ���		�� If i � s� from ���	�� we

conlcude ��s���qs� � ��r��qr�� We have already seen above that ��r��qr� � � ��l���ql�� So

� ��s���qs� � � ��l���ql� and since �qs � � this implies ����� for i � s�
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Thus whether the pivot step in step k is a single or double principal pivot step�

if the statement of this theorem holds in step k� it holds in step k � 	� We already

veri�ed that the statement of the theorem holds in step 	� Hence it holds in all steps

of the method�

Theorem ��� The f �vector undergoes a strict lexico�decrease in each step of the

method� when applied on the LCP �q�M� where M is PSD�

Proof� We consider a step in the method� say step k� As in the proof of Theorem

���� let �� �� denote the inverse of the complementary bases� and let q� �q denote the

updated right hand side constant vectors� in steps k� k � 	 respectively� Let rows r� l

be the crucial rows� and let f � �f denote the f �vectors in steps k� k�	 respectively� We

wish to prove that �f � f � From the de�nition of the crucial row we have
 f � �r��qr�
�f � ��l���ql� If the pivot in step k is a single principal pivot step� we have already shown

in the proof of Theorem ��� that � ��l���ql� � � ��r���qr� � ��r��qr� which implies that
�f � f � If the pivot in step k is a double principal pivot step� we have already shown

in the proof of Theorem ��� that � ��l���ql� � ��r��qr� which implies that �f � f � So the

f �vector undergoes a strict lexico decrease as the algorithm moves from step k to step

k � 	� So it undergoes a strict lexico decrease in each step of the method�

Theorem ��� When M is PSD� the Graves� principal pivoting method either �nds

a solution of the LCP �q�M� or determines that it has no solution� in a �nite number

of steps�

Proof� Each complementary basic vector for ���	� corresponds to a unique f �vector�

In each step of the method� if it does not terminate by either �nding a complementary

feasible basic vector� or by determining that the LCP �q�M� has no solution� the f �

vector undergoes a strict lexico decrease� by Theorem ���� Hence in each step of the

method� a new complementary basic vector is obtained� thus a complementary basic

vector obtained in a step of the method� cannot reappear later on� Since there are at

most �n�complementary basic vectors for ���	�� the method must terminate by either

�nding a complementary feasible basic vector �the BFS of ���	� corresponding to which

is a solution of the LCP �q�M�� or by determining that ���	� does not even have a

nonnegative solution� after at most �n steps�

The proof of �nite convergence of this method is quite novel� and is based on

the fact that the f �vector undergoes a strict lexico decrease in each step� There is no

objective function in LCPs and the f �vector is really extraneous to the problem� and

yet� since the method guarantees that it undergoes a strict lexico decrease in each step�

the method must terminate in a �nite number of steps� and the only ways the method

can terminate is by either �nding a solution of the LCP or by determining that the

LCP has no solution�
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Theorem ��� If the Graves� principal pivoting method is applied on the LCP

�q�M� where M is a P �matrix� then the following statements hold


i� All pivot steps will be single principal pivot steps�

ii� In each step the pivot element is always strictly negative�

iii� The method terminates with a solution of the LCP in a �nite number of steps

without cycling�

Proof� �i� and �ii� follow from Corollary ��� It can be veri�ed that the proof of

Theorem ��� holds in this case too� and hence� the conclusion of Theorems ���� ���

remain valid here also� This implies �iii��

Thus the principal pivoting method discussed above can be applied to process

LCPs �q�M� when M is either a PSD matrix or a P �matrix� However� when M is a

P �matrix� Principal Pivoting Method I discussed in Section ��	 will probably be much

more e�cient since it does not require the rows of the explicit basis inverse� or the

determination of the lexico maximum of a set of row vectors in each step� The Graves�

principal pivoting method has the advantage of processing LCPs �q�M� which M in

PSD and not PD� and Principal Pivoting Method I may not be able to process these

problems�

Exercises

��� Relationship of the Graves Principal Pivoting Method to the Simplex

Algorithm� Consider the LP �	��� which can be written as

Minimize cx

subject to Ax� v � b

x �
� �� v �� �

���	�

where A is a matrix of order m	 n� v � �v�� � � � � vm�T � and �b �� �� So v is a feasible

basic vector for ���	�� The LCP corresponding to this LP is �q�M� with q� M given

as in �	�	��� Suppose the Graves� principal pivoting method is applied on ���	�� Then

prove the following


�i� All the pivots steps will be double principal pivot steps�

�ii� The columns of the PPT of M obtained in any step can be rearranged so that it

has the structure

M � �

��� � �A�T

A� �

��� �

�iii� The rows of the inverse of the basis at the end of each step can be rearranged so

that it has the following structure


� �

����� �
� ��

���
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where ��� �� square nonsingular matrix of orders n and m respectively�

�iv� If �c��b
T
�T is the updated right hand side constants vector in any step� then �b

is nonnegative�

�v� The sequence of basic solutions obtained in the Graves� principal pivoting method

applied on ���	� can be interpreted as the sequence of primal feasible and dual

basic solutions obtained in the various steps of the primal simplex algorithm using

the lexico minimum ratio rule for pivot row choice in each step� applied on the LP

���	� beginning with the primal feasible basic vector v �R� L� Graves �������

��� Consider the quadratic program �	�		� discussed in Section 	�� If Q�x� is a

convex function on Rn� prove that the LCP �	�	�� corresponding to it� is an LCP

�q�M� in which the matrix M is PSD� and so it can be processed by the Graves�

Principal Pivoting Method�

��� DANTZIG�COTTLE PRINCIPAL

PIVOTING METHOD

This method due to G� B� Dantzig and R� W� Cottle ����� ���� pre�dates the other

principal pivoting methods discussed so far� and evolved from a quadratic programming

algorithm of P� Wolfe ���	�� who seems to be the �rst to use a type of complementary

pivot choice rule� The method is useful for processing LCPs �q�M� in which M is

either a P �matrix or a PSD matrix� The method goes through a sequence of what

are called major cycles� Each major cycle begins with a complementary basic vector

and ends with a complementary basic vector� Intermediate basic vectors in a major

cycle are almost complementary basic vectors of the type discussed in Section ���� No

arti�cial variable is introduced� but the original problem variables may take negative or

nonnegative values during the method� When a nonnegative solution is obtained� it will

be a complementary feasible solution of the LCP �q�M� and the method terminates�

Once a variable becomes nonnegative in this method� it remains nonnegative in all

subsequent steps �this property distinguishes this method from the other principal

pivoting methods discussed so far�� Also� if M is a P �matrix or a PD matrix� once

a component of the updated q becomes nonnegative in this method� that particular

component will remain nonnegative in all future updated qs� Each major cycle makes

at least one more variable nonnegative� So there can be at most n major cycles when

the method is applied to solve an LCP of order n� The �rst major cycle begins with

w � �wj� as the initial complementary basic vector�

If q is nondegenerate� each component of the updated q remains nonzero through�

out and there will never be any ties for the blocking variable �this term is de�ned
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below� in each step of any major cycle� thus identifying the blocking variable uniquely

and unambiuously in every step� If q is degenerate� there may be ties for the blocking

variable� However� as discussed in Section ������ in this case q can be perturbed to

become nondegenerate� treating the perturbation parameter to be positive and small

without giving any speci�c value to it� This requires the use of the lexico minimum

ratio test in place of the usual minimum ratio test� whenever it is used� right from the

beginning� and this again guarantees that the blocking variable is identi�ed uniquely

and unambiguously in each step� If the method can be proved to process the LCP

�q�M� in a �nite number of steps when q is nondegenerate� using arguments similar

to those in Section ����� it can be proved that it will process it in a �nite number of

steps even when q is degenerate� if this lexico minimum ratio test is used in place of

the minimum ratio test in each step� Because of this� without any loss of generality�

we assume that q is nondegenerate� in the description of the method given below�

Case �� M is a P 
Matrix�

The �rst major cycle begins with w � �w�� � � � � wn� as the initial complementary basic

vector�

Let y � �y�� � � � � yn� where yj � fwj � zjg for j � 	 to n� be the initial comple�

mentary basic vector at the beginning of a major cycle� For j � 	 to n� let tj be the

complement of yj � Let the canonical tableau of ���	� with respect to y be

basic vector y t

y I �M q

t � � in the current solution� y � q ���	��

If q �
� �� y is a complementary feasible basic vector for the LCP �q�M� and we ter�

minate� Otherwise select an r such that qr � �� yr will be called the distinguished

variable in this major cycle� We try to make yr increase from its present negative

value in the solution� to zero� without allowing any variable already nonnegative to

become negative� For this� we increase tr from zero to a � say� This leads to the new

solution
yi � qi � �mir � i � 	 to n

tr � � � all other tj � ��
���	��

Since M is a P �matrix� by Theorem ��� mrr � �� Hence� in ���	��� the value of

yr increases as � increases� So� in this role� tr is called the driving variable� The

increase in the value of the driving variable must stop as soon as a positive basic

variable decreases to zero� or the distinguished variable increases to zero� The variable

which thus limits the increase of the driving variable is called the blocking variable�

To identify the blocking variable� �nd minimum f�qr���mrr��� �qi���mir��� for all i

such that qi �� � and ��mir� � �g� Suppose this minimum is attained by i � s �if

there is a tie for this s� the lexico minimum ratio rule as in Sections ������ ����� should

be used to break the tie� as discussed above��
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If s � r� a principal pivot step in position r is carried out in ���	��� this leads to

a complementary basic solution in which yr is positive� and the method moves to the

next major cycle with it�

If s �� r� perform a pivot in ���	�� replacing the basic variable ys by tr� a non�

principal pivot� The new basic vector obtained is almost complementary �as de�ned

in Section ����� both the distinguished variable ys and its complement are basic vari�

ables in it� both the blocking variable yr and its complement are nonbasic� Let �mis�

i � 	 to n� be the entries in the updated column of ts after this pivot step� Clearly

�mss � �mss���msr� � � since mss � � �since M is a P �matrix� and ��msr� � �

�by the choice of the blocking variable�� and �mrs � �mrs �mrrmss�msr � � since

msr � � �by choice of the blocking variable� and mrrmss �msrmrs � � �this is the

principal subdeterminant of M corresponding to the subset fs� rg which is positive

since M is a P �matrix� being a PPT of the P �matrix M�� The pivot step has left the

distinguished variable basic at a negative value� The next variable to enter the basis�

that is� the next driving variable� is the complement of the blocking variable which

just became nonbasic� it is ts here� Since we have shown that ��mss� � �� ��mrs� � �

above� increasing the value of the new driving variable results in the continuing in�

crease of both the distinguished variable and its complement� The increase of the new

driving variable is also governed by the same rules as above� Since the value of the dis�

tinguished variable has been shown to increase� it is potentially a blocking variable� and

hence a blocking variable exists again� Using the properties of P �matrices discussed in

Chapter � it can be veri�ed that all these properties continue to hold when the major

cycle is continued with the same rules� A sequence of almost complementary basic

vectors is obtained in the process� which can only terminate when the distinguished

variable is driven up to zero� at which time it is the blocking variable� and the corre�

sponding pivot leads to a complementary basic vector� Since the distinguished variable

and its complement increase strictly from one pivot step to the next� no basis can be

repeated� and hence the sequence is �nite� as there are only a �nite number of almost

complementary basic vectors� The �niteness of the overall method follows since there

are at most n major cycles �the number of negative variables decreases by at least one

in each major cycle��

In this case it can be veri�ed that once the entry in a row in an updated q becomes

nonnegative� it stays nonnegative in all subsequent steps�

Case �� M is a PSD Matrix� but not a P 
Matrix

In this case it is possible that the system w �Mz � q� w� z �
� � is not even feasible�

and the method should be able to detect this possibility� As before let ���	�� be the

canonical tableau at the beginning of a major cycle� Select the distinguished variable

as in Case 	 to be the basic variable in a row in which the updated right hand side

constant is negative� say yr� Since M is PSD� its PPT M is also PSD by Theorem

�	� and hence its diagonal entries are all nonnegative by Result 	��� So mrr �� �� and

could be zero here�
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Suppose mrr � �� In addition� if ��mir� �� � for all i� Result 	�� implies that

��mrj� �� � for all j �since M is PSD and mrr � � we will have mir �mri � � for all

i�� The equation corresponding to the updated rth row is

yr �
nX

j��

��mrj�tj � qr � ���	��

Under these conditions �qr � �� �mrj �
� � for all j�� ���	�� does not even have a

nonnegative solution� which implies that �w �Mz � q� w �
� �� z �� �� has no feasible

solution� So under these conditions the LCP �q�M� has no solution�

If mrr � �� and the infeasibility condition ��mir �� � for all i� is not satis�ed� as

in Case 	� we increase the value of the driving variable tr from zero� However� since

mrr � �� it has no e�ect on the negative value of the distinguished variable� In addition�

if �mir �� � for all i satisfying qi �� �� the increase in the value of the driving variable

tr� makes no nonnegative basic variable decrease� But under these conditions �mir � �

for at lest one i satisfying qi � �� and the value of this ith basic variable decreases

further from its present negative value as the value of the driving variable is increased�

So there is no blocking variable in the sense discussed under Case 	� Also� under

these conditions� since there is at least one mir � �� we cannot make the infeasibility

conclusion� Thus using the de�nitions of blocking as under Case 	� these conditions

lead to an unblocked driving variable and yet no infeasibility conclusion is possible�

In order to force the algorithm to move to a successful conclusion when this occurs�

we make the following modi�cations in the de�nition of blocking �the aim is to make

sure that the occurrence of an unblocked driving variable indicates the infeasibility of

the original system �w �Mz � q� w �
� �� z �

� �� through an inconsistent equation

of the form ���	���� Let 	 � minimum fqi 
 i � 	 to ng� We impose a lower bound

of 	 on all negative variables� A negative basic variable can then block the driving

variable by decreasing to its lower bound 	� When this happens� the blocking negative

basic variable is replaced from the basic vector by the driving variable� and made into

a nonbasic variable at its lower bound 	� Once any variable attains a nonnegative

value its lower bound is immediately changed to zero� With this modi�cation� each

nonbasic variable either has value � or 	� A basic solution is nondegenerate if each

basic variable has value di�erent from � or 	 in the solution� Since nonbasic variables

can have nonzero values� the basic values may not be equal to the updated right hand

side constant vector q� so we have to maintain the basic values separately in a column

called b�

At any stage of this method� if �q� �b� � �mij denote the updated right hand side

constants vector� updated basic values vector� and the updated entries in the nonbasic

columns respectively� then �bi � �qi � ��	 �mij 
 over j such that the corresponding

variable is nonbasic at its lower bound 	�� If at this stage the driving column �the

updated column of the driving variable� is �� �m�s� � � � �� �mns�
T � and the distinguished

variable is the basic variable in the rth row� it can be shown that �mrs �� � using the

facts that the PPTs of a PSD matrix are PSD� and that the principal subdeterminants

of a PSD matrix are �
� � �similar to the proof of the corresponding statement that
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mrr � � under Case 	�� Compute 
 � minimum f���br� �mrs�� if �mrs �� �� ���bi� �mis��

for all i such that ��bi �� � and �mis � �� �	 � �bi�� �mis� for all i such that �bi � � and

�mis � �g� The blocking variable is the ith basic variable corresponding to the i that

attains the minimum here� Ties for the blocking variable should be resolved using the

lexico minimum ratio test in place of the usual minimum ratio test as described above�

If a blocking variable exists� the pivot step replaces the blocking variable in the basic

vector by the driving variable� In the new basic solution obtained after the pivot step

the blocking variable that just left the basic vector is zero if it was the distinguished

variable or a nonnegative basic variable� or 	 if it was a negative valued basic variable

that decreased to its lower bound� The old driving variable which is now the new rth

basic variable� has a value of 
 in the basic solution� The new value of the ith basic

variable is �bi � 
 �mis for i �� r� All other variables �nonbasics� continue to have the

same value in the basic solution as before� If the distinguished variable is still basic� the

procedure is continued by choosing the new driving variable to be the complement of

the blocking variable that just dropped from the basic vector� As before� the procedure

does not allow any nonnegative variable to become negative� It can be veri�ed that

each iteration of the method results in an increase �or lexico increase� of the sum of

the distinguished variable and its complement� The major cycle terminates when the

distinguished variable reaches the value zero and drops out of the basic vector� leading

to a complementary basic vector�

To choose the distinguished variable at the beginning of a major cycle� we look for

a basic variable� say the rth� whose value in the current basic solution� br � � �even

though the current updated qr may be �� ��� However� in this case it is possible that no

such basic variable exists� This happens when we reach a complementary basic vector

with nonnegative values for all the basic variables in the current basic solution� If all

the nonbasic variables are zero in this solution� the present complementary basic vector

is feasible to the original LCP �q�M� and we terminate� On the other hand� if there

are some nonbasic variables which are at their lower bound 	 in the current solution�

check whether the current updated right hand side constants vector q is �� �� If so� set

all the nonbasic variables to zero� this changes the basic values to q� and since q �� ��

the present complementary basic vector is feasible to the original LCP �q�M� and we

terminate� However� if q ��� � in such a situation� select one of the negative nonbasic

variables �with value � 	 in the present basic solution� as the distinguished variable�

In the �rst step of the ensuing major cycle� that nonbasic distinguished variable is

itself the driving variable� If it is blocked� it becomes a basic variable after the �rst

pivot step� and the major cycle continues until this distinguished variable increases to

zero� However� a major cycle like this in which the nonbasic distinguished variable is

the driving variable may consist of one step without any pivots if this driving variable

can increase all the way from 	 to zero without making any nonnegative basic variable

negative�

If we have a complementary basic vector in which the driving variable is unblocked�

it cannot be the distinguished variable �since a distinguished driving variable must be
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a negative nonbasic variable which will not be increase beyond zero�� So an unblocked

driving variable when the present basic vector is complementary must be the com�

plement of a negative basic variable upon which its increase has no e�ect� Being

unblocked� the updated column of the driving variable must be �� �� and this implies

infeasibility of the original LCP as discussed earlier�

The pivot element in any almost complementary basic vector is always positive

by the rules under which the method is operated� The pivot element is only negative

in this method when the dropping basic variable is the distinguished variable� which

signals the end of a major cycle�

Suppose the driving variable is unblocked when the present basic vector is almost

complementary� When this happens� the distinguished variable must be basic� Suppose

it is the rth� Its complement must also be basic� Suppose it is the pth basic variable�

Let the updated column of the driving variable be �� �m�s� � � � �� �mns�
T � Since the

distinguished variable is not blocking� we must have �mrs � �� Also we must have

� �mis �� �� as otherwise some basic variable would block� It can be veri�ed that in this

case � �mps � �� Pivoting with � �mps as the pivot element restores complementarity

and it can be veri�ed that after this pivot step� it is possible to conlcude that the

original LCP is infeasible�
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Chapter �

THE PARAMETRIC LINEAR

COMPLEMENTARITY PROBLEM

Let M be a given square matrix of order n and let b� b� be given column vectors in

Rn� Let q��� � b � �b�� Assuming that b� �� �� q��� traces a straight line in Rn�

L � fx � x � q���� for some �g� as � takes all real values� We consider the following

parametric LCP� �nd w� z satisfying

w �Mz � q��� � b� �b�

w �
� �� z �� �

wT z � �

�	�
�

as functions of �� for each value of � in some speci�ed interval� Here we discuss an

algorithm developed in �	�
� by K� G� Murty for obtaining a solution of this parametric

LCP as a function of �� This algorithm is most useful when M is a P �matrix� This

algorithm solves the LCP �q����M� for some �xed value of � by any method �such

as the complementary pivot method� or the principal pivoting methods�� and then

obtains solutions for the parametric LCP for all values of � using only a series of single

principal pivot steps�

The Algorithm

Step �� Choose a value ��� and �x � at �� ��� could be equal to zero�� and

solve the LCP �q�����M� by any one of the algorithms discussed earlier� and obtain

a complementary feasible basic vector for it� With this complementary feasible basic

vector for �	�
� when � � ��� go to Step ��

Step �� Determine the range of values of � for which the present complementary

basic vector remains feasible� The procedure for doing this is the same as in parametric
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right hand side LP� and it is as follows� Let �y�� � � � � yn�� where yj � fwj � zjg for

each j � 
 to n� be the present complementary basic vector� Let � � ��ij� be the

inverse of the present complementary basis� Let b� b
�

be the present updated right

hand side constants vectors� that is b � �b� b
�

� �b�� Compute �� �� the lower

and upper characteristic values associated with the present complementary

basic vector� from the following�

� � ��� if b
�

i
�
� � for all i

� Maximum f�bi�b�i � i such that b
�

i � �g� otherwise
� � ��� if b

�

i
�
� � for all i

� Minimum f�bi�b�i � i such that b
�

i � �g� otherwise �

�	���

Since the present complementary basic vector is feasible for �	�
� for at least one value

of �� we will have � �
� �� and for all values of � in the closed interval � �

� � �
� �� the

present complementary basic vector remains feasible� and hence the solution

Present ith basic variable yi � bi � �b
�

i � i � 
 to n

Complement of yi� ti � �� i � 
 to n
�	���

is a solution of the parametric LCP �q����M�� Go to Step � or � if it is required to

�nd the solutions of the parametric LCP �q����M� for values of � � �� or for values

of � � � respectively�

Step �� We come to this step when we have a complementary basic vector� y �

�y�� � � � � yn� say� for which the upper characteristic value is �� and it is required to

�nd solutions of the parametric LCP �q����M�� for values of � � �� Let b� b
�

be

the present updated right hand side constant vectors� Find out J � fi � i ties for

the minimum in �	��� for determining �g� r � maximum fi � i � Jg� So b
�

r � � and

�br�b�r � �� The value of the rth basic variable yr� in the solution in �	��� is zero

when � � �� and it becomes negative when � � �� Let tr be the complement of yr
and let A�r � �a�r� � � � � anr�

T be its updated column vector� If arr � �� perform a

single principal pivot step in position r in y leading to the complementary basic vector

u � �y�� � � � � yr��� tr� yr��� � � � � yn�� Both y and u have the same BFS when � � �

�since yr � � when � � � in the solution in �	����� u is a complementary feasible basic

vector for �	�
� when � � �� The value of tr in the basic solution of �	�
� with respect

to u is �br�arr� � ��b
�

�arr�� this quantity is � when � � �� and since arr � �� b
�

r � ��

we verify that this quantity is positive when � � �� From this it can be veri�ed that

the lower characteristic value for u is � � upper characteristic value for y� With u� go

back to Step ��

If arr �� �� either the single principal pivot step in position r cannot be carried out

�when arr � ��� or even after it is carried out� the new rth basic variable continues to

be negative when � � � in the new basic solution �which happens when arr � ��� Thus

in this case� the algorithm is unable to solve the parametric LCP �q� ����M� for � � ��
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it is even unable to determine whether there exists a solution to the LCP �q� ����M�

or not when � � ��

Step �� We come to this step when we have a complementary basic vector� y �

�y�� � � � � yn� say� for which the lower characteristic value is �� and it is required to �nd

solutions of the parametric LCP �q� ����M� for values of � � �� Let J � fi � i ties
for the maximum in �	��� for determining �g� r � maximum fi � i � Jg� Let tr be

the complement of yr and let A�r � �a�r� � � � � anr�
T be its updated column vector� If

arr � �� perform a single principal pivot step in position r in y� This leads to the

next complementary feasible basic vector for which � is the upper characteristic value�

continue with it in the same way� If arr �� �� this algorithm is unable to solve� or even

determine whether a solution exists for the parametric LCP �q� ����M� when � � ��

Example ���

Consider the parametric LCP �q� ��� � b� �b��M�� for which the original tableau is

w� w� w� z� z� z� b b�


 � � �
 � � � �

� 
 � �� �
 � � �

� � 
 �� �� �
 � �


When � � �� �w�� w�� w�� is a complementary feasible basic vector for this problem�

The inverse tableau corresponding to this is�

First Inverse Tableau

�bi�b�i for i Pivot

Basic Inverse of the Com� such that Range of Column

Variable plementary Basis b b
�

b
�

i � � b
�

i � � Feasibility z�

w� 
 � � � �
 � �� � � �
� � �

w� � 
 � � �
 � �

w� � � 
 � �
 � �


So in the range �� � � �
� �� �w � �� � �� � � �� �� ��T � z � �� is a solution of this

parametric LCP� To �nd out solutions of this parametric LCP when � � �� we have to

make a single principal pivot step in position ��

The updated column vector of z� is A�� � ��� ���
�� a�� � �
� and hence we can

continue� The pivot column is already entered by the side of the �rst inverse tableau�

Performing the pivot leads to the next inverse tableau�
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Second Inverse Tableau

�bi�b�i for i
Basic Inverse of the Com� such that Range of

Variable plementary Basis b b
�

b
�

i � � b
�

i � � Feasibility

w� 
 � � � �
 � � � � �
� �

w� � 
 � � �
 �

z� � � � 
 �� 
 �

� � � � � � �

So in the range � �
� � �

� �� the solution �w�� w�� z�� � �� � �� � � ���� � ���

�z�� z�� w�� � ��� �� �� is a solution of this parametric LCP �q����M�� Continuing in

the same way� we get the following solutions for this problem summarized in the table

below�

Optimality Complementary Feasible Complementary Solution

Range Basic Vector �wT � zT �

�� � � � � �w�� w�� w�� ��� �� �� �� �� �� �� �� ��

� �� � �
� � �w�� w�� z�� ��� �� �� �� �� �� ����� ��

� �� � �
� � �w�� z�� z�� ��� �� �� �� ����� �� �� ��

� �� � �
� � �w�� z�� w�� ��� �� ���� � �� ���� � �� ��

� �� � �
� 
� �z�� z�� w�� ��� ���� � ���� � ���� � �� ��


� �� � �
� 
� �z�� z�� z�� ��� �� ����� �� 
�� ���
� � ��


� �� � �
� 
� �z�� w�� z�� ����
� � �� ���� � �� �� 
�� ��


� �� � �z�� w�� w�� ����
� � ���
� � ���� � �� �� ��
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Example ���

Consider the parametric LCP �q��� � b� �b��M� for which the original tableau is�

w� w� w� w� z� z� z� z� b b�


 � � � �
 
 
 
 � ��
� 
 � � 
 �
 
 
 	 ��
� � 
 � �
 �
 �� � �� 	

� � � 
 �
 �
 � �� �	 �

Putting � � �� we verify that this LCP is the same as the one solved in Example ����

The complementary feasible basic vector obtained for this problem �when � � �� in

Example ��� is �z�� z�� z�� z��� The inverse tableau corresponding to �z�� z�� z�� z�� is

�bi�b�i for i
Basic Inverse of the Com� such that Range of

Variable plementary Basis b b
�

b
�

i � � b
�

i � � Feasibility

z� �
�� � � 
�� � 
�� � �
 �

z� � � 
�� � 
�� � 
�� 
 � � �
� 


z� 
�� 
�� � 
�� 
�� � �� ���

z� 
�� 
�� 
�� 
�� 
 �
 


Minimum Maximum

� � � 
 � � � ��

So when � �
� 
� the solution �w � �w�� w�� w�� w�� � �� z � �z�� z�� z�� z�� � ��� �� 
�

� � ��� 
 � ��� is a solution of this parametric LCP �q����M�� To look for solutions

when � � 
� we have to make a single principal pivot step in position �� The updated

column vector of w� is A�� � ��
����
��� 
��� 
���� So a�� � 
�� � �� Since a��
is strictly positive� the algorithm discussed above is unable to process this parametric

LCP �q����M� when � � 
�

Theorem ��� Let M be a given P �matrix of order n� Consider the parametric

LCP �q����M�� The algorithm discussed above �nds solutions of this parametric LCP

for all real values of � in a �nite number of pivot steps� Also� for each �� the solution

obtained is the unique solution of this parametric LCP for that value of ��

Proof� In the notation of the algorithm� let y � �y�� � � � � yn� be the complementary

basic vector in Step � at some stage of the algorithm� for which the range of feasibility
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is � �
� � �

� �� In order to �nd out solutions for � � �� suppose we have to make a

single principal pivot step in position r� Let tr be the complement of yr and let A�r be

the updated column vector of tr� By Corollary ��	 the method can continue� Let the

BFS with respect to y be the one given in �	���� Let T � fi � i such that bi��b
�

i � �g�
Clearly r � T and in fact the set J de�ned in Step � at this stage satis�es J � T�

As long as � remains �xed at �� any principal pivot steps performed on positions in

T will not change the basic solution �because when the basic variable in the pivot

row is � in the basic solution� the pivot step is a degenerate pivot step that leaves the

basic solution unchanged�� Let u � �u�� � � � � un� be any complementary basic vector

satisfying the property that ui � yi for i �� T� ui � yi or its complement for i � T�

Suppose the updated right hand side constant vectors with respect to u are �b� �b�� By

the above argument� the basic solution of �	�
� with respect to u at � � � is

ui � �bi � ��b�i � bi � � b
�

i � i � 
 to n

�Complement of ui� � �� i � 
 to n�

So �bi���bi � � for i � T and � � for i �� T� So the upper characteristic point associated
with u is � � i� �b�i �� � for all i � T� Thus� if T is a singleton set� the pivot step carried

out in Step � at this stage is guaranteed to produce a complementary feasible basic

vector for which the upper characteristic value is � �� If T has � or more elements�

let � � �wi� i � T�� � � �zi� i � T�� M the principal submatrix of M corresponding

to the subset T� and 	 � �b
�

i � i � T�� Consider the LCP �	�M� in the variables

��� ��� Since M is a P �matrix� by Theorem ��
� the LCP �	�M� can be solved by

Principal Pivoting Method I in a �nite number of pivot steps without cycling� starting

with the complementary basic vector �yi� i � T� until a complementary basic vector is

obtained for it� with respect to which the updated 	 is �� �� The choice of the pivot

row r in Step � of the parametric algorithm implies that when it is continued from the

canonical tableau of �	�
� with respect to y� keeping � � �� it will go through exactly

the same sequence of pivotal exchanges as in the LCP �	�M�� when it is solved by

Principal Pivoting Method I� until we obtain a complementary feasible basic vector�

u � �u�� � � � � un� say� satisfying the property that the updated b�i with respect to u is
�
� � for each i � T� By the above argument the upper characteristic value of u is � ��

and hence when we reach the basic vector u� we are able to strictly increase the value

of � beyond �� Also� once we cross the interval of feasibility of a complementary basic

vector in this parametric algorithm� we will never encounter this basic vector again�

We can apply the same argument in Step � for decreasing � below �� Continuing in

this way� since there are only �n complementary basic vectors� these arguments imply

that after at most a �nite number �less than �n� of pivot steps� we will obtain solutions

of the parametric LCP �q����M� for all ��

The fact that the solution obtained is the unique solution for each �� follows from

Theorem ��
��

When there are ties for the i that attains the minimum in �	��� of Step � and the

pivot row is chosen among i � J arbitrarily �instead of choosing it as the bottommost
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as mentioned in Step ��� cycling can occur at this value of � � �� as shown in the

following example due to A� Gana �	��� He considers the parametric LCP with the

following data

M �

�
������

 � �
� 
 �
� � 


�
������ � b �

�
������







�
������ � b� �

�
������
�

�

�


�
������ �

Starting with the complementary feasible basic vector �w�� w�� w�� when � � �� we

want to solve this problem for all � �
� �� Here is a sequence of complementary basic

vectors obtained when the pivot row in Step � is chosen among i � J arbitrarily� Pivot

elements are in a box�

Basic Feasibility

Variables w� w� w� z� z� z� b b� Interval

w� 
 � � �
 �� � 
 �

w� � 
 � � �
 �� 
 �
 � �� � �

� 


w� � � 
 �� � �
 
 �

z� �
 � � 
 � � �
 


w� � 
 � � �
 �� 
 �
 
 �� � �
� 


w� �� � 
 � � �
 �
 


z� �
 � � 
 � �� 
 �

z� � �
 � � 
 � �
 
 
 �� � �

� 


w� �� � 
 � � �� � ��
w� 
 �� � �
 � � �
 


z� � �
 � � 
 � �
 
 
 �� � �
� 


w� � � 
 �� � �
 
 �

w� 
 �� � �� � � � ��
z� � �
 � �� 
 � 
 �
 
 �� � �

� 


z� � � �
 � � 
 �
 


w� 
 � � �
 �� � 
 �

w� � 
 �� � �
 � �
 
 
 �� � �

� 


z� � � �
 � � 
 �
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Basic Feasibility

Variables w� w� w� z� z� z� b b� Interval

z� �
 � � 
 � � �
 


w� � 
 �� � �� � � �� 
 �� � �
� 


z� � � �
 � � 
 
 �

z� �
 � � 
 � � �
 


w� � 
 � � �
 �� 
 �
 
 �� � �
� 


w� �� � 
 � � �
 �
 


The complementary basic vector �z�� w�� w�� repeated at � � 
� and hence cycling has

occurred� and the execution can go through this cycle repeatedly without ever being

able to increase � beyond 
� Theorem 	�
 indicates that if the pivot row is chosen as

mentioned in Steps �� � of the parametric algorithm� this cycling cannot occur�

Geometric Interpretation

Let M be a given square matrix of order n� Consider the parametric LCP �q��� �

b��b��M�� In the process of solving this problem by the parametric LCP algorithm dis�

cussed above� let y � �y�� � � � � yn�� where yj � fwj � zjg for each j � 
 to n� be a comple�

mentary basic vector obtained in some stage� Let D�j be the column vector associated

with yj in �	�
� for j � 
 to n� Let ��� � be the interval of feasibility of y� To �nd solu�

tions for the parametric LCP �q����M� when � � �� suppose we have to make a princi�

pal pivot step in position r� Let tr be the complement of yr and let A�r be the column

associated with tr in �	�
�� So A�r is the complement of D�r� Since the value of yr in the

solution in 	�
 is zero when � � �� we have q��� � PosfD��� � � � � D�r��� D�r��� � � � � D�ng�
Thus the portion of the straight line L in �	�
� corresponding to � �

� � �
� � lies in the

complementary cone K� � PosfD��� � � � � D�ng� and as � increases through �� it leaves

the cone K� through its facet F � PosfD��� � � � � D�r��� D�r��� � � � � D�ng� Let H denote

the hyperplane in Rn which is the linear hull of fD��� � � � � D�r��� D�r��� � � � � D�ng� Let
A�r � �a�r� � � � � anr�

T be the updated column associated with tr� By Theorem ��
��

the hyperplane H strictly separates D�r and A�r i� arr � �� If arr � �� q��� is on

the common facet F of the complementary cones K� and K� � PosfD��� � � � � D�r���

A�r� D�r��� � � � � D�ng� See Figure 	�
� As � increases beyond �� the line L leaves the

complementary coneK� and enters the complementary coneK� through their common

facet F�
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q λ(  )

rD

1K

{ , . . . , , , . . . , }-1 nDiD+1iDD 1Facet     = PosF

{ , . . . , , , . . . , }-1 nDiD+1iDD 1
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Origin

D
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F
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Figure ��� Situation when arr � �� As � increases through �� the point q���

travels along the straight line L� leaves the complementary cone K� and enters the

complementary cone K�� through their common facet F�

If M is a P �matrix� by the strict separation property discussed in Section ���� this

situation occurs whenever Step � or � is carried out in the parametric LCP algorithm�

and the algorithm �nds the solutions of the parametric LCP for all values of the

parameter ��

If arr � �� A�r lies on the hyperplane H itself� If arr � �� A�r lies on the same side

of the hyperplane H as D�r� In either of these cases� as � increases through �� the line

L leaves both the complementary cones K� and K� and �y�� � � � � yr��� tr� yr��� � � � � yn�

is not a complementary feasible basic vector for the parametric LCP �q����M� when

� � �� Hence if arr �� �� the parametric LCP algorithm is unable to �nd solutions of

the parametric LCP �q����M� when � increases beyond ��

Hence� geometrically� the parametric LCP algorithm discussed above can be in�

terpreted as a walk along the straight line L crossing from one complementary cone in

C�M� to an adjacent complement cone through their common facet�
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Exercises

��� Let M be a given PSD matrix of order n� which is not PD� Discuss an approach

for solving the parametric LCP �q��� � b� �b��M� for all values of � for which it has

a solution� and determining the range of values of � for which it has no solution� based

on the Graves� principal pivoting method of Section ����

��� Suppose M is a copositive plus matrix and not a P �matrix� Discuss an approach

for processing the parametric LCP �	�
� in this case� by the algorithm discussed above�

using the complementary pivot algorithm to extend the value of � whenever the pivot

element in the parametric algorithm turns out to be nonnegative� Also prove that in

this case� the set of all values of � for which the parametric LCP �	�
� has a solution�

is an interval�

��� PARAMETRIC CONVEX

QUADRATIC PROGRAMMING

Here we consider a problem of the following form�

minimize Q��x� � �c� �c��x� �

�
xTDx

subject to Ax �
� b� �b�

x �
� �

�	���

where D is a symmetric PSD matrix of order n� and � is a real valued parameter� The

parameter � in the right hand side constants vector in the constraints� and the linear

part of the objective function� is the same� If b� � �� or c� � �� we get the special case

of the problem in which the parameter appears in only the right hand side constants

vector� or the linear part of the objective function� respectively� It is required to �nd

an optimum solution of this problem� treating � as a parameter� for all values of ��

By the results in Chapter 
� this problem is equivalent to a parametric LCP

�q � �q��M� where M is a PSD matrix� For the problem above� the data in the

parametric LCP is given by

M �

�
��D �AT

A �

�
�� � q �

�
�� cT

�b
�
�� q� �

�
�� �c��T

�b�
�
�� � �	�	�

We now discuss an algorithm for solving problems of this type� In preparing this

section� I bene�tted a lot from discussions with R� Saigal�
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Algorithm for Parametric LCP �q � �q��M� When M is PSD

Initialization

Find a value for the parameter � for which the system

w �Mz � q � �q�

w� z �� �
�	���

has a feasible solution� Since M is PSD� by the results in Chapter �� the LCP �q �

�q��M� has a solution i� �	��� has a feasible solution for that �� Phase I of the

parametric right hand side simplex method can be used to �nd a feasible solution for

�	��� �see Section ��� of ������� When M � q� q� are given by �	�	�� if �	��� is infeasible

for a value of �� by the results in Chapter �� �	��� does not have an optium solution

for that � �it is either infeasible� or Q��x� is unbounded below on the set of feasible

solutions for it��

If there exists no value for � for which �	��� has a feasible solution� the parametric

LCP �q � �q��M� does not have a solution for any �� terminate� Otherwise� let ��
be a value of �� for which �	��� has a feasible solution �the parametric right hand

side simplex algorithm� see Section ��� of ������ can in fact be used to determine the

interval of values of � for which �	��� is feasible��

Now� �nd a complementary feasible basis for the LCP �q � ��q
��M� with � �xed

equal to ��� The complementary pivot algorithm of Section ��� can be used for �nding

this� Since �	��� is feasible when � � �� and M is PSD� by the results in Chapter ��

the complementary pivot algorithm applied on the LCP �q � ��q
��M� will terminate

with a complementary feasible basic vector for it� in a �nite number of pivot steps�

if the lexicographic minimum ratio rule is used to determine the dropping variable in

each step� Let the complementary feasible basic vector be y � �y�� � � � � yn�� �where

yj � fwj � zjg for each j � 
 to n�� associated with the complementary basis B� Let q�

q� be the updated right hand side constants vectors �q � B��q� q� � B��q��� Let

�� � ��� if q� �� �

� Maximum f�qi�q�i � i such that q�i � �g� otherwise�
�� � ��� if q� �� �

� Minimum f�qi�q�i � i such that q�i � �g� otherwise�

Then� for all �� �� � �
� ��� y is a complementary feasible basic vector for the parametric

LCP �q��q��M�� This interval is nonempty since �� is contained in it� In this interval�

a complementary feasible solution for the parametric LCP is

complement of y is �

y � q � �q��
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Procedure to Increase the Value of �

Suppose we have a complementary basic vector y � �y�� � � � � yn�� where yj � fwj � zjg
for each j � 
 to n� corresponding to the complementary basis B� for which the

upper characteristic value is �� which is �nite� Here we discuss how to proceed to �nd

complementary solutions of the parametric LCP when � � �� Assume that B is lexico

feasible for � � �� Let � � B��� q � B��q� q� � B��q�� Then �qi � �q�i � �i�� � � for

all i � 
 to n� Determine the i which attains the lexico minimum f��qi� �i����q�i � � i
such that q�i � �g� and suppose it is p� Let the complement of the variable yp be tp�

Suppose the updated column vector of tp in the canonical tableau for

w z

I �M q � �q�
�	���

with respect to the complementary basic vector y be �a�p� � � � � anp�
T � Since M is PSD�

by the results in Chapter �� app �� ��

If app � �� performing a single principal pivot step in position p in the present

complementary basic vector y� leads to a new complementary basic vector which will be

feasible for some values of � � � under nondegeneracy� We repeat this whole process

with that complementary basic vector�

If app � �� to increase the value of � beyond �� we enter into a special comple�

mentary pivot phase described below�

The Complementary Pivot Phase to Increase the Value of �

We enter this phase when we obtain a complementary basic vector y � �y�� � � � � yn��

where yj � fwj � zjg for each j � 
 to n� with �nite upper characteristic value �� and

app � �� as discussed above�

In the present canonical tableau� transfer the column of the parameter � from the

right hand side to the left hand side� and treat � now as a variable� This leads to

Basic

Variables y t �

y I � � � �q� q �	���

In this tableau� perform a pivot step in the column of �� with row p as the pivot row�

this is possible since �q�p � �� This leads to the following tableau�
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Tableau ���

Basic

Variables y� � � � yp�� � yp�� � � � yn yp t� � � � tn
y�
��

yp�� I � � � �q

�

yp��
��
yn

Tableau 	�
 is the canonical tableau with respect to the basic vector �y�� � � � � yp���

�� yp��� � � � � yn�� As de�ned in Chapter �� this is an ACBV �almost complementary

basic vector�� Here� � plays the same role as the arti�cial variable z� in Chapter ��

There is one di�erence� In Chapter �� z� was a nonnegative arti�cial variable� here �

is a variable which is a natural parameter� and it can take either negative or positive

values�

From the manner in which Tableau 	�
 is obtained� it is clear that the value of �

in the basic solution corresponding to Tableau 	�
 is �qp � �qp�q�p � �� Treat Tableau

	�
 as the original tableau for this phase� The word basis in this phase refers to the

matrix of columns from Tableau 	�
� corresponding to the basic variables in any basic

vector for Tableau 	�
� This phase requires moving among ACBVs in which � will

always be the pth basic variable� Let B be the basis corresponding to such an ACBV�

and let �q � B���q� � � B��� This ACBV is said to be feasible for this phase

if �qi �
� � for all i �� p and lexico feasible for this phase if ��qi� �i�� � � for all

i �� p� Let B be such a basis� let �q � B���q� � � B�� and suppose it is required to

bring the column of a nonbasic variable� say xs� into the basis B� Let ��a�s� � � � � �ans�
T

be the updated column of xs �it is� B�� �column of xs in Tableau 	�
��� The lexico

minimum ratio test for this phase determines the dropping variable to be the rth

basic variable� where r is the i which attains the lexico minimum f��qi� �i����ais � i such
that i � f
� � � � � p� 
� p� 
� � � � � ng and �ais � �g� The minimum ratio for this pivot

step� is de�ned to be ��qr��ars�� it is always �� �� The initial ACBV in Tableau 	�
 is

lexico feasible in the sense de�ned here� and all the ACBVs obtained during this phase

will have the same property�

Now� bring the variable tp into the initial ACBV �y�� � � � � yp��� �� yp��� � � � � yn��

determining the dropping variable by the lexico minimum ratio test as discussed above�

Continue this phase using the complementary pivot rule� that is� the entering

variable in any step� is always the complement of the dropping basic variable in the

previous step� We prove below that the value of � in the basic solution keeps on

increasing in this phase�

At some stage� let ���� � � � � �p��� �� �p��� � � � � �n� be the ACBV with the values of

the basic variables in the corresponding BFS to be �q � ��q�� � � � � �qn�
T � So the value
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of � in this solution is �qp� Let vs denote the entering variable into this ACBV� as

determined by the complementary pivot rule� Let ��a�s� � � � � �ans�
T be the pivot column

�updated column of vs�� and let 
 denote the minimum ratio� as de�ned above� for this

step� We prove below that �aps �� �� The solution

�i � �qi � ��ais� i � f
� � � � � p� 
� p� 
� � � � � ng
vs � �

all other variables � �

is a complementary feasible solution of the original parametric LCP when � � �qp���aps�
for � �

� � �
� 
� As the value of � keeps on increasing during this phase� this process

keeps getting solutions of the original parametric LCP for higher and higher values of

�� as the phase progesses�

This phase only terminates when an ACBV� say� ���� � � � � �p��� �� �p��� � � � � �n� is

reached satisfying the property that if  denotes the entering variable into this ACBV�

as determined by the complementary pivot rule� and �a��� � � � � a
�

n�
T is the pivot column

�updated column of �� then a�i �
� � for all i � f
� � � � � p � 
� p � 
� � � � � ng� This is

similar to ray termination of Chapter �� Let q� � �q�� � � � � � q
�

n�
T be the present updated

right hand side constants vector� If a�p � �� then the solution

�i � q�i � �a�i � i � f
� � � � � p� 
� p� 
� � � � � ng
 � �

all other variables � �

is a complementary solution of the original parametric LCP when � � q�p � �a�p� for

all � �
� �� In this case� this solution therefore� provides the solution of the parametric

LCP for all � �
� q�p � terminate�

If a�p � � when this termination occurs� the original parametric LCP is infeasible

whenever � � q�p �this fact is proved below�� terminate�

Procedure to Decrease the Value of �

Suppose we have a complementary basic vector y � �y�� � � � � yn�� for which the lower

characteristic value is �� �nite� Let � � B�� be the inverse of the complementary

basis corresponding to y� and q � �q� q� � �q�� Assuming that y is lexico feasible for

� � �� we have �qi � �q�i � �i�� � � for all i� Determine the i that attains the lexico

maximum f��qi� �i����q�i � � i such that q�i � �g� and suppose it is p� Let the updated

column of the complement of yp in the canonical tableau of �	��� with respect to y be

�a�p� � � � � anp�
T � If app � �� perform a single principal pivot step in position p in the

present complementary basic vector y� and continue in the same way� If app � �� to

decrease � below �� enter into a special complementary pivot phase� This phase begins

with performing a pivot step in the column of � in �	��� with row p as the pivot row�

to transform the column of � in �	��� into �I�p �the usual pivot step would transform
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the column of � in �	��� into �I�p�� leading to an ACBV as before� Except for this

change� the complementary pivot procedure is carried out exactly as before� In all the

canonical tableaus obtained in this phase� � remains the pth basic variable� with its

updated column as �I�p� The value of � keeps on decreasing as this phase progresses�

and termination occurs when ray termination� as described earlier� occurs� During this

procedure� the complementary solutions of the original parametric LCP for di�erent

values of � are obtained using the same procedure as discussed earlier� from the basic

solution of the system in Tableau 	�
 corresponding to the ACBV at each stage�

Proof of the Algorithm

Here we prove the claims made during the complementary pivot phase for increasing

the value of ��

Theorem ��� Let ���� � � � � �p��� �� �p��� � � � � �n� be an ACBV obtained during this

phase� Let �q � ��q�� � � � � �qn�
T be the updated right hand side constants vector with re�

spect to this ACBV� Let vs denote the entering variable into this ACBV as determined

by the complementary pivot rule� Let ��a�s� � � � � �a�n�
T be the updated column of vs�

Then �aps �� �� and the value of � increases or remains unchanged when vs enters this

ACBV�

Proof� We will �rst prove that �aps �� �� The �rst ACBV in this phase was �y�� � � � �

yp��� �� yp��� � � � � yn� and the entering variable into it is tp� From the manner in which

this phase was initiated� we know that the updated column of tp in the canonical

tableau of �	��� with respect to y� �a�p� � � � � anp�� has its pth entry app � �� Thus

the pth entry in the column of tp in Tableau 	�
 is also zero� and when tp enters the

ACBV in Tableau 	�
� no change occurs in its row p� which veri�es the statement of

this theorem for the initial ACBV in this phase� We will now show that it holds in all

subsequent ACBVs obtained in this phase too�

Let ���� � � � � �n� denote the ACBV just before the current ACBV ���� � � � � �p��� ��

�p��� � � � � �n�� Suppose the statement of the theorem holds true in all steps of this

phase until the ACBV �� We will now prove that this implies that the statement of

this theorem must also hold for the complementary pivot step of bringing vs into this

ACBV ���� � � � � �p��� �� �p��� � � � � �n��

Let us denote the complement of vs� Since vs is the entering variable chosen by

the complementary pivot rule� us must have just dropped out of the basic vector �

leading to the present basic vector ���� � � � � �p��� �� �p��� � � � � �n�� Let ur denote the

entering variable into the ACBV � that replaced us from it� Suppose the pivot row for

entering ur into � was row p� �so� us must have been the p�th basic variable in ��� Let

the updated entries in the canonical tableau of Tableau 	�
 with respect to the ACBV

�� in rows p and p� be as given below�

Variable � �� � � � �p� � us � � � �p � � �p�� � � � �n ur vs � � �

row p� � � � � 
 � � � � � � � � � �� �� � � �

row p � � � � � � � � 
 � � � � � �� �� � � �
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� � ���� � � � � �n� is an ACBV with �p � �� and ur is the entering variable into it chosen

by the complementary pivot rule� These facts imply that ���� � � � � �p��� ur� �p��� � � � � �n�

becomes a complementary basic vector when the variables are properly ordered� It

cannot be a basic vector unless �� �� �� So� �� �� �� Also since the statement of the

theorem holds for the ACBV �� we have �� �� �� so �� � �� Also� since ur is the entering

variable into the ACBV � and row p� is the pivot row for this pivot step� we must have

�� � �� The pivot step in the column of ur with �� as the pivot element� transforms

�� into �� � ����
��

� by de�nition this is �aps� and we want to show that this is �� �� As

mentioned earlier� ���� � � � � �p��� ur� �p��� � � � � �n� is a permutation of a complementary

basic vector� So in the canonical tableau with respect to �� if we perform a pivot

step in the column of ur� with �� as the pivot element �row p as the pivot row� and

rearrange the rows and columns properly� we get the canonical tableau with respect

to a complementary basic vector� This pivot step transforms the element �� in the

column of vs into �� � ����
��

� this will be the entry in the column of vs in row p�� which

is the row in which us is the basic variable� M is PSD� by the results of Chapter �

every PPT of a PSD matrix is PSD� and by the results in Chapter 
 every diagonal

entry in a PSD matrix is �� �� these facts imply that this element �� � ����
��

�
� �� This�

and �� � �� �� � � established earlier imply that �aps � �� � ����
��

�
� ��

In all the pivot steps in this phase� the pivot elements are � �� and all the updated

right hand side constants with the possible exception of the pth� stay �� �� These facts�

and the fact that �aps �� � imply that when vs enters the ACBV ���� � � � � �p��� �� �p���

� � � � �n�� the value of �� the pth basic variable� either increases or stays the same �but

never decreases��

Thus if the statement of the theorem holds for the ACBV �� it must hold for

the ACBV ���� � � � � �p��� �� �p��� � � � � �n� following it� We have already established the

theorem for the initial ACBV in this phase� Hence� by induction� the theorem holds

in all ACBVs obtained during this phase�

So� the value of �� the pth basic variable in the ACBV� increases during this phase�

From the arguments used in Chapter �� it is clear that the adjacency path of ACBVs

in this phase continues unambiguously� and no ACBV can reappear� Since there are

only a �nite number of ACBVs� these facts imply that this phase must terminate with

the special type of ray termination discussed here� after at most a �nite number of

steps�

We will now prove the claims made when ray termination occurs in this phase�

Theorem ��� Let ���� � � � � �p��� �� �p��� � � � � �n� be the terminal ACBV in the

complementary pivot phase to increase �� Let  denote the entering variable into this

ACBV chosen by the complementary pivot rule� and let �a��� � � � � a
�

n�
T be the updated

column of  with respect to this ACBV� Let q� � �q�� � � � � � q
�

n�
T be the updated right

hand side constants vector with respect to this terminal ACBV in this phase� If a�p � ��

the original parametric LCP has no solution when � � q�p �
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Proof� Let the complement of  be u�� By the arguments used earlier� ���� � � � � �p���

u�� �p��� � � � � �n� must be a permutation of a complementary basic vector� So� perform�

ing a pivot step in the canonical tableau with respect to the ACBV ���� � � � � �p��� ��

�p��� � � � � �n� with u� as the entering variable and row p as the pivot row� leads to a

canonical tableau with respect to a complementary basic vector� with some rows and

columns rearranged� Since a�p � �� this pivot step would not alter the column vector

of � and hence it remains as �a��� � � � � a
�

n�
T �
� � with a�p � �� M is PSD� and every

PPT of a PSD matrix is PSD� These facts together with Result 
�� imply that the

updated row corresponding to u� in the canonical tableau �	��� with respect to the

complementary basic vector which is a permutation of ���� � � � � �p��� u
�� �p��� � � � � �n��

has all nonnegative entries on the left hand side� When � � q�p � the updated right

hand side constant in this row will be � �� This implies that the system �	��� cannot

have a nonnegative solution when � � q�p � that is� that the original parametric LCP

has no solution when � � q�p �

��� Exercises

��� Let M � q� q�� a be given matrices of orders n�n� n� 
� n� 
� n� 
 respectively�

Assume that M is a P �matrix� Let �w���� z���� be the solution of the parametric LCP

�q � �q��M� as a function of �� Let � � maximum f� � z��� �� ag� Also� let �� �

maximum f� � z��� �� a� for all � satisfying � �� � �
� �g� Discuss an e�cient algorithm

for �nd �� given M � q� q�� a� Also� derive necessary and su�cient conditions on this

data for �� � � to hold� �I� Kaneko �	�� and O� De Donato and G� Maier �
����

��� Let

M �

�������
� 
 �

�
 � �
� 
 �

������� � q��� �

�������

 � �
� � �
� ���

������� �

Solve the parametric LCP �q����M� for all real values of ��

��� Let q � ��
�������T and M be the matrix given in Exercise 	��� Solve the LCP

�q�M� by Principal Pivoting Method I�

��� Prove that the value of z� �arti�cial variable� is strictly monotone decreasing in

the complementary pivot method when applied on the LCP �q�M� associated with a

P �matrix�

Prove that the same thing is true when the LCP �q�M� is one corresponding to

an LP�
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Is it also true when the LCP is one corresponding to a convex quadratic program

in which the matrix D is PSD and not PD�

��	 Consider the following problem

minimize z�x� � cx� �
q
�
����xTDx�

subject to Ax �
� b

x �
� �

where D is a square symmetric PD matrix of order n� � � �� A is an m � n matrix

and b � Rm� Let K denote the set of feasible solutions of this problem�

i� Show that z�x� is a convex function which is a homogeneous function of degree


�

ii� If � �
p
�cD��cT � prove that every optimum solution of this problem must

be a boundary point of K�

iii� If � �� K and if the problem has an optimum solution� prove that there exists

a boundary point of K which is an optimum solution of the problem�

iv� Develop an e�cient procedure for solving this problem�

v� Solve the problem

minimize � x� � x� �
q
�x�� � x�����

subject to � x� � �x� �� �
�
�x� � x� �� ��

x�� x� �� �

using the method developed in �iv�� �C� Sodini �	�
	��

��� Consider the following problem

minimize f�x� � �c� � cx� �
���xTDx���d� � dx�p

subject to Ax �
� b

x �
� �

where D is a square symmetric PD matrix of order n� p is 
 or � and d� � dx � �

over x � K � fx � Ax �
� b� x �

� �g� Develop an approach for solving this problem�

�S� Schaible �	�
�� A� Cambini� L� Martein and C� Sodini �	����

��
 Consider the following problem

minimize Q��x� � cx�
�

�
xTDx

subject to Ax �
� b

x �
� �
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where D is a PSD matrix of order n� and � is a nonnegative parameter� It is required

to solve this problem for all � �
� �� Formulate this problem as a parametric LCP of

the form �q � �q��M�� � �
� �� and discuss how to solve it�

Note ��� This problem arises in the study of portfolio models� The linear function

��cx� may represent the expected yield� and the quadratic term �

�
xTDx may be the

variance of the yield �the variance measures the extent of random �uctuation in the

actual yield from the expected�� Q��x� is a positive weighted combination of the two

objectives which are to be minimized in this model�

���� If q is nondegenerate in the LCP �q�M� �i� e�� if every solution �w� z� to the

system of equations� w �Mz � q� makes at least n variables nonzero�� prove that the

number of solutions of the LCP �q�M� is �nite�

���� Let C� be the set of solutions of
w �Mz � q

w� z �� �

wjzj � �� j � � to n�

Prove that C� is the union of disjoint paths in Rn�

���� Consider the LCP �q�M�� De�ne S�q� � f�w� z� � �w� z� is a solution of the LCP

�q�M�g� Prove that if there exists a q � Rn such that S�q� is a nonempty unbounded

set� then S��� contains a nonzero point� that is� the LCP ���M� has a nonzero solution�
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Chapter �

COMPUTATIONAL COMPLEXITY OF

COMPLEMENTARY PIVOT METHODS

In this Chapter� we discuss the worst case behavior of the computational growth

requirements of the complementary and principal pivot methods for solving LCPs� as

a function of n� the order� and the size of the LCP� These results are from K� G� Murty

������ We construct a class of LCPs with integer data� one of order n for each n �
� ��

and prove that the pivotal methods discussed in Chapters �� �� and � require �n� 	 or

�n pivot steps to solve the problem of order n in the class� The size of the nth problem

in this class� de
ned to be the total number of bits of storage needed to store all the

data in the problem in binary form is �� �n� � �n� These results establish that in the

worst case� the computational growth requirements of complementary pivot methods

are not bounded above by any polynomial in the order or size of the LCP�

To study the worst case computational complexity of complementary pivot meth

ods� we look at the following question� What is the maximum number of complemen

tary cones through which a straight line in Rn can cut across� For a problem of order

n� the answer turns out to be �n� that is� there may exist straight lines which cut across

the interiors of every one of the �n complementary cones�

Let fM�n� � �emij� be the lower triangular matrix of order n� de
ned by emij � 	

for i � 	 to n� emij � � for all j � i� and emij � � for all j � i� See �	�	��� page

	�� Since fM�n� is lower triangular� all principal subdeterminants of fM�n� are equal

to 	� and hence fM�n� is a P matrix� Since fM�n� � �fM�n��T is a matrix all of whose

entries are �� it is singular� and clearly it is a PSD matrix� Hence fM�n� is a P matrix�

PSD matrix �and hence a copositive plus matrix�� but not a PD matrix� Let en be the

column vector in Rn all of whose entries are equal to 	� Let�
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�q�n� ���n� �n��� � � � � ��T

�q�n� ����n���n � �n�����n � �n�� � �n��� � � � �

� �n � �n�� � � � �� �� � ��T

a�s� ��s � 	� for any s �� �

L�n� �fx � x � �q�n� � ���en� � � a real parameterg

���	�

Theorem ��� � The straight line L�n� cuts across the interior of every one of the �n

complementary cones in the class C�fM�n�� for any n �
� ��

Proof� Consider the class of parametric LCPs ��q�n�����en��fM�n�� for n �
� �� where

� is a real valued parameter� Consider the case n � � 
rst� The following can be veri
ed

in this case �

Tableau ���

Complementary Cone Portions of L��� corresponding

corresponding to the to values of the Parametr �

Complementary Basic Vector which lie in this Complementary Cone

�w�� w�� � � �

�w�� z�� � �� � �� �

�z�� z�� � �� � �� �

�z�� w�� � �� �

Also whenever � is an interior point of one of these intervals� all the basic variables are

strictly positive in the complementary BFS of ��q��� � ���en��fM����� and this implies

that the point �q��� � ���en� corresponding to that value of � is in the interior of

the corresponding complementary cone� Hence� the statement of this Theorem is true

when n � �� We now make an induction hypothesis�

Induction Hypothesis� The theorem is true for the LCP of order n � 	 in the

class� Speci
cally� the complementary basic vectors for the parametric LCP ��q�n �

	� � ���en��fM�n� 	�� can be ordered as a sequence v�� v�� � � � � va�n���� such that the

complementary cone corresponding to the complementary basic vector vr contains the

portion of the straight line L�n�	� corresponding to � �� � if r � �� �r �� � �� ��r�	��

if 	 �� r �� �n�� � �� and �n � � �� � if r � �n�� � 	� Also the straight line L�n� 	�

cuts across the interior of each of these complementary cones�

Now consider the parametric LCP of order n in the class� namely ��q�n�� ���en��fM�n��� the original tableau for which is Tableau ���
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Tableau ���

w� w� � � � wn z� z� � � � zn

	 � � � � � �	 � � � � � �n � �

� 	 � � � � �� �	 � � � � �n�� � �

�� �� �� �� �� �� ��

� 	 � � � 	 �� �� � � � �	 �� �

The principal subproblem of this in the variables �w�� � � � � wn�� �z�� � � � � zn�� is the same

as the parametric LCP of order n�	 in the class we are discussing� with the exception

that the variables in it are called as w�� � � � � wn� z�� � � � � zn� By induction hypothesis�

the complementary basic vectors of this principal subproblem can be ordered in a

sequence as v�� v�� � � � � va�n���� where v� � �w�� � � � � wn�� v� � �w�� � � � � wn��� zn�� etc�

such that the complementary cone for this principal subproblem� corresponding to

the complementary basic vector vr� contains the portion of the straight line L�n� 	�

corresponding to � �
� � if r � �� �r �

� � �
� ��r � 	� if 	 �

� r �
� �n�� � �� and � �

�
�n � � if r � �n�� � 	� and as long as � is in the interior of one of these intervals� the

corresponding point on L�n� 	� is in the interior of the corresponding complementary

cone� Notice that in the original problem in Tableau ���� q���� � �n � � remains

nonnegative for all � �� �n and strictly positive for all � � �n� This� together with the

result for the principal subproblem� implies that the complementary cone corresponding

to the complementary basic vector Vr � �w�� vr� of the original problem �Tableau ����

contains the portion of the line L�n� corresponding to values of � satisfying � �
� �� if

r � �� �r �� � �
� �r � �� if 	 �� r �� �	 � �n�� � a�n� 	�� It also implies that in each

case� the straight line L�n� cuts across the interior of these complementary cones�

Now perform a single principal pivot step in Position 	 in the original problem in

Tableau ���� This leads to Tableau ���

Tableau ���

w� w� � � � wn z� z� � � � zn q

�	 � � � � � 	 � � � � � � � �n

�� 	 � � � � � �	 � � � � ���n�� � �� � �n��

�� � � � � � � �� � � � � ���n�� � �� � �n��

�� �� �� �� �� �� ��

�� � � � � 	 � �� � � � �	 ���n�� � �� � �

Let �� � ��n�� � � and treat � as the new parameter� As � increases from �n to

�n�� � �� � decreases from �n to �� As a function of �� the vector of the right hand

side constants in Tableau ��� is ��n � �� �n�� � �� � � � � �� ��T �
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Now look at the principal subproblem of the parametric LCP in Tableau ��� in

the variables w�� � � � � wn� z�� � � � � zn� This principal subproblem considered with � as

the parameter can be veri
ed to be the same as the parametric LCP of order n � 	

in the class we are discussing� with the exception that the variables in it are called as

w�� � � � � wn� z�� � � � � zn� and the parameter is ��

Using arguments similar to those as above on these problems� and translating

everything to the original parameter � again� we conclude that the complementary

cone corresponding to the complementary basic vector Vr � �z�� vb�r�� of the original

problem� where b�r� � �n � r � 	� contains the portion of the straight line L�n�

corresponding to values of � satisfying �r �� � �� �r��� if �n�� �� r �� �n� �� and � ��
�n�� � �� if r � �n � 	�

Thus if v�� � � � � va�n��� is the ordered sequence of complementary basic vectors

for the principal subproblem of the parametric LCP in Tableau ��� in the variables

w�� � � � � wn� z�� � � � � zn� let the ordered sequence of complementary basic vectors for the

parametric LCP in Tableau ��� be

V� ��w�� v��� �w�� v��� � � � � �w�� va�n�����

�z�� va�n����� �z�� va�n������� � � � � �z�� v�� � Va�n��
�����

Then the induction hypothesis implies the result that the complementary cone corre

sponding to the complementary basic vector Vr contains the portion of the straight

line L�n� corresponding to � �
� �� if r � �� �r �� � �

� �r � �� if 	 �� r �� �n � �� � �
�

�n�� � �� if r � �n � 	� Also in each case� the straight line cuts across the interior

of the complementary cone� Hence the induction hypothesis implies that the state

ment of Theorem ��	 also holds for the parametric LCP of order n in the class we are

discussing� The statement of Theorem ��	 has already been veri
ed to be true from

n � �� Hence it is true for all n �
� ��

��� Computational Complexity of the

Parametric LCP Algorithm

Theorem ��� Consider the class of parametric LCPs ��q�n� � ���en��fM�N��� for

n �
� �� The parametric LCP algorithm discussed in Chapter � requires �n pivot steps

to solve the nth problem in the class for all real values of the parameter ��

Proof� Let V�� V�� � � � � Va�n� be the sequence of complementary basic vectors for the

parametric LCP of order n in this class obtained in the proof of Theorem ��	� From the

proof of Theorem ��	� we conlcude that the complementary basic vector Vr is feasible

to the parametric LCP ��q�n� � ���en��fM�n�� in the interval � �� � if r � �� �r �� � ��
�r��� if 	 �� r �� �n��� � �� �n����� if r � �n�	� Hence� when the parametric LCP



��� Chapter �� Computational Complexity of Complementary Pivot Methods

algorithm is applied to solve ��q�n� � ���en��fM�n�� for all values of the parameter ��

it terminates only after going through all the complementary basic vectors� V�� V�� � � � �

Va�n�� and thus requires a�n� � 	 � �n pivot steps�

Example ���

See Example ��	 in Chapter �� There the parametric LCP ��q��� � ���e���fM���� is

solved for all values of the parameter � �there the parameter is denoted by � intead ��

using the parametric LCP algorithm and verify that it took �� � � pivot steps in all�

��� Geometric Interpretation of a Pivot Step in the

Complementary Pivot Method

Let M be a given square matrix of order n� and q a column vector in Rn� Consider the

LCP �q�M�� The original tableau for solving it by the complementary pivot method

is ����� of Section ����	�

Let �y�� � � � � yr��� yr��� � � � � yn� z�� be a basic vector obtained in the process of

solving this LCP by the complementary pivot method where yj � fwj � zjg for all j�

Let A�j denote the column vector associated with yj in ����� for each j� If �q � ��q�� � � � �

�qn�
T is the update right hand constants vector in the canonical tableau of ����� with

respect to the basic vector �y�� � � � � yr��� yr��� � � � � yn� z��� then �q �� � �since this basic

vector must be a feasible basic vector� and we have

q � A���q� � � � �� A�r���qr�� �A�r���qr � � � ��A�n�qn�� � ��en��qn �����

�qn is the value of z� in the present BFS� If �qn � �� the present BFS is a complementary

feasible solution and the method would terminate� So assume �qn � � and denote it

by the symbol �z�� Then ����� implies that q � �z�en � PosfA��� � � � � A�r��� A�r��� � � � �

A�ng� The present left out complementary pair is �wr� zr�� and one of the variables

from this pair will be choosen as the entering variable at this stage� let us denote it

by yr � fwr� zrg and let A�r denote the column vector associated with yr in ������

If yr replaces z� from the basic vector in theis step� we get a complementary feasible

basic vector at the end of this pivot step� and the method terminates� Suppose the

dropping variable is not z�� but some yi for i � f	� � � � � r� 	� r� 	� � � � � ng� Let �z� � �

be the value of z� in the new BFS obtained after this pivot step� Then using the same

arguments as before we conclude that q � �z�en � PosfA��� � � � � A�i��� A�i��� � � � � A�ng�

Under these conditions� clearly �y�� � � � � yn� is itself a complementary basic vector�

and letK � Pos�A��� � � � � A�n� be the complementary cone associated with it� The net

e�ect in this pivot step is therefore that of moving from the point q � �z�en contained
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on the facet PosfA��� � � � � A�r��� A�r��� � � � � A�ng of K to the point q � �z�en on the

facet PosfA��� � � � � A�i��� A�i��� � � � � A�ng of K� along the halfline fx � x � q � �en�

� a nonnegative real numberg� See Figure ��	� The complementary pivot method

continues in this manner walking along the halfline fx � x � q � �en� � �
� �g cutting

across di�erent complementary cones� until at some stage it enters a complementary

cone containing the point q on this halfline�

We will now use this geometric interpretation� to establish the computational

complexity of the complementary pivot method in the worst case�

Point              on the facetq + z ne0̂

A 1 , . . . , ,A i -1Pos{

A n, . . . , } of K.A i +1A r+1 A n, . . . , } of K .

A r-1Pos{A 1 , . . . , ,

q + z ne0
~Point              on the facet

Origin

K

A A ri

Figure ��� Geometric interpretation of a pivot step in the complementary

pivot method as a walk from one facet of a complementary cone to another facet

of the same cone along the halfline fx � x � q� �en� � �� �g as � varies from �z�
to �z��
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��� Computational Complexity of the

Complementary Pivot Method

Theorem ��� For any n �
� �� the complementary pivot method requires �n pivot

steps before termination when applied on the LCP ��q�n��fM�n���

Proof� Notice that �q�n� � ���en� � �q�n� � �en where � � �n�� � �� Hence the

straight line fx � x� �q�n� � �en� � a real numberg is the same as the line L�n� de
ned

in equation ���	� but in the reverse direction�

The original tableau for applying the complementary pivot method to solve the

LCP ��q�n��M�n�� is shown in Tableau ����

Tableau ���

w� w� � � � wn z� z� � � � zn z� q

	 � � � � � �	 � � � � � �	 ��n

� 	 � � � � �� �	 � � � � �	 ��n � �n��

�� �� �� �� �� �� �� ��

� � � � � 	 �� �� � � � �	 �	 ��n � �n�� � � � �� �

The initial basic vector obtained in the complementary pivot method is �w�� � � � � wn���

z�� and in the solution corresponding to this basic vector� the value of z� is �n �

�n�� � � � �� � � �n�� � �� The entering variable into the basic vector at this initial

stage is zn�

Let V�� � � � � Va�n� be the ordering of the complementary basic vectors for this prob

lem� obtained in the proof of Theorem ��	� V� � �w�� � � � � wn�� V� � �w�� � � � � wn���

zn�� etc� Let Kr be the complementary cone corresponding to the complementary ba

sic vector Vr for the LCP ��q�n��fM�n��� Using the geometric interpretation discussed

above� the e�ect of the initial pivot step of bringing zn into the basic vector �w�� � � � �

wn��� z�� can be interpreted as a walk through the complementary cone K�� beginning

with the point �q�n�� ��en �where �� � �n��� �� on the facet of K� corresponding to

the Pos cone of the columns of w�� � � � � wn��� wn�� in Tableau ���� to the point �q�n� �

��en �where �� � �n�� � �� on the facet of K� corresponding to the Pos cone of the

columns of w�� � � � � wn��� zn in Tableau ��� along the halfline fx � x � �q�n� � �en�

� �
� �g� Here ��� �� are the values of z� in the basic solution of Tableau ��� correspond

ing to the basic vectors �w�� � � � � wn��� z�� and �w�� � � � � wn��� zn� z�� respectively� Thus

the initial pivot step of introducing zn into the basic vector �w�� � � � � wn��� z�� can be

interpreted as the walk across the complementary cone K�� starting at the value � �

�� to the value � � �� along the halfline fx � x � �q�n���en� � �� �g� Similarly the rth

pivot step performed during the complementary pivot method applied on this problem�

can be interpreted as the walk through the complementary cone Kr along the halfline
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fx � x � �q�n� � �en� � �
� �g� for r �� �� Since the straight line fx � x � �q�n� � �en�

� a real numberg is the same as the line L�n� de
ned in equation ���	�� from the re

sults in the proof of Theorem ��	 and the geometric interpretation of the pivot steps in

the complementary pivot method discussed above� we reach the following conclusions�

the complementary pivot method starts with a value for z� of �n�� � � in the initial

step� All pivot steps are nondegenerate and the value of z� decreases by � in every

pivot step� Hence the method terminates when the value of z� becomes zero after the

��n�	�th pivot step� This last pivot step in the method corresponds to a walk into the

complementary cone Ka�n� associated with the complementary basic vector Va�n� �

�z�� w�� � � � � wn� along the halfline fx � x � �q�n� � �en� � �
� �g� Hence the terminal

basic vector obtained in the complementary pivot method applied on this problem will

be �z�� w�� � � � � wn� and it can be veri
ed that the solution of the LCP ��q�n��fM�n��

is �w � ��� �n��� � � � � ��� z � ��n� �� � � � � ���� Therefore counting the 
rst pivot step in

which the canonical tableau with respect to the initial basic vector �w�� � � � � wn��� z��

is obtained� the complementary pivot method requires �n pivot steps for solving the

LCP ��q�n��fM�n��� for any n �
� ��

Example ���

See Example ��	� in Section ����� where the LCP ��q����fM���� of order � is solved by

the complementary pivot method and verify that it required �� � � pivot steps before

termination�

��� Computational Complexity of

Principal Pivoting Method I

Theorem ��� Principal pivoting Method I requires �n� 	 pivot steps before termi�

nation� when applied on the LCP ��en�fM�n��� for any n �
� ��

Proof� Proof is by induction on n� The original tableau for this problem is shown in

Tableau ���

Tableau ���

w� w� � � � wn z� z� � � � zn q

	 � � � � � �	 � � � � � �	

� 	 � � � � �� �	 � � � � �	

�� �� �� �� �� �� ��

� � � � � 	 �� �� � � � �	 �	
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It can be veri
ed that �z�� w�� � � � � wn� is a complementary feasible basis for Tableau

��� and the solution of this LCP is �w�� � � � � wn� � ��� 	� � � � � 	�� �z�� � � � � zn� � �	� �� � � � �

���

In Example ��	 of Section ��	 the LCP ��e��fM���� was solved by Principal Piv

oting Method I� and it required �� � 	 � � pivot steps� thus verifying the theorem for

n � �� The theorem can also be veri
ed to be true when n � �� We now set up an

induction hypothesis�

Induction Hypothesis� When applied on the LCP ��en���fM�n�	��� the Principal

Pivoting Method I requires �n�� � 	 pivot steps before termination�

We will now prove that the induction hypothesis implies that the Principal Pivot

ing Method I requires �n � 	 pivot steps before termination when apllied on the LCP

��en�fM�n�� of order n�

When it is applied on the LCP in Tableau ��� the initial basic vector in Principal

Pivoting Method I is �w�� � � � � wn�� The entering variable into this initial complemen

tary basic vector is zn� Since fM�n� is a P matrix� by the results in Section ��	� the

method terminates when all the updated right hand side constants become nonnega

tive�

By the pivot row choice rule used in Principal Pivoting Method I� the question

of using Row 	 in Tableau ��� as the pivot row does not arise until a complementary

basic vector satisfying the property that the entries in Rows � to n of the updated

right hand side constant vectors corresponding to it are all nonnegative� is reached�

So until such a complementary basic vector is reached� the pivot steps choosen are

exactly those that will be choosen in solving the principal subproblem of Tableau ���

in the variables �w�� � � � � wn�� �z�� � � � � zn�� This principal subproblem is actually the

LCP ��en���fM�n� 	�� of order n� 	� with the exception that the variables in it are

called �w�� � � � � wn�� �z�� � � � � zn�� By the induction hypothesis� to solve this principal

subproblem� Principal Pivoting Method I takes �n�� � 	 pivot steps� By the results

discussed above �z�� w�� � � � � wn� is the unique complementary feasible basic vector for

this principal subproblem�

Hence when Principal Pivoting Method I is applied on Tableau ���� after �n�� �

	 pivot steps it reaches the complementary basic vector �w�� z�� � w�� � � � � wn�� The

canonical tableau of Tableau ��� corresponding to the complementary basic vector

�w�� z�� w�� � � � � wn� is given in Tableau ����
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Tableau ��� Canonical Tableau after �n�� � 	 Pivot Steps are carried out�

beginning with Tableau ��� in Principal Pivoting Method I�

Basic w� w� w� � � � wn z� z� z� � � � zn q

Variable

w� 	 � � � � � � �	 � � � � � � �	

z� � �	 � � � � � � 	 � � � � � 	

w� � �� 	 � � � � � � �	 � � � � 	

�� �� �� �� �� �� �� �� �� ��

wn � �� � � � � 	 � � �� � � � �	 	

Since the update right hand side constant in Row 	 is �	 � �� the method now

continues by making a single principal pivot step in position 	 in Tableau ��� �this

replaces w� in the basic vector by z��� The pivot element is inside a box� This leads

to the canonical tableau in Tableau ����

Tableau ��	 Canonical Tableau after �n�� Pivot Steps are Carried Out� begin

ning with Tableau ��� in Principal Pivoting Method I�

Basic w� w� w� � � � wn z� z� z� � � � zn q

Variable

z� �	 � � � � � � 	 � � � � � � 	

z� � �	 � � � � � � 	 � � � � � �	

w� � �� 	 � � � � � � �	 � � � � �	

�� �� �� �� �� �� �� �� �� ��

wn � �� � � � � 	 � � �� � � � �	 �	

Since some of the updated right hand side constants in Tableau ��� are still negative�

the method continues� By the arguments mentioned above� when Principal Pivoting

Method I is continued from Tableau ���� z� remains the basic variable in the 
rst row

until another complementary basic vector satisfying the property that the entries in

Rows � to n in the updated right hand side constants vector corresponding to it are

all nonnegative� is again reached� It can be veri
ed that the principal subproblem

obtained by eliminating Row 	 and the columns corresponding to the complementary

pair of variables w�� z� in Tableau ��� and interchanging the columns of the variables

w� and z�� is exactly the LCP ��en���fM�n�	�� with the exception that the variables

in it are called �z�� w�� � � � � wn�� �w�� � z�� � � � � zn�� When Principal Pivoting Method I is

continued from Tableau ��� the pivot steps obtained are exactly those that occur when
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this principal subproblem is solved by Principal Pivoting Method I� until this principal

subproblem is solved� Since this principal subproblem is the LCP ��en���fM�n�	��� by

the induction hypothesis� this leads to an additional �n���	 pivot steps from Tableau

���� Since the variables in this principal subproblem are �z�� w�� � � � � wn�� �w�� z�� � � � �

zn�� in that order� by the results mentioned earlier� �w�� w�� � � � � wn� is the unique

complementary feasible basic vector for this principal subproblem� So after continuing

for an additional �n�� � 	 pivot steps from Tableau ���� Principal Pivoting Method

I reaches the complementary basic vector �z�� w�� w�� � � � � wn�� which was veri
ed to

be a complementary feasible basic vector for the LCP in Tableau ��� and then the

method terminates� So it took �n�� pivot steps to reach Tableau ��� and an additional

�n��� 	 pivot steps afterwards� before termination� Thus it requires a total of �n���

�n�� � 	 � �n � 	 pivot steps before termination� when applied on the LCP of order

n in Tableau ���� Thus under the induction hypothesis� the statement of the theorem

also holds for n� The statement of the theorem has already been veri
ed for n � �� ��

Hence� by induction� Theorem ��� is true for all n �
� ��

Exercise

��� Prove that the sequence of complementary basic vectors obtained when Principal

Pivoting Method I is applied on the LCP in Tableau ��� is exactly the sequence V�� V��

� � � � Va�n�� obtained in the proof of Theorem ��	� �Hint� Use an inductive argument as

in the proof of Theorem �����

So far� we have discussed the worst case computational complexity of comple

mentary and principal pivot methods� which can handle a large class of LCPs� These

results may not apply to other special algorithms for solving LCPs �q�M�� in which

the matrix M has special structure� An example of these is the algorithm of R� Chan

drasekaran which can solve the LCP �q�M� when M is a Zmatrix �a square matrix

M � �mij� is said to be a Zmatrix if mij �� � for all i �� j� discussed in Section ��	�

This special algorithm for this special class of LCPs has been proved to terminate in

at most n pivot steps�

The matrix fM�n� used in the examples contructed above is lower triangular� it is

a P matrix� a nonnegative matrix� it is copositive plus and also PSD� So it has all the

nice properties of matrices studied in LCP literature� In spite of it� complementary

pivot methods take �n�	 or �n pivot steps to solve the LCP of order n in the examples

constructed above� all of which are associated with the matrix fM�n��

We have shown that the computational requirements of the well known comple

mentary and principal pivot methods exhibit an exponential growth rate in terms of

the order of the LCP� Our analysis applies only to the worst case behavior of the meth

ods on specially constructed simple problems� The performance of the algorithms on

average practical problems using practical data may be quite di�erent� The analysis
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here is similar to the analysis of the worst case computational requirements of the

simplex method for solving linear programs in Chapter 	� of �������

The class of LCPs �q�M� where M is a PD and symmetric matrix is of particular

interest because of the special structure of these problems� and also because they

appear in many practical applications� It turns out that even when restricted to this

special class of LCPs� the worst case computational requirements of complementary

pivot methods exhibit an exponential growth rate in terms of the order of the LCP�

See reference ����� of Y� Fathi and Exercises ��� to ����

As mentioned in Section ��� the exponential growth of the worst case computa

tional complexity as a function of the size of the problem does not imply that these

algorithms are not useful for solving large scale practical problems� The exponential

growth has been mathematically established on specially constructed problems with

a certain pathological structure� This pathological structure does not seem to appear

often in practical applications� As discussed in Section ��� and in Reference �������

the probabilistic average �or expected� computational complexity of some versions of

the complementary pivot algorithm grows at most quadratically with n� Empirical

computational tests seem to indicate that the number of pivot steps needed by these

algorithms before termination grows linearly with n on an average�

��� Exercises

��� For n �
� �� let M�n� �

�fM�n�
��fM�n�

�T
�

M�n� �

������������������

	 � � � � � � �
� � � � � � � �
� � � � � � �� ��
�� �� �� �� ��
� � �� � � � 	 � ��n� �� � � ��n� ��
� � �� � � � � � ��n� �� 	 � ��n� 	�

������������������

Prove that M�n� is PD and symmetric� Solve the LCP ��e��M���� by Principal

Pivoting Method I and verify that it takes �� � 	 � � pivot steps before termination�

Solve The LCP ��������T �M���� by the complementary pivot method and verify

that it takes �� � � pivot steps before termination� Solve the parametric LCP ��� �

�� 	� ��T �M���� by the parametric LCP algorithm and verify that it produces all the

�� � � complementary basic vectors of this problem before solving the problem for all

the values of the parameter ��

�Y� Fathi ������

��� Prove that Principal Pivoting Method I requires �n � 	 steps before termination

when applied on the LCP ��en�M�n��� for any n �
� ��

�Y� Fathi ������
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��� Prove that there exists a column vector q�n� � Rn �actually an uncountable num

ber of such q�n�s exist� such that the straight line fx � x � q�n���en� � a real numberg

cuts across the interior of every one of the �n complementary cones in the class C�M�n��

for any n �
� ��

�Y� Fathi ������

��� Prove that the parametric algorithm obtains all the �n complementary basic vectors

before termination� when applied to solve the LCP �q�n���en�M�n�� for all � for any

n �
� �� where q�n� is the column vector in Rn constructed in Exercise ����

�Y� Fathi ������

��� Prove that the complementary pivot method requires �n pivot steps before termi

nation when applied on the LCP �q�n��M�n��� for n �
� �� where q�n� is the column

vector in Rn constructed in Exercise ����

�Y� Fathi ������

��	 Construct a class of LCPs with integer data� containing one problem of order n

for each n �
� �� each associated with a PD matrix� such that the number of pivot steps

required by Graves� principal pivoting method �Section ���� to solve the nth problem

in this class is an exponentially growing function of n�

��
 Let q�n� � ��n � �� �n � �� � � � � �n � �j� � � � � �n � �n�����n�T and

M�n� �

��������������������������

	 � � � � � � ��
� 	 � � � � � ��
�� � 	 � � � � ��
�� �� � � � � �� ��
�� �� � � � � �� ��
�� �� �� �� ��
� � � � � � 	 ��
� � � � � � � 	

��������������������������

Prove that the DantzigCottle principal pivoting method of Section ��� requires �n��

steps to solve the LCP �q�n��M�n���

�A� Gana ������

��� Show that the variable dimension algorithm of Secton ��� requires �n � 	 steps to

solve the LCP
�
�q�n�� �fM�n��T

�
�

�A� Gana ������
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���� De
ne the matrix M � �mij� of order n� n by the following

mii � 	 for all i � 	 to n

mij � � if j � i and i� j is odd

� �	 if j � i and i� j is even

� �	 if j � i and i� j is odd

� � if j � i and i� j is even�

For example� the matrix M de
ned above� is the following for n � �

M �

����������

	 � �	 �
�	 	 � �	
� �	 	 �

�	 � �	 	

����������
�

Show that M is a P matrix and a PSD matrix�

Let e be the column vector of all 	s in Rn� Consider the LCP ��e�M�� where M

is the matrix de
ned above� Show that the complementary feasible basic vector for

this problem is
�w�� z�� � � � � zn� if n is even

�z�� z�� � � � � zn� if n is odd�

Study the computational complexity of the various algorithms for solving LCPs dis

cussed so far� on the LCP ��e�M�� where M is the matrix de
ned above�

�R� Chandrasekaran� J� S� Pang and R� Stone�
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Chapter �

NEAREST POINT PROBLEMS ON

SIMPLICIAL CONES

Let ��� � fB��� � � � � B�ng be a given linearly independent set of column vectors in R
n�

and let b � Rn be another given column vector� Let B � �B�� �� � � � �� B�n�� For x �

Pos������ � � B��x �
� �� is known as the combination vector corresponding to x�

We consider the problem of �nding the nearest point �in terms of the usual Euclidean

distance� in the simplicial cone Pos����� to b� This problem will be denoted by the

symbol 	���
 b� or 	B
 b�� and will be called a nearest point problem of order n� The

optimum solution of this problem is unique� and if b �� Pos����� the solution lies on the

boundary of Pos������ If this point is x�� then �� � B��x� is known as the optimum

combination vector for 	���
 b�� This problem is equivalent to the quadratic program�

Minimize �b � B��T �b � B�� over � � ���� � � � � �n�
T �
� �� This is the quadratic

program� Minimize �bTB� � �
��

T �BTB��� subject to � � ���� � � � � �n�
T �
� �� The

solution of this can be obtained by solving the following LCP �

u� �BTB�� � �BT b

u �
� �� � �

� �

uT� � �

where u � �u�� � � � � un�
T is a column vector of variables in Rn� Let D � BTB� Since B

is nonsingular� D is positive de�nite� This LCP has a unique complementary solution�

and if this solution is �u�� ���� then �� is the optimum solution for the quadratic

program� and hence the optimum combination vector for the nearest point problem

	B
 b�� Also consider the following LCP

w �Mz � q

w �
� �� z

�
� �

wT z � �

����
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where M is a positive de�nite symmetric matrix of order n� Let F be a nonsingular

matrix such that FTF � M �for example� the transpose of the Cholesky factor of

M�� Now using earlier results� we conclude that if �w�� z�� is the unique solution

of ����� then z� is the optimum combination vector for the nearest point problem

	F 
��F���T q�� Conversely if z� is the optimum combination vector for the nearest

point problem 	F 
��F���T q�� then �w� �Mz�� q� z�� is the unique solution of �����

This clearly establishes that corresponding to each nearest point problem� there is an

equivalent LCP associated with a positive de�nite symmetric matrix and vice versa�

This equivalence relationship between the two problems will be used here to develop

an algorithm for solving them� In the sequel �q�M� denotes the LCP ���� where M is

a positive de�nite symmetric matrix of order n� B denotes a square matrix of order n

satisfying BTB �M �as mentioned earlier� B could be chosen as the Cholesky factor

of M�� If we are given the LCP ���� to solve� we will choose BT to be the Cholesky

factor of M � unless some other matrix satisfying BTB � M is available� and b �

��B���T q� and ���� fB��� � � � � B�ng� For solving either the nearest point problem 	���
 b�

or the LCP �q�M�� the algorithm discussed here based on the results in 	�������� of

K� G� Murty and Y� Fathi� operates on both of them �it carries out some geometric

work on the nearest point problem� and some algebraic work on the LCP��

Example ���

Let

q �

������� ��
���
�

������� � M �

������� � �� ��
�� � �
�� � �

������� � B �

������� � � �
� �� �

�� � �

������� � b �

���������
��


������� �

The LCP �q�M� is

w� w� w� z� z� z� q

� � � �� � � ��

� � � � �� �� ���

� � � � �� �� �

wj � zj �� �� and wjzj � � for all j

It can be veri�ed that BTB �M and b � ��B���T q� So� the above LCP is equivalent

to the problem of �nding the nearest point in Pos�B� to b�

It can be veri�ed that the solution of the LCP �q�M� is �w�� w�� w�
 z�� z�� z�� �

��� �� �
 �� �� ��� This implies that the vector �� � ��� �� ��T is the optimum combination

vector for the nearest point problem 	B
 b�
 that is� �B�� � �B�� � ������ �
T is the

nearest point in Pos�B� to b� Conversely� given that �x � ������ �T is the nearest

point in Pos�B� to b� we get z� � B���x � ��� �� ��T � and w� � Mz� � q � ��� �� ��T �

and �w�� z�� is the solution of the LCP �q�M��
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Some Results

Let S � fB�j� � � � � � B�jrg ����� De�ne

I�S� � Index set of S � fj�� � � � � jrg

I�S� � f�� � � � � ng n I�S�

H�S� �

���y � y � X
j�I�S�

�jB�j 
 �j real number for all j � I�S�

���
B�S� � The n by r matrix whose columns are B�j� � � � � � B�jr

w�S� � �wj� � � � � � wjr�
T

z�S� � �zj� � � � � � zjr�
T

q�S� � �qj� � � � � � qjr �
T

M�S� � B�S�TB�S�� the principal submatrix of M corresponding to I�S� �

H�S� as de�ned above is the linear hull of S� it is the subspace of Rn spanned by the

column vectors in S� If S � �� de�ne H�S� � Pos�S� � f�g� For any S ����� Pos�S�

is a face of Pos������ The problem of �nding the nearest point in Pos�S� to b �in terms

of the usual Euclidean distance� will be denoted by 	S
 b�� If S �� �� the nearest point

in H�S� to b is denoted by b�S�� and this point is known as the projection or the

orthogonal projection of b in H�S��

Theorem ��� Let S ���� and S �� �� Then b�S� � B�S�
�
B�S�TB�S�

���
B�S�T b�

Proof� Let S � fB�j� � � � � � B�jrg and let � � ���� � � � � �r�
T � The problem of �nding

the projection of b in H�S� is the unconstrained minimization problem� Minimize

�b � B�S���T �b � B�S���� � � Rr� and the optimum solution of this unconstrained

minimization problem is � �
�
B�S�TB�S�

���
�B�S��T b� Hence� b�S� � B�S�� �

B�S�
�
B�S�TB�S�

���
�B�S��T b�

Example ���

Let B be the matrix de�ned in Example ��� and b the vector from the same example�

So

B �

������� � � �
� �� �

�� � �

������� � b �

���������
��


�������
Let S � fB��� B��g� So in this case I�S� � index set of S � f�� �g� So H�S� is the

subspace f����� �����T � ����� �� ��
T � ��� �� real numbersg of R

�� The matrix B�S�

here is

B�S� �

������� � �
� �

�� �

������� � M�S� �
�
B�S�

�T
B�S� �

��� � ��
�� �

���
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The projection b�S� here can be veri�ed to be b�S� � B�S�

������
�
�
�

���� � ���
� ��

�
� � 
�T
�

Since b�S� � B���
�
� �� �

�
�T � it is not in the cone Pos�B��

Theorem ��� For S ����� the nearest point in Pos�S� to b is the same as the nearest

point in Pos�S� to b�S��

Proof� The case S � � is trivially veri�ed to be true� So assume S �� �� For x � H�S�

by Pythagoras theorem jjb� xjj� � jjb� b�S�jj� � jjb�S�� xjj�� Since Pos�S� � H�S��

this equality obviously holds for all x � Pos�S�� Hence the theorem follows�

Theorem ��� Let S ����� S �� �� The optimum solution of 	S
 b� is in the relative

interior of Pos�S� if and only if b�S� is in the relative interior of Pos�S��

Proof� b�S� is in the relative interior of Pos�S� if and only if b�S� � B�S��� where

� � �� As long as b�S� � Pos�S�� b�S� is the optimum solution of 	S
 b�� and hence

in this case the statement of the theorem is true� If b�S� �� Pos�S�� by Theorem ���

the optimum solutions of 	S
 b� and 	S
 b�S�� are the same� 	S
 b�S�� is the nearest point

problem in the subspace H�S�� whose order is the same as the dimension of H�S�� and

hence in this case the optimum solution of 	S
 b�S�� lies on the relative boundary of

Pos�S��

De�nition � Projection Face

Let S ����� Pos�S� is a face of Pos����� of dimension jSj� Pos�S� is said to be aProjection

face of Pos������ if b�S� � Pos�S��

Example ���

Let B� b be as in in Example ��� As computed there� the projection of b in the linear

hull of fB��� B��g is not in the face PosfB��� B��g� since it is �
�
�B�� �

�
�B��� not a

nonnegative combination of B��� B��� So� the face PosfB��� B��g is not a projection

face�

On the other hand� consider the face PosfB��� B��g� The projection of b in the

linear hull of fB��� B��g can be veri�ed to be �B�� � �B�� � ������ �T which is in

PosfB��� B��g� So PosfB��� B��g is a projection face of Pos�B��

Theorem ��	 Let x� � B�� be the optimum solution of 	���
 b�� Let I�S� � fj�� � � � �

jrg � fj � j such that ��j � �g� and S � fB�j � j � I�S�g� Then Pos�S� is a projection

face of Pos������

Proof� Obviously x� � Pos�S�� Since x� is the nearest point in Pos����� to b� and

since Pos�S� � Pos������ clearly x� is the nearest point in Pos�S� to b� However� by

the de�nition of S� x� is in the relative interior of Pos�S�� Hence� by Theorem ��� x�

must be the projection of b in H�S�� Since x� � Pos�S�� this implies that Pos�S� is a

projection face of Pos������
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Exercises

��� Prove that the problem of �nding the nearest point in the face Pos�S� of Pos����� to

b or b�S�� is equivalent to the principal subproblem of the LCP ���� in the variables

w�S�� z�S�� Also show that if � �w�S� � q�S� �M�S��z�S�� �z�S�� is the solution of this

principal subproblem� then B�S��z�S� is the nearest point in Pos�S� to b or b�S�
 and

conversely� Also prove that the face Pos�S� of Pos����� is a projection face i� z�S� is a

complementary feasible basic vector for this principal subproblem�

��� If S ���� is such that Pos�S� is a projection face of Pos������ prove that b�S� is the

nearest point in Pos����� to b i� �w����nS�� z�S�� is a complementary feasible vector for

�����

De�nitions and Notation

Let Kj denote the facet Pos�B��� � � � � B�j��� B�j��� � � � � B�n� of Pos����� for j � � to n�

Let x � ��B�� � � � �� �nB�n � Pos������ It follows that �j � � if and only if x � Kj �

and �j � � if and only if x �� Kj� for all j � � to n� Given the two points b � Rn

and �x � Rn such that b �� �x� let the open ball B�b
 �x� � fx � jjb � xjj � jjb � �xjjg�

Consider the hyperplane T�b
 �x� � fx � �x� �x�T �b� �x� � �g� The open half space fx �

�x� �x�T �b� �x� � �g is called the near side of T�b
 �x�� while the closed half space fx �

�x � �x�T �b � �x� �� �g is called the far side of T�b
 �x�� If the point �x is chosen such

that � � T�b
 �x�� then �xT �B � �x� � � and therefore for such �x we have� T�b
 �x� � fx �

xT �b� �x� � �g� near side of T�b
 �x� � fx � xT �b� �x� � �g� far side of T�b
 �x� � fx �

xT �b� �x� �� �g� For points �x satisfying � � T�b
 �x�� we de�ne the set N��x� by

N��x� � fj � j such that BT
�j�b� �x� � �g �

So N��x� is the set of subscripts of the column vectors in ��� which are on the near side

of T�b� �x��

Let V j � � if bTB�j �� �� or �
B�j�bTB�j�
jjB�j jj� if bTB�j � �� Vj is the nearest point on

the ray of B�j to b� for all j � � to n� Also let l be such that jjV l�bjj � minfjjV j�bjj �

j � � to ng� Break ties for the minimum in this equation arbitrarily� If V l �� �� it is

the orthogonal projection of b on the linear hull of B�l�

Example ��	

Let B� b be as given in Example ��� That is�

B �

������� � � �
� �� �

�� � �

������� � b �

���������
��


�������
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So bTB�� � ��� � �� bTB�� � �� � �� b
TB�� �  � �� So if V

j is the nearest point

to b on the ray of B�j � we have V
� � �� V � � ���� ��

� �
��
� �

T � V � � ��� �� �T � Also� we

verify that the nearest point among V �� V �� V � to b is V �� so l as de�ned above� is �

in this problem�

If we take �x � V �� since �x is the nearest point on the ray of B�� to b� the ray of

B�� is a tangent line to the ball B�b
 �x� at its boundary point �x� See Figure ��� So

the tangent plane T�b
 �x� to B�b
 �x� at its boundary point �x contains the ray of B���

So in this example N��x� � fj � j such that �b� �x�TB�j � �g � f�g� So the vector B��
is on the near side of T�b
 �x�� and the vector B�� is on the far side of T�b
 �x�� in this

example�

B 1

B 2

B 3

x̂

bO

Figure ���

Theorem ��� If V l � �� the nearest point in Pos����� to b is ��

Proof� In this Case bTB�j �� � for all j � � to n� Hence the hyperplane fx � b
Tx � �g

for which the ray of b is the normal at �� separates b and Pos������ So � is the nearest

point in Pos����� to b�

Example ���

Let

B �

������� � � �
� �� �

�� � �

������� � b �

���������
�

��

������� �
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We have bTB�j � ������� respectively for j � �� �� �� So� the nearest point on the ray

of B�j is V
j � � for all j � �� �� �� Hence in this case � is the nearest point in Pos�B�

to b�

Thus � is the nearest point to b in Pos�B� i� bTB�j �� � for all j � � to n� So� in

the sequel� we will assume that bTB�j � � for at least one j� and under this condition�

V l as de�ned above is not zero�

Theorem ��� A point �x � Pos����� is the nearest point in Pos����� to b if and only if

� � T�b
 �x� and

�b� �x�TB�j �� �� for all j � � to n�
����

Proof� Suppose �x is the nearest point in Pos����� to b� So� �x is the orthogonal projection

of b on the full line generated by �x� and hence � � T�b
 �x�� Also� the hypothesis implies

that the hyperplane T�b
 �x� strictly separates B�b
 �x� and Pos������ So �b� �x�TB�j �� �

for all j � � to n�

Conversely suppose �x � Pos����� satis�es ��� These conditions imply that T �b
 �x�

is the tangent hyperplane to the closure of B�b
 �x� at its boundary point �x� and that

T�b
 �x� separates the closure of B�b
 �x� and Pos������ So� under these conditions� �x is

the nearest point in Pos����� to b�

Example ���

Let B� b be as given in Example ��� that is

B �

������� � � �
� �� �

�� � �

������� � b �

���������
��


������� �

If �x � V � � ������
� �

��
� �

T � we veri�ed as in Example �� that �b� �x�TB�� � �
�
�� � ��

and hence �x is not the nearest point in Pos�B� to b�

Let �x � ������ �T � the orthogonal projection of b in the linear hull of fB���

B��g� which is the nearest point in the face PosfB��� B��g of Pos�B� to b� obtained

in Example ��� Since �x is the orthogonal projection of b in a subspace� the tangent

plane T�b� �x� contains this subspace �in this case T�b� �x� is the linear hull of fB��� B��g

itself� and hence the origin �� Also� it can be veri�ed that �b� �x�TB�j � ��� �� � �� ��

for j � �� �� �� So N��x� � � and �x is the nearest point in Pos�B� to b in this example�

See Figure ���
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B 1

x̂

B 3 B 2

b

O

Figure ��� �x is the nearest point in Pos�B� to b�

Let �� be the unknown optimum combination vector for 	���
 b�� Let J � fj �

��j � �g� J is called the set of critical indices for the LCP �q�M� and for the

corresponding nearest point problem 	���
 b�� It is clear that J is also the set of all j

such that zj is strictly positive in the unique solution of the LCP �q�M�� Notice that

if �w� z� is the unique solution of the LCP �q�M�� then wj � � for all j � J and zj � �

for all j �� J� or equivalently if yj � zj for all j � J� wj for all j �� J� then �y�� � � � � yn�

is a complementary feasible basic vector for this LCP� So if the set J can be found� the

basic solution of ���� corresponding to the basic vector �y�� � � � � yn� de�ned above is

the unique solution of this problem� Also by earlier results� the solution to the nearest

point problem 	���
 b� is the orthogonal projection of b on the linear hull of fB�j � j � Jg�

Hence if J is known� the solution of the LCP �q�M� and correspondingly the solution

to the associated nearest point problem 	���
 b� can be easily found�

Even if a single critical index is known� this information can be used to reduce

�q�M� to an LCP of order n� � as shown in the following theorem�
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Theorem ��� If a single critical index is known� �q�M� can be reduced to an LCP

of order n� ��

Proof� Without loss of generality suppose we know that � is a critical index� Then

perform a single principal pivot step in ���� in position �� Suppose this leads to

w� w� � � � wn z� z� � � � zn

�m�� � � � � � � �m�� � � � �m�n �q�

�m�� � � � � � � �m�� � � � �m�n �q�

�� �� �� �� �� �� ��

�mn� � � � � � � �mn� � � � �mnn �qn

Let M � �mij � � �� i� j �� n� be the matrix of order n � �� and �q � ��q�� � � � � �qn�
T �

from the above Tableau� Eliminating the columns of w�� z�� and the �rst row from it

leads to the principal subproblem in variables � � �w�� � � � � wn� and � � �z�� � � � � zn��

which is an LCP of order n � �� denoted by ��q�M�� Since M is positive de�nite and

symmetric� so isM� If �y�� � � � � yn�� where yj � fwj � zjg� is a complementary feasible

basic vector for ��q�M�� then� since � � J� �z�� y�� � � � � yn� is a complementary feasible

basic vector for the original �q�M�� Thus to solve �q�M�� if we know that � � J� it

is enough if we solve the principal subproblem ��q�M� of order n � �� Therefore the

fact that � � J has made it possible for us to reduce the LCP �q�M� of order n� into

��q�M� of order n� ��

We can also argue geometrically that the knowledge of a critical index reduces the

dimensionality of the nearest point problem� If � is a critical index� then the nearest

point to b in Pos����� is also the nearest point to b in Pos�����f�B��g�� De�ne �b �

b� B���bTB���
jjB��jj� � �B�j � B�j �

B���B���TB�j
jjB��jj� � for j � �� � � � � n� Let ��� � f �B��� � � � � �B�ng� For

� �� j �
� n� �B�j is orthogonal to B�� and the cone Pos�����f�B��g� is the direct sum

of the full line generated by B�� and the simplicial cone Pos������ Solving 	���
�b� is an

�n � �� dimensional nearest point problem� If �x� is its solution� as embedded in Rn�

then x� � �x� � B���bTB���
jjB��jj� solves 	���
 b��

We will develop an algorithm for �nding a critical index� When it is obtained� we

can reduce �q�M� into a linear complementarity problem of lower order and apply the

same approach on it�

Example ���

Consider the LCP �q�M� discussed in Example ��� In Example �� we will establish

the fact that � is a critical index for this LCP� Performing a principal pivot step in



Chapter �� Nearest Point Problems on Simplicial Cones ���

position � in this LCP leads to the following �

w� w� w� z� z� z�

� � � �� � � 

� � �� � �� � ��

� � �� �� � � 

wj � zj �� � for all j� wjzj � � for all j

Since � is a critical index� we eliminate w�� z� and the last row from the problem�

leading to the principal subproblem

w� w� z� z�

� � �� � 

� � � �� ��

wj � zj �� � for all j� wjzj � � for all j

It can be veri�ed that �w�� z�� is a complementary feasible basic vector for this principal

subproblem� So� �w�� z�� z�� is a complementary feasible basic vector for the original

LCP �q�M��

Theorem ��
 Given � �� �x � Pos����� satisfying � � T�b
 �x�� if for some i � f�� � � � �

ng� we have

�i� �b� �x�TB�i � �� and either

�ii� jj�x� bjj �� jjV i � bjj and f�x�B�ig is linearly independent� or

�ii�� bTB�i �� ��

then� the projection of b onto the linear hull of f�x�B�ig is in the relative interior of

Posf�x�B�ig�

Proof� Since �x is the closest point in T�b
 �x� to b and since � � T�b
 �x�� �x is the closest

point on the ray of �x to b�

If �ii�� holds� then V i � � and hence in this case we have jj�x� bjj � jjV i� bjj� and

clearly f�x�B�ig is linearly independent� So under these conditions �ii�� implies �ii��

By linear independence� Posf�x�B�ig is a two dimensional simplicial cone� Let p

be the closest point in Posf�x�B�ig to b� By �i�� B�i is on the near side of T�b
 �x�� and

hence B�b
 �x�� Posf�x�B�ig �� �� This implies that p is closer than �x to b
 and by �ii��

p must be closer than V i to b� So p is not contained on the rays of �x or B�i� and hence

p must be in the relative interior of Posf�x�B�ig�

Theorem ��� Let � �� S � ��� be such that �x � b�S� � Pos�S�� Then � � T�b
 �x��

Also� in this case if N��x� � I�S� � �� then N��x� � �� and �x is the nearest point in

Pos����� to b�
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Proof� Under the hypothesis T�b
 �x� contains H�S� and hence � � T�b
 �x�� Also� by

the properties of orthogonal projection� the line joining b and �x is orthogonal to H�S��

and hence �b � �x�TB�j � � for all j � I�S�� So N��x� � I�S� � � implies N��x� � � in

this case� By Theorem �� these facts imply that �x is the nearest point in Pos����� to

b�

Example ��


Consider B� b given in Exercise ��� Let S � fB��� B��g� b�S� � �x � ������ �T given in

Example �� �computed in Example ��� and �x � Pos�S�� In Example �� we computed

that N��x� � � and so N��x� � I�S� � �� This implies that �x is the nearest point in

Pos�B� to b�

Theorem ���� Let �x � Pos����� be such that � � T�b
 �x�� If there exists an index j

such that �b� �x�TB�i �� � for all i �� j� then Kj �B�b
 �x� � ��

Proof� Clearly under these conditions xT �b� �x� �� � for all x � Kj 
 however x
T �b�

�x� � � for all x � B�b
 �x�� Hence Kj �B�b
 �x� � ��

Theorem ���� Let �x � Pos����� be such that � � T�b
 �x�� If there exists an index j

such that �b� �x�TB�i �� � for all i �� j and �b� �x�TB�j � �� then j is a critical index

of 	���� b��

Proof� By Theorem ��� �x is not the nearest point in Pos����� to b� Let �x be the nearest

point in Pos����� to b� Then �x � B�b
 �x�� By Theorem ��� Kj � B�b
 �x� � �� Hence

�x �� Kj and thus j is a critical index of 	���
 b��

Example ���

Consider B� b given in Example ��� If �x � V �� we veri�ed in Example �� thatN��x� �

f�g� This implies that � is a critical index of 	B
 b��

Here we describe a routine for selecting a critical index� This routine terminates

once a critical index is identi�ed� Later on we will discuss the algorithm for solving

the LCP �q�M� where M is a PD symmetric matrix� or the associated nearest point

problem� using this routine�

Routine for Selecting a Critical Index

This routine operates on the nearest point problem 	���
 b� which is equivalent to the

given LCP �q�M�� Clearly if b � Pos������ the nearest point in Pos����� to b is the point
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b itself
 so we assume that b �� Pos����� in the sequel� As mentioned earlier� we also

assume that V l �� � �as otherwise� � is the nearest point in Pos����� to b��

The routine maintains a nonempty subset of ��� called the current set denoted by

S� and a point called the current point denoted by �x� �x � Pos�S� always� As these

things change from step to step� the symbols S� �x may represent di�erent things in

di�erent steps�

Initial Step Set �x � V l� and compute N��x�� If N��x� � �� �x is the nearest point in

Pos����� to b� terminate� If N��x� is a singleton set� say i�� i� is a critical index of 	���
 b��

terminate this routine� If the cardinality of N��x� is greater than or equal to �� choose

g � N��x�
 compute the orthogonal projection �b of b onto the linear hull of f�x�B�gg�

Replace �x by �b� Set S � fB�l� B�gg� Go to Step ��

Step � Let S� �x be the current entities� Compute N��x�� If N��x� � �� �x is the

nearest point in Pos����� to b� terminate� If N��x� is a singleton set� say i�� i� is a critical

index of 	���
 b�� terminate this routine� If the cardinality of N��x� is greater than or

equals �� go to Step � if N��x� � I�S� �� �� or to Step � if N��x� � I�S� � ��

Step � Choose a g � N��x� � I�S�� Compute �b� the orthogonal projection of b onto

the linear hull of f�x�B�gg� Replace S by S � fB�gg� and �x by �b� Go back to Step ��

Step � Compute b�S�� If b�S� � Pos�S�� replace �x by b�S� and go to Step �� If

b�S� �� Pos�S�� go to Step ��

Step 	 Let the current point �x �
P
��jB�j � j � I�S��� where �j �

� � for all

j � I�S�� Let b�S� �
P
	�jB�j � j � I�S��� Since b�S� �� Pos�S�� �j � � for some

j � I�S�� An arbitrary point on the line segment joining �x to b�S� can be written as

Q��� � ������x��b�S�� � �� � �
� �
 or equivalently Q��� �

P
	��������j���j�B�j� �

j � I�S��� As � increases from � to �� Q��� moves from �x to b�S�� Let � � �� be the

largest value of � for which Q��� is in Pos�S�� So Q���� is on the boundary of Pos�S�

and Q��� �� Pos�S� for � � ��� So �� � maxf� � ��� ���j � ��j �� �� for all j � I�S�g�

The point �� � ����x � ��b�S� � Q���� is the last point in the cone Pos�S� on the line

segment joining �x and b�S�� as you move away from �x along this line segment� See

Figure ���

Let k be such that ��� ����k � ���k � �� If there is more than one index in I�S�

with this property� choose one of the them arbitrarily and call it k� Q���� is the nearest

point to b�S� on the line segment joining �x to b�S� that lies in Pos�S�� So Q���� �

Pos�S n fB�kg�� Delete B�k from S� Also delete k from I�S� and include it in I�S��

Replace �x by Q���� and go to Step ��
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x

S(   )b

λ(  )Q

SPos(   )O

Figure ���

Discussion

If termination does not occur in the Initial Step� when we move to Step � we will have

jj�x � bjj � jjV l � bjj by Theorem ��� and this property will continue to hold in all

subsequent steps� since jj�x � bjj never increases in the routine� Clearly �x � Pos�S�

always� These facts imply that once the algorithm enters Step �� the cardinality of S

will always be greater than or equal ��

While executing Step �� if �� turns out to be zero� there is no change in the point �x�

but the cardinality of the set S decreases by � at the end of this step� Thus a sequence

of consecutive moves in the algorithm of the form Step � � Step � � Step � � � �� must

terminate after at most �n � �� visits to Step �� with �x set equal to b�S� for some

projection face Pos�S� in Step �� and then the routine moves to Step �� When this

happens� while executing Step �� by Theorem �� either the routine itself terminates


or else Step � must be taken implying a strict decrease in jj�x� bjj by Theorem �� with

the new �x via Step �� and thus the projection face Pos�S� cannot repeat�

Whenever the routine visits Step �� the current point �x is the orthogonal projection

of b onto a subspace of dimension � or more� and hence the property � � T�b
 �x� will

hold then� Clearly� this property also holds in the Initial Step�

In the Initial Step� or in Step �� if N��x� � �� �x is the nearest point in Pos����� to b

by Theorem ��� In these steps� if N��x� is a singleton set� the element in it is a critical
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index for 	���
 b� by Theorem ����

Since there are but a �nite number of projection faces� these facts imply that if

the routine does not terminate in the Initial Step� it terminates after a �nite number

of steps while executing Step ��

When termination occurs in Step �� it either �nds the nearest point in Pos�����

to b� in which case the problem is completely solved� or it �nds a critical index of

the problem� In the latter case an LCP of order n � � can be constructed and the

same routine can be applied to this smaller problem� as discussed in Theorem ��

The solution to the original problem then can be obtained using the solution of this

smaller problem� as discussed in Theorem �� Hence the unique solution of �q�M� can

be obtained after at most n applications of the routine discussed above on LCPs of

decreasing orders� each one associated with a positive de�nite symmetric matrix� We

will now provide a summary of the whole algorithm�

Algorithm for Solving the LCP �q�M� When M is PD Symmetric

Step � Let �q�M� be the LCP and 	B
 b� the corresponding nearest point problem�

Check if B��b �� �� If it is� b � Pos�B� and b itself is the nearest point in Pos�B� to

b� In this case z is a complementary feasible basic vector to the LCP �q�M� and the

solution for it is �w � �� z �M��q�� If this condition is not satis�ed� continue�

Check if bTB �
� �� If it is� the origin � is the nearest point in Pos�B� to b� In this

case w is a complementary feasible basic vector to the LCP �q�M�� that is� q �� �� and

�w � q� z � �� is the solution of the LCP� If this condition is not satis�ed� continue�

For j � � to n� de�ne

V j �

	
� if bTB�j �� �


bTB�j
jjB�j jj�

�
B�j otherwise �

Let V l be the nearest among V �� � � � � V n to b� Break ties for l arbitrarily� Go to Step

� with S � fB�lg� �x � V l� I�S� � flg�

Step � Let �x be the current point and S the current subset of columns of B�

Compute N��x� � fj � �b� �x�TB�j � �g�

If N��x� � �� �x is the nearest point in Pos�B� to b� De�ne for j � � to n

yj �

�
zj if j � I�S�
wj otherwise �

Then y � �y�� � � � � yn� is a complementary feasible basic vector for the LCP �q�M� and

� �w �M �z � q� �z � B���x� is the solution of the LCP� Terminate�

If N��x� is a singleton set� that is� if N��x� � fj�g for some j�� j� is a critical

index� Using it� reduce the LCP to one of order one less as in Theorem �� and

obtain the corresponding nearest point problem of dimension one less either by �nding

the Cholesky factor of the matrix associated with the reduced LCP or by using the
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geometric procedure described following the proof of Theorem �� With the reduced

LCP and the reduced nearest point problem� go back to Step ��

If the cardinality of N��x� is greater than or equal to �� go to Step � if N��x� �

I�S� �� �� or to Step � otherwise�

Step � Select a g � N��x� � I�S�� Compute �b� the orthogonal projection of b on the

linear hull of f�x�B�gg� Include B�g in S� g in I�S�� and replace �x by �b and go back to

Step ��

Step � Compute b�S�� the orthogonal projection of b on the linear hull of S� If

b�S� � Pos�S�� replace �x by b�S�� and go back to Step � leaving S� I�S� the same� If

b�S� �� Pos�S�� go to Step ��

Step 	 Let �x �
P

j�I�S� �jB�j and b�S� �
P

j�I�S� �jB�j � Now compute the value
�� � min

 �j
��j��j�

� j such that �j � �
�
� and let k be an index which attains this

minimum� Break ties for k arbitrarily� Replace �x by ��� ����x���b�S�� Delete B�k from

S and k from I�S�� and go back to Step ��

For solving LCPs ���� in which M is a given positive de�nite symmetric matrix�

or equivalently the nearest point problem 	���
 b� where ��� is a given basis for Rn
 the

approach discussed here seems to be the most e�cient from a practical point of view�

Empirical results on the computational e�ciency of this approach are reported in

Chapter ��

��� Exercises

��� Let ���� fB��� � � � � B�ng be a basis for R
n and b be another point in Rn� Suppose

it is required to �nd the nearest point in Pos����� to b in terms of the L��distance� also

known as the rectilinear distance� The rectilinear distance between two points x �

�xj�� y � �yj� in R
n is de�ned to be

Pn

j��

�
jxj � yj j

�
� Show that this problem can

be formulated as an LP� Given the nearest point in Pos����� to b in terms of the L�

distance� can you draw from it any conclusions about the location of the nearest point

in Pos����� to b in terms of the Euclidean distance� �explore questions like whether they

lie in the same face etc��

��	 Let ��� be a subset consisting of a �nite number of column vectors from Rn� which

is not linearly independent� and let b � Rn be another column vector� It is required to

�nd the nearest point in Pos����� to b� Modify the algorithm discussed above to solve

this problem�

��� Let K � Rn be a given convex polyhedron� and let b � Rn be a given point� It is

required to �nd the nearest point in K �in terms of the usual Euclidean distance� to

b� K may be given in one of two forms�
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�i� All the extreme points and extreme homogeneous solutions associated with

K may be given� or

�ii� The constraints which de�ne K may be given� for example K � fx � Ax �� p�

Dx � dg where A� D� p� d are given�

Modify the algorithm discussed above� to �nd the nearest point in K to b� when K is

given in either of the forms mentioned above�

��� Generalize the algorithm discussed above� to process the LCP �q�M� when M is

PSD and symmetric�

��� Let b � Rn� b � � and let K � fy � � �� y �
� bg be a rectangle� For x � Rn let

PK�x� be the nearest point �in terms of the usual Euclidean distance� to x in K� For

any x� y � Rn� prove the following�

��� The ith coordinate of PK�x� is min

maxf�� xig� bi

�
�

��� x �� y implies PK�x� �� PK�y��

��� PK�x�� PK�y� �� PK�x� y��

��� PK�x� y� �� PK�x� � PK�y��

��� PK�x� � PK��x� �� jxj � �jxj j�� with equality holding if �b �� x �� b�

�B� H� Ahn 	����

��
 Let f�x� be a real valued convex function de�ned on Rn� Let �x � Rn� � � R�

be given� It is required to �nd a point that minimizes the distance jjx� �xjj over fx �

f�x� �� �g� Develop an e�cient algorithm for this problem� What changes are needed

in this algorithm if f�x� � �f��x�� � � � � fm�x��
T where each fi�x� is a real valued convex

function de�ned on Rn� and � � Rm�

��� Let B a square nonsingular matrix of order n� Let M � BTB� Let J � f�� � � � �

ng� with elements in J arranged in increasing order� Let MJJ denote the principal

submatrix of M corresponding to the subset J� For any column vector q � Rn� let qJ
denote the column vector of �qj � j � J� with the entries in qj arranged in the same

order as the elements j are in J�

It is required to �nd a point p in the interior of Pos�B� satisfying �

Property �� For every nonempty face F of Pos�B�� the orthogonal projection of p in

the linear hull of F� is in the relative interior of F�

Prove that p � Rn satis�es Property � i� �MJJ�
��qJ � � for all subsets J � f��

� � � � ng� where q � BTp�

If n � �� prove that a point p satisfying Property � always exists� In this case�

show that p can be taken to be any nonzero point on the bisector of the angle �that is

less than ����� created by the rays of B�� and B�� in R
��

For general n� let A � B��� Then fx � Ai�x � �g is the hyperplane Hi which is

the linear hull of fB��� � � � � B�i��� B�i��� � � � � B�ng� The generalization of �nding a point
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on the bisector of the angle between the rays of B��� B�� when n � �� is to �nd a point

p� satisfying the property that the shortest distances from p to each of the hyperplanes

Hi� i � � to n� are all equal� A point like this would be a positive scalar multiple of

d � Be� Is the statement �if a point p satisfying Property � exists� d � p is one such

point� true�

Show that if

M �

������������������

� �� � � � �
�� � �� � � �
� �� � �� � �
� � �� � �� �
� � � �� � ��
� � � � �� �

������������������
and B is such that BTB �M � there exists no point p satisfying Property ��

Derive necessary and su�cient conditions on the matrix B to guarantee that a

point p satisfying Property � exists�

�This problem came up in the algorithm discussed in Exercise ����� The numerical

example is due to J� S� Pang�

���� LetM be a square matrix of order n� which is PSD� but not necessarily symmetric�

Let cM � �M �MT �	�� Prove that xTcM and qTx are constants over the solution set

of the LCP �q�M��

���� fA��� � � � � A�n��g is a set of column vectors in Rn such that fA�� � A��� � � � �

A�n�� � A��g is linearly independent� b is another column vector in Rn� Let K be

the n�dimensional simplex which is the convex hull of fA��� � � � � A�n��g� Develop an

e�cient algorithm of the type discussed in this chapter� for �nding the nearest point

�in terms of the usual Euclidean distance� to b in K�

���� Let ���� fA��� � � � � A�mg be a given �nite set of column vectors in R
n� Let K be

the convex hull of ����

Suppose x� is the point minimizing kxk over x � K� For any y � Rn� y �� ��

de�ne

h�y� � maximum value of yTx� over x � K

s�y� � a point in ��� which maximizes yTx over x � K� So� h�y� � yT s�y��

Incidentally� h�y�� s�y� can be found by computing yTA�j for each j � � to m and

choosing s�y� to be an A�p where p is such that y
TA�p � maximum fyTA�j � j � �

to mg�

�i� Prove that x� can be expressed as a convex combination of at most n� � vectors

from ����

�ii� If � �� K� prove that x� can be expressed as a convex combination of at most n

vectors from ����
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�iii� For each x � K� prove that kxk� � h��x� �� �� Also prove that kxk
� � h��x� � �

for x � K i� x � x��

�iv� For any x � K� x �� x�� prove that s��x�� x is a descent direction for kxk�

�v� For any x � K satisfying kxk� � h��x� � �� prove that there must exist a point

x on the line segment joining x and s��x� such that kxk � kxk�

�vi� Consider the following algorithm for minimizing the norm kxk over x � K by

R� O� Barr and E� G� Gilbert� If � � ���� clearly x�� the point minimizing kxk over

x � K� is � itself� so we assume that � �� ���� The algorithm operates with a subset

S � ��� satisfying jSj �� n� � always� and S is the set of vectors of a simplex� The

set S changes from step to step� Let the index set of S be I�S� � fj � A�j � Sg�

The algorithm needs a subroutine for minimizing kxk over a simplex� If ��� is the

set of vertices of a simplex �i� e�� K is a simplex� the problem is solved by calling this

subroutine once� terminate� So� we assume that K is not a simplex in the sequel�

Let rank ����� � r� Initiate the algorithm with an arbitrary subset S of r � � or

less vectors from ��� whose convex hull is a simplex �we can initiate the algorithm with

S � fA�lg where l is such that kA�lk � minimum fkA�jk � j � � to mg��

General Step Let S be the current subset of vectors from ���� and I�S� its index set�

Find x� the point of minimum norm kxk� in the convex hull of S �for executing this�

you need a subroutine to minimize the norm kxk on a simplex��

If x � �� then � � K� x� � �� terminate the algorithm�

If x �� �� compute kxk��h��x�� If kxk��h��x� � �� then x� � x� terminate the

algorithm�

If x �� � and kxk� � h��x� � �� let x �
P
�ajA�j � j � I�S��� Since x is the point

of minimum norm in the convex hull of S and x �� �� x must be a boundary point of

the convex hull of S� that is� aj � � for at least one j � I�S�� Let J � fj � j � I�S�

and aj � �g� Replace S by fs��x�g � �S n fA�j � j � Jg�� update I�S�
 and with

the new S� I�S�� go to the next step� Prove that S always remains the set of vertices

of a simplex in this algorithm� and that the algorithm �nds x� after at most a �nite

number of steps�

�See R� O� Barr� �An e�cient computational procedure for generalized quadratic pro�

gramming problems�� SIAM Journal on Control  ������ �������
 and R� O� Barr and

E� G� Gilbert� �Some e�cient algorithms for a class of abstract optimization problems

arising in optimal control�� IEEE Transactions on Automatic Control� AC��� ������

�������� My thanks to S� Keerthi for bringing this and the next two problems to my

attention��

���� Let ��� � fA��� � � � � A�mg be a �nite set of column vectors from Rn
 and b� another

given column vector in Rn� Discuss how the Barr�Gilbert algorithm presented in

Exercise ���� can be used to �nd the nearest point �in terms of the Euclidean distance�

in the convex hull of ��� to b�
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���	 Let ��� � fA��� � � � � A�mg�    � fB��� � � � � B�tg be two �nite sets of column vectors

from Rn� Let K� P denote the convex hulls of ����    respectively� It is required to �nd

x� � K� y� � P such that

kx� � y�k � minimum fkx� yk � x � K� y � Pg�

Using the fact that K � P �de�ned in Appendix �� is a convex set� discuss how the

Barr�Gilbert algorithm presented in Exercise ���� can be used to �nd x�� y��

��� References

�� B� H� Ahn� �Iterative methods for linear complementarity problems with upper�

bounds on primary variables��Mathematical Programming� �� ������ ��������

�� K� G� Murty and Y� Fathi� �A Critical Index Algorithm for Nearest Point Prob�

lems on Simplicial Cones�� Mathematical Programming� �� ������ ��������

�� P� Wolfe� �Algorithm for a Least Distance Programming Problem��Mathematical

Programming Study �� ����� ��������

�� P� Wolfe� �Finding the Nearest Point in a Polytope��Mathematical Programming�

�� ����� ��������

�� D� R� Wilhelmsen� �A Nearest Point Algorithm for Convex Polyhedral Cones and

Applications to Positive Linear Approximations�� Mathematics of Computa�

tion� �� ����� �����
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POLYNOMIALLY BOUNDED
ALGORITHMS
FOR SOME CLASSES OF LCPs

In this chapter we discuss algorithms for special classes of LCPs� whose computational

complexity is bounded above by a polynomial in either the order or the size of the LCP�

We consider the LCP �q�M� where M is either a Z�matrix� or a triangular P �matrix�

or an integer PSD�matrix�

��� Chandrasekaran�s Algorithm for LCPs

Associated with Z�Matrices

Consider the LCP �q�M� of order n� where M is a Z�matrix� As discussed in Section

���� M � �mij� is a Z�matrix if all its o� diagonal entries are nonpositive� that is

mij �
� 	 for all i �� j� The algorithm discussed below by R� Chandrasekaran 
����

terminates after at most n principal pivot steps� with either a solution of the LCP

�q�M� or the conclusion that it has no solution�

The Algorithm

The initial tableau is �����

w z

I �M q
�����

Step �� Start with the initial tableau and with w � �w�� � � � � wn� as the initial com�

plementary basic vector� If this is a feasible basis �i� e�� if q �� 	� it is a complementary

feasible basis� terminate� Otherwise� go to the next step�
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General Step� Let �q be the present update right hand side constants vector� If

�q �
� 	� the present basic vector is a complementary feasible basic vector� terminate�

Otherwise select a t such that �qt � 	� Let �mtt be the present update entry in the

tth row and the column vector of zt� At this stage� the present basic variable in row

t will be wt �this follows from statement � listed below�� If �mtt �� 	� there exists

no nonnegative solution for ����� and consequently the LCP �q�M� has no solution�

terminate� Otherwise if �mtt � 	� perform a principal pivot step in position t and go

to the next step�

Using the fact that the initial matrix M is a Z�matrix� we verify that in the initial

system ������ for any t � � to n� all the entries in row t are nonnegative with the

exception of the entry in the column of zt� From the manner in which the algorithm

is carried out� the following facts can be veri�ed to hold�

�� All pivot elements encountered during the algorithm are strictly negative�

�� For any t such that no pivot step has been performed in the algorithm so far

in row t� all the entries in this row on the left hand portion of the present

updated tableau are nonnegative� except� possibly the entry in the column

of zt� The infeasibility conclusion in the algorithm follows directly from this

fact�

�� If s is such that a pivot step has been carried out in row s in the algorithm�

in all subsequent steps� the updated entry in this row in the column of any

nonbasic zi is nonpositive�

�� Once a pivot step has been performed in a row� the updated right hand side

constant in it remains nonnegative in all subsequent steps� This follows from

statements � and ��

�� Once a variable zt is made a basic variable� it stays as a basic variable� and

its value remains nonnegative in the solution� in all subsequent steps�

�� All basic vectors obtained in the algorithm are complementary� and the algo�

rithm terminates either with the conclusion of infeasibility or with a comple�

mentary feasible basis�

�� At most one principal pivot step is carried out in each position� thus the

algorithm terminates after at most n pivot steps� Thus the computational

e�ort measured in terms of basic operations like multiplications� additions�

comparisons of real numbers� is at most O�n���

From these facts we conclude that if the system �w �Mz � q� w �
� 	� z �

� 	�

is feasible and M is a Z�matrix� then the LCP �q�M� has a complementary feasible

solution and the above algorithm �nds it� Hence� when M is a Z�matrix� the LCP

�q�M� has a solution i� q � Pos�I
��� �M�� or equivalently� every Z�matrix is a Q��

matrix�

R� W� Cottle and R� S� Sacher� and J� S� Pang 
���� ��� discuss several large scale

applications of the LCP basid on this algorithm�
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Exercises

��� Solve the LCP with the following data by Chandrasekaran�s algorithm�

M �

��������������
� �� 	 �� ��

�� 	 �� �� 	
�� �� � 	 	

	 �� �� �� ��
�� 	 �� �� �

�������������� � q �

��������������
��
��
��
��
��

�������������� �

��� Is the complementary pivot method guaranteed to process the LCP �q�M� when

M is a Z�matrix �

��� Discuss an e�cient method for computing all the complementary solutions of the

LCP �q�M� when M is a Z�matrix�

��� A Back Substitution Method for the LCPs

Associated with Triangular P�Matrices

A square matrix M � �mij� of order n is said to be a lower triangular matrix if mij � 	

for all j �� i��� It is upper triangular if MT is lower triangular� The square matrix M

is said to be a triangular matrix if there exists a permutation of its rows and columns

which makes it lower triangular� A triangular matrix satis�es the following properties�

�i� The matrix has a row that contains a single nonzero entry�

�ii� The submatrix obtained from the matrix by striking o� the row containing

a single nonzero entry and the column in which that nonzero entry lies� also

satis�es property �i�� The same process can be repeated until all the rows

and columns of the matrix are struck o��

A lower triangular or an upper triangular matrix is a P �matrix i� all its diagonal

entries are strictly positive� A triangular matrix is a P �matrix i� every one of its

single nonzero entries identi�ed in the process �i�� �ii� above is the diagonal entry in

its row and is strictly positive� Thus a triangular matrix is a P �matrix i� there exists

a permutation matrix Q such that QTMQ is a lower triangular matrix with positive

diagonal entries�
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Example ���

Let

M �

����������
� 	 	 �
� � 	 �
� � � �
	 	 	 �

���������� � Q �

����������
	 � 	 	
	 	 � 	
	 	 	 �
� 	 	 	

���������� �

Verify that QTMQ � fM��� de�ned in equation ������ for n � �� and hence M is a

triangular P �matrix�

If M is a triangular P �matrix� the LCP �q�M� can be solved by the following back

substitution method�

Identify the row in M � �mij� containing a single nonzero entry� Suppose it is

row t� If qt �� 	� make wt � qt� zt � 	 � �zt� On the other hand� if qt � 	� make wt � 	�

zt � qt
�mtt

� �zt� Add �ztM�t to the right hand side constants vector q in ������ and then

eliminate the columns of wt� zt and the tth row from ������ thus converting ����� into

a system of the same form in the remaining variables� on which the same process is

repeated�

In this method� the value of one complementary pair of variables �wi� zi� are

computed in each step� their values are substituted in the other constraints and the

process repeated� The method �nds the complete solution in n steps�

Example ���

Consider the LCP �q�M� with

M �

������� � 	 	
� � 	
� � �

������� � q �

������� ��
���
���

������� �

It can be veri�ed that this method leads to the values �w�� z�� � �	� ��� �w�� z�� �

��� 	�� �w�� z�� � ��� 	� in that order� yielding the solution �w�� w�� w�� z�� z�� z�� �

�	� �� �� �� 	� 	�� The same problem was solved by the complementary pivot algorithm

in Example ���	�

��� Polynomially Bounded Ellipsoid Algorithms

for LCPs Corresponding to

Convex Quadratic Programs

In the following sections we show that the ellipsoid algorithms for linear inequalities and

LPs �see references 
����� 
����� can be extended to solve LCPs associated with PSD
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matrices with integer data� in polynomial time� As shown in Chapter � every convex

quadratic programming problem can be transformed into an LCP associated with a

PSD matrix� and hence the methods described here provide polynomially bounded

algorithms for solving convex quadratic programs with integer data� These algorithms

are taken from S� J� Chung and K� G� Murty 
���� Similar work also appeared in 
�����

��� among other references� If the data in the problem is not integer but rational� it

could be converted into an equivalent problem with integer data by multiplying all the

data by a suitably selected positive integer� and solved by the algorithms discussed

here in polynomial time�

In Sections ���� ��� we discussed algorithm for special classes of LCPs in which

the computational e�ort required to solve an LCP of order n is at most O�n��� These

algorithms do not require the data in the problem to be integer or rational� it could

even be irrational as long as the matrix M satis�es the property of being a Z�matrix

or triangular P �matrix as speci�ed and the required arithmetical operations can be

carried out on the data with the desired degree of precision� Thus these algorithms

discussed in Section ���� ��� are extremely e�cient and practically useful to solve

LCPs of the types discussed there� The ellipsoid algorithms discussed in the following

sections have an entirely di�erent character� They are polynomially bounded as long

as M is an integer PSD�matrix� but their computational complexity is not bounded

above by a polynomial in the order of the problem� but by a polynomial in the size

of the problem �the size of the problem is the total number of digits in all the data

when it is encoded using binary encoding�� From Chapter � we know that in the

worst case� the complementary and principal pivoting method discussed earlier are

not polynomially bounded� However� in computational tests on practical� or randomly

generated problems� the observed average computational e�ort required by ellipsoid

method turned out to be far in excess of that required by complementary and principal

pivoting methods� Also� in the ellipsoid methods� each computation has to be carried

out to a large number of digits of precision� making it very hard to implement them

on existing computers�

Thus the ellipsoid algorithms discussed in the following sections are not likely

to be practically useful� at least not in their present forms� The major importance of

these ellipsoid methods is theoretical� they made it possible for us to prove that convex

quadratic programs� or equivalently LCPs associated with PSD�matrices with integer

data� are polynomially solvable�

Size of an LCP

In this and in subsequent sections� we use the symbol L to denote the size of the

problem istance� it is the total number of binary digits in all the data in the instance�

assuming that all the data is integer� Given an integer �� the total number of binary

digits in it �i� e�� the number of bits needed to encode it in binary form� is approximately

d� � log��� � j�j�e� the celing of
�
� � log��� � j�j��� that is� the positive integer just

�
�
�
� � log��� � j�j��� Since the data in an LCP �q�M� of order n is n� q� M � we can
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de�ne the size of this LCP to be

L �

��
� � log�n

�
�

nX
i�j��

�
� � log��� � jmij j�

	
�

nX
j��

�
� � log��� � jqj j�

	

�

An Ellipsoid in Rn

An ellipsoid in Rn is uniquely speci�ed by its center p � Rn and a positive de�nite

matrix D of order n� Given these� the ellipsoid corresponding to them is fx � �x �
p�TD���x � p� �� �g and is denoted by E�p�D�� Notice that if D � I� the ellipsoid

E�p�D� is the solid spherical ball with p as center and the radius equal to �� When

D is positive de�nite� for x� y � Rn� the function f�x� y� � �x � y�TD���x � y� is

called the distance between x and y with D�� as the metric matrix �if D � I�

this becomes the usual Euclidean distance�� The ellipsoid methods discussed in the

following sections obtain a new ellipsoid in each step by changing the metric matrix�

Hence these methods belong to the family of variable metric methods� Also� the

formula for updating the metric matrix from step to step is of the form Dr�� � a

constant times �Dr � Cr�� where Dj is the metric matrix in step j for j � r� r � ��

and Cr is a square matrix of order n and rank � obtained by multiplying a column

vector in Rn by its transpose� Methods which update the metric matrix by such a

formula are called rank one methods in nonlinear programming literature� Rank

one methods and variables metric methods are used extensively for solving convex

unconstrained minimization problems in nonlinear programming� See references 
�	���

�	��� �	��� �	���� The ellipsoid methods discussed in the following sections belong to

these families of methods�

��� An Ellipsoid Algorithm for the

Nearest Point Problem on Simplicial Cones

Let B � �bij� be a nonsingular square matrix of order n� and b � �bi� a column vector

in Rn� We assume that all the data in B� b is integer� and consider the nearest point

problem 
B� b discussed in Chapter �� This is equivalent to the LCP ��q�M� where

M � BTB� �q � �BT b� and so M � �q are integer matrices too� and M is PD and

symmetric� If b � Pos�B�� then the point b is itself the solution of 
B� b� and � �w � 	�

�z � B��b� is the unique solution of the LCP ��q�M�� So we assume that b �� Pos�B�

�this implies that b �� 	�� Here we present an ellipsoid algorithm for solving this nearest

point problem 
B� b and the corresponding LCP ��q�M�� We begin with some results

necessary to develop the algorithm�
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De�nitions

Let � be a small positive number� Later on we specify how small � should be� Let

K �
�
x � B��x �� 	� BT �x� b� �� 	

�
E �

�
x � �x� b

�
�T �x� b

�
� ��

bT b
�

�
Bd�E� � Boundary of E �

�
x � �x� b

�
�T �x� b

�
� � bT b

�

�
E� �


x � �x� b

�
�T �x� b

�
� ��

�
� �

q
bT b
�

	��
L� �

��
� � log�n

�
�

nP
i�j��

�
� � log��jbij j� ��

	
�

nP
i��

�
� � log��jbij� ��

	�
L� � n�n � ���L� � ��

L� �
�
n��n� �� � �

�
L�

�x � Nearest point in Pos�B� to b

M � �mij� � BTB

�q � ��qi� � �BT b

�z � B���x

�w � �q � M �z

� � �
���L� �

Some Preliminary Results

Our nearest point problem 
B� b is equivalent to the LCP ��q�M�� Each mij or �qi is of

the form ���� � ���� � � � �� ��n����n� where the ��s are entries from B� b� and hence

are integer� So we have

log�jmij j � log��j���� � � � �� ��n����nj�
� log�

�
�j��j� ���j��j� �� � � � �� �j��n��j� ���j��nj� ��

�
�
� log�

�
�j��j� ���j��j� �� � � � �j��nj� ��

�
�

�nX
t��

log��j�tj� ��

�
�

�nX
t��

�
� � log��j�tj� ��

�
�
� L� �

So the total number of digits needed to specify the data in the LCP ��q�M� in binary

encoding is at most L��

From well known results the absolute value of the determinant of any square

submatrix of B is at most �L�

n
� See Chapter �� in 
����� So there exists a positive

integer � � �L�

n
such that all the data in the system

�B��x �
� 	

BT �x� b� �
� 	

�����
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are integers� The absolute value of each entry in �B�� is �
�
�L�

n

��
�since it is less than

or equal to a subdeterminant of B times ��� Hence the size of ����� the total number

of digits in the data in it� in binary encoding� is at most L��

Theorem ��� K has nonempty interior�

Proof� Proving this theorem is equivalent to showing that there exists an x � Rn

satisfying each of the constraints in the de�nition of K as a strict inequality� This

holds i� the system
B��x � 	

BTx�BT bxn�� � 	

xn�� � 	

has a feasible solution �x� xn��� � X� By Motzkin�s theorem of the alternatives �The�

orem � of Appendix �� this system has a feasible solution X i� there exists no row

vectors �� 	 � Rn� � � R� satisfying

�B�� � 	BT � 	

� 	BT b � � � 	

��� 	� �� � 	

�����

From the �rst set of constraints in this system we have 	BTB � �� �
� 	� Since BTB is

PD� we know that 	BTB �
� 	� 	 �

� 	 implies that 	� must be 	 in any feasible solution

of ������ This in turn implies that �� � will have to be zero too� a contradiction� So

����� has no feasible solution� hence K has a nonempty interior�

Theorem ��� K �E � K � Bd�E� � f�xg�
Proof� By the results in Chapter �� �w� �z� is the solution of the LCP ��q�M�� So �z �

B���x �� 	� 	 �� w � �q�M �z � �BT b�BTBB���x � BT ��x�b�� Also ��x� b
� �T ��x� b

� ��
� b

T b
� � � �xT �x� �xT b � �xT ��x� b� � �zTBT ��x� b� � �zTw � 	� So �x � K � E�

Conversely� suppose �x � K � E� De�ne �z � B���x� bw � BT ��x� b�� Since �x � E

we have 	 �
� ��x � b

� �T ��x � b
� � � � b

T b
� � � �xT ��x � b� � �zT bw� Since �x � K� we have

�z �
� 	� bw �

� 	� and hence �zT bw �
� 	� These two together imply that �zT bw � 	 and we

can verify that bw � BT ��x � b� � �q � M �z� These facts together imply that � bw� �z� is

the solution of the LCP ��q�M�� Since M is PD� by Theorem �� the LCP ��q�M� has

a unique solution and so � bw� �z� � �w� �z�� So �x � �x� Thus K � E � f�xg� Also� for all

x � K we have �x� b
��T �x� b

� � � xT �x� b� � � b
T b
� � � �B��x�TBT �x� b� � � b

T b
� � ��

� b
T b
� �� This implies that K � E � K � Bd�E��

Theorem ��� �x is an extreme point of K�

Proof� Since M is PD� �w� �z�� the unique solution of the LCP ��q�M� de�ned above�

is a complementary BFS� So �z is an extreme point of fz � �Mz �
� �q� z �� 	g � ���� It

can be veri�ed that z � ��� i� x � Bz � K� So there is a unique nonsingular linear
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transformation between ��� and K� This� and the fact that �z is an extreme point of ���

implies that �x � B���z is an extreme point of K�

Theorem ��� If � ew � � ewi�� �z � ��zi�� is any extreme point of

w �Mz � �q

w �
� 	� z �� 	 �

�����

then ewi� �zi� is either � or � ��L� � for each i�

Proof� As discussed above� L� is the size of the system ������ This result follows from

the results discussed in Chapter �� of 
�����

Theorem ��� The Euclidean lenght of any edge of K is �� ��L� �

Proof� If the edge is unbounded� the theorem is trivially true� Each bounded edge of

K is the line segment joining two distinct adjacent extreme points of K� Let x�� x�

be two distinct adjacent extreme points of K� Since K is the set of feasible solutions

of ������ the results discussed in Chapter �� of 
���� imply that x� � �u��
v�
� � � � � un�

v�
��

x� � �u��
v�
� � � � � un�

v�
� where all the uij �s are integers� v�� v� are nonzero integers� all

juij j� jv�j� jv�j are �
�

�L�

n
� Also� since x� �� x�� these facts imply that there exists a j

satisfying jx�j � x�j j �� ��L� � This clearly implies that jjx� � x�jj �� ��L� �

Theorem ��� If � � ����n���
�
L� � the n�dimensional volume of K � E� �

� �n

���n���L� �

Proof� K � Bd�E� � f�xg and K has a nonempty interior� So K � E� contains all

the points in K is an ��neighbourhood of �x� and hence has a nonempty interior and a

positive n�dimensional volume�

If one takes a sphere of radius �� a concentric sphere of radius � � �� and a

hyperplane tangent to the smaller sphere at a boundary point x on it� then a tight

upper bound on the distance between x and any point in the larger sphere on the side

of the hyperplane opposite the smaller sphere is
p

�� � ��� Also the radius of E isq
bT b
� � ��L����� �x is an extreme point of K� and every edge of K through �x� has a

length �
� ��L� by Theorem ���� These facts and the choice of � here� together imply

that every edge of K through �x intersects the boundary of E�� Let V�� � � � � Vn be points

along the edges of K through �x that intersect the boundary of E�� at a distance of

at most � but greater than � from �x� such that f�x� V�� � � � � Vng is a�nely independent�

The portion of the edge between �x and Vi lies inside E� for at least a length of �� See

Figure ���� If Vi��� is the point on the edge joining �x and Vi at a distance of � from

�x� the volume of E� �K is greater than or equal to the volume of the simplex whose

vertices are �x� Vi��� for i � � to n� From the choice of Vi� Vi���� �x � ��Vi� �x� where
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� �� �� So in this case the volume of E� �K is greater than or equal to

�

n 

���determinant of
�
��V� � �x� �� � � � �� ��Vn � �x�

	���
�

�n

n 
j determinant of ��V� � �x� �� � � � �� �Vn � �x��j

�
�n

n 

���� determinant of

��� � � �� � � � �� �
�x V� �� � � � �� Vn

�������
� �n���n���L� �

using the results from Chapter �� in 
�����

V
1

V
2

Bd(   )E

1
Eb

2

V
2
(  )εV

1
(  )ε

x

E

K

ε

Figure ��� The volume of E� �K is greater than or equal to the volume of

the shaded simplex�

Theorem ��	 Let �x � E� �K� �z � B���x� bw � BT ��x� b�� Then� for all j � � to n

j�xj � �xj j �
� �L�

p
�

j�zj � �zj j �
� n��L�

p
�

j bwj � wj j �
� n��L�

p
�

Proof� As mentioned earlier� the absolute value of any entry in B�� is �� �L� � and the

same fact obviously holds for BT � The radius of E is bT b
� � �L���� The results in this

theorem follow from these facts and the de�nitions of E� E�� bw� �z�
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Theorem ��� Let �x � E� �K and �z � B���x� If � �� ����n���
��L����� then

�zj �� ��� ���L� � for j such that �zj � 	

�zj �� ��� ���L� � �� for j such that �zj � 	 �

Proof� This follows from Theorems ��� and ����

The Algorithm

Fix � � ����n���
��L����� Consider the following system of constraints�

�B��x �� 	� BT �x� b� �� 	 �����

�
x� b

�

�T �
x� b

�

�
�
�

�
� �

r
bT b

�

��

�����

Any point �x � Rn satisfying both ����� and ����� is in K�E�� We use an ellipsoid

method to �rst �nd such a point �x� Then using �x we compute �x in a �nal step�

De�ne x� � b
� � A� � I

�
� �

q
bT b
�

	�
� where I is the unit matrix of order n�

N � ��n� ����L� � ��� Go to Step ��

General Step r � �

Let xr� Ar� Er � E�xr� Ar� be respectively the center� positive de�nite symmetric

matrix� and the ellipsoid at the beginning of this step� If xr satis�es both ������ ������

terminate the ellipsoid method� call xr as �x and with it go to the �nal step described

below� If xr violates ����� select a constraint in it that it violates most� breaking ties

arbitrarily� and suppose it is ax �
� d� If xr satis�es ����� but violates ������ �nd the

point of intersection 
r� of the line segment joining x� and xr with the boundary of E��

So 
r � �x� � ��� ��xr where � � �� ��
p

bT b

�

jjxr�x�jj � Find the tangent plane of E� at its

boundary point 
r� and �nd out the half�space determined by this hyperplane which

does not contain the point xr� Suppose this half�space is determined by the constraint

�ax �� d�� See Figure ����

Now de�ne

�r �
d� axrp
aAraT

xr�� � xr �
�

�� �rn

� � n

�
Ara

Tp
aAraT

Ar�� �
��� ��r �n�

n� � �

�
Ar �

� �

n � �

	��� ��r

�� �r

	 �Ara
T ��Ara

T �T

aAraT

� �����
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where the square root of a quantity always represents the positive square root of that

quantity� With xr��� Ar��� Er�� � E�xr��� Ar��� move to the next step in the

ellipsoid method�

After at most N steps� this ellipsoid method will terminate with the point xr in

the terminal step lying in E� �K� Then go to the �nal step discussed below�

b
2

rξ

Er

E1

=<ax    dHalf-space

K

xr

ax = d

Figure ��� Construction of �ax �
� d� when xr satis�es ����� but violates

������

Final Step � Let the center of the ellipsoid in the terminal step be �x �this is the

point xr in the last step r of the ellipsoid method�� Let �z � B���x� Let J � fj � j

such that �zj �� �g� Let yj � zj if j � J� wj if j �� J and let y � �y�� � � � � yn�� Then

y is a complementary feasible basic vector for the LCP ��q�M�� and the BFS of �����

corresponding to y is the solution of this LCP� If this solution is �w� �z�� �x � B�z is the

nearest point in Pos�B� to b�

De�nition We denote by e� the base of natural logarithms� e � � �
P�

n��
�
n	 � it is

approximately equal to ����

Proof of the Algorithm

Let xr� Ar� Er � E�xr� Ar�� be the center� positive de�nite symmetric matrix�

and the ellipsoid at the beginning of step r� �� The inequality �ax �� d� is choosen in

this step r�� in such a way that xr violates it� In the hyperplane �ax � d� decrease d

until a value d� is reached such that the translate �ax � d�� is a tangent plane to the
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ellipsoid Er� and suppose the boundary point of Er where this is a tangent plane is �r�

Then Er�� � E�xr��� Ar��� is the minimum volume ellipsoid that contains Er � fx �

ax �
� dg� the shaded region in Figure ���� it has �r as a boundary point and has the

same tangent plane at �r as Er� From the manner in which the inequality �ax �
� d�

is selected� it is clear that if Er � E� �K� then Er�� � E� �K� Arguing inductively

on r� we conclude that every ellipsoid Er constructed during the algorithm satis�es

Er � E� �K� From Theorem ���� the volume of E� �K is �� ���n�n���
��L����� From

the results in Chapter �� of 
���� we know that the volume of Er gets multiplied by

a factor of e�
�

��n��� or less� after each step in the ellipsoid method� E� is a ball whose

radius is �� �
q

bT b
� �� and bT b � ��L� � So the volume of E� is at most ��nL� � The

algorithm terminates in step r� if the center xr satis�es ������ ����� and that is� it is a

point in E� �K� If termination does not occur up to step N � ��n� ����L� � ��� the

volume of EN is at most ��L�ne�
N

��n��� � ���n�n���
��L����� From the fact that the

volume of E� �K � ���n�n���
��L���� this is a contradiction to EN � E� �K� So for

some r �� N � we will have xr � E��K� and in that step the ellipsoid method terminates�

The validity of the remaining portion of the algorithm follows from Theorem ���� ����

���� Since the ellipsoid method terminates after at most N � ��n� ����L� � �� steps�

the algorithm is obviously polynomially bounded�

Er

=<ax    d
Half-space

Er +1

rx
rx η r

ax = d

Figure ��� Construction of the new ellipsoid Er��

In practice� it is impossible to run the algorithm using exact arithmetic� To run

the algorithm using �nite precision arithmetic� all computations have to be carried out
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to a certain number of signi�cant digits as discussed in 
����� and the ellipsoid have

to be expanded by a small amout in each iteration �this is achieved by multiplying the

matrix Ar in each step by a number slightly larger than one in each step�� As pointed

out in 
���� if each quantity is computed correct to ��nL� bits of precision� and Dr��

multiplied by �� � �
�
n� � before being rounded� all the results continue to hold�

Computational Comparison

Y� Fathi 
���	 did a comparative study in which this ellipsoid algorithm has been

compared with the algorithm discussed in Chapter � for the nearest point problem�

We provide a summary of his results here� In the study the matrix B was generated

randomly� with its entries to be integers between �� and ��� The b�vector was also

generated randomly with its entries to be integers between ��	 and ��	� Instead

of using computer times for the comparison� he counted the number of iterations of

various types and from it estimated the total number of multiplication and division

operations required before termination on each problem� Problems with n � �	� �	�

�	� �	� �	 were tried and each entry in the table is an average for �	 problems� Double

precision was used� It was not possible to take the values of � and � as small as

those recomended in the algorithm� Mostly he tried �� � � 	�� �the computational

e�ort before termination in the ellipsoid algorithms reported in the table below refers

to �� � � 	���� and with this� sometimes the complementary basic vector obtained

at termination of the algorithm turned out to be infeasible �this result is called an

unsuccessful run�� He noticed that if the values of these tolerances were decreased�

the probability of an unsuccessful run decreases� but the computational e�ort required

before termination increases very rapidly�

Average Number of Multiplication and Division

Operations Required Before Termination in

n The Algorithm of Chapter � The Ellipsoid Algorithm

�	 Too small ����	�

�	 ������ ����	�	

�	 ������ ������	��

�	 ��	���� ���	����	

�	 ������� ����������

These empirical results suggest that the ellipsoid algorithm cannot compete with the

algorithm discussed in Chapter � for the nearest problem� in practical e�ciency� The

same comment seems to hold for the other ellipsoid algorithms discussed in the follow�

ing sections�
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��� An Ellipsoid Algorithm for LCPs

Associated with PD Matrices

In this section M � �mij� denotes a given PD matrix of order n �symmetric or not�

with integer entries� and q � �qi� denotes a given nonzero integer column vector in Rn�

We consider the LCP �q�M��

De�nitions

Let � be a small positive number� Later on we specify how small � should be� Let

K � fz � Mz � q �� 	� z �� 	g�
�w � M �z � q� �z� � unique solution of the LCP �q�M��

f�z� � zT �Mz � q��

E � fz � f�z� �� 	g�
Bd�E� � Boundary of E � fz � f�z� � 	g�
L �

l
�� � log�n� �

P
i�j

�
� � log��jmij j� ��

�
�
P
i

�
� � log��jqij� ��

�m
E� � fz � zT �Mz � q� �� �g for � � 	�

E� � fz � zT z �� ��Lg�
Since M is a PD matrix� E de�ned above is an ellipsoid�

Some Preliminary Results

Theorem ��
 The set K � fz � Mz � q �� 	� z �� 	g has nonempty interior�

Proof� Remembering that M is a PD matrix� the proof of this theorem is similar to

the proof of Theorem ��� of Section ����

Theorem ���� E �K � Bd�E� �K � f�zg�
Proof� This follows directly from the de�nitions�

Theorem ���� �z is an extreme point of K� Also� every extreme point z of K other

than �z satis�es f�z� � ���L�

Proof� Since �w� �z� is a BFS of� w �Mz � q� w �
� 	� z �� 	� �z is an extreme point of

K� Also� L is the size of this system� Since �w� �z� is the unique solution of the LCP

�q�M�� at every extreme point z of K other than �z� we must have f�z� � 	� Using

arguments similar to these in Theorem ��� of Section ���� we conclude that for each

i� either zi is 	 or � ��L� and Mi�z � qi is 	 or � ��L� at every extreme point z of

K� Combining these results we conclude that every extreme point z of K other than

�z satis�es f�z� � ���L�
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Theorem ���� For 	 � � �
� ���L� the n�dimensional volume of E� � E� � K is

�
� �n����n���L�

Proof� Obviously �z � E� �K� and by Theorem ����� no other extreme point z of K

lies in E� �K for 	 � � �� ���L� So for every value of � in the speci�ed range� every

edge of K through �z intersects E�� Also� since K has a nonempty interior by Theorem

���� E� �K has a positive n�dimensional volume� K might be unbounded� but by the

results in Chapter �� of 
����� at every extreme point of K� both zi and Mi�z � qi are
�
�

�L

n
for each i� Let bK � fz � 	 �

� zj ��
�L

n
� 	 �

� Mj�z � qj ��
�L

n
� for j � � to ng� By

the above facts� every edge of bK through z is either an edge K �if it is a bounded edge

of K�� or a portion of an edge of K �if it is an unbounded edge of K�� Let z�� � � � � zn be

adjacent extreme points of �z in bK� such that f�z � z�� � � � � zng is a�nely independent�

The above facts imply that all these points �z� zt� t � � to n are in E�� Since M is PD�

f�z� is convex� Let � � ����L� So for each t � � to n� f��z���zt� �z�� �� �����f��z��

�f�zt� � �f�zt� � �
Pn

i�� z
t
i �Mi�z

t � qi� �� �
Pn

i��

�
�L

n

��
�L

n

�
�
� �� This implies that

the line segment 
�z� �z � ��zt � �z� completely lies inside E� � E� �K� So the volume

of E� �E� �K �
� the volume of the simplex whose vertices are �z� �z � ��zt � �z�� t � �

to n� which is

�
�

n 

�� determinant of
�
��z� � �z� �� � � � �� ��zt � �z�

���
�
� �n���n���L� by results similar to those in the proof of Theorem ���

�
� �n����n���L �

Theorem ���� Let �� � ����L���� For any point �z � E� �E�� �K� we have�

either �zi ��
p
�� � ���L

or Mi��z � qi ��
p
�� � ���L �

Proof� For any i� if both �zi and Mi��z�qi are �
p
��� then �z�M �z�q� � ��� contradiction

to the fact that �z � E� � E�� �K�

Theorem ���� Let �z by any point in E� � E�� �K� De�ne

yi �


wi if �zi � ���L

zi if �zi �� ���L �

Then �y�� � � � � yn� is a complementary feasible basic vector for the LCP �q�M��

Proof� Let J� � fi � �zi �� ���Lg� J� � fi � �zi � ���Lg� So J� � J� � � and J� � J� �

f�� � � � � ng� and by Theorem ����� Mi��z � qi � ���L for i � J��

In 
���� P� G!acs and L� Lov!asz proved the following lemma �
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Consider the system of constraints

Ai�x �� bi� i � � to m �����

with integer data� and let l be the size of this system� Suppose �x is a solution of

Ai�x �� bi � ��l� i � � to m

such that Ai�x �� bi� i � � to k� and let fAp��� � � � � Apr�g � fA��� � � � � Ak�g be such that

it is linearly independent and it spans fA��� � � � � Am�g linearly� Let �x be any solution

of the system of equations

Apt�x � bpt � t � � to r �

Then �x is a solution ������ See also Chapter �� in 
����� We will use this lemma in

proving this theorem� Consider the system �

�Mi�z �� qi � ���L� i � � to n

�zi �� 	 � ���L� i � � to n

Mi�z �� �qi � ���L� i � J�

zi �� 	 � ���L� i � J� �

�����

We know that �z solves this system and in addition �z also satis�es Mi��z �� �qi� i � J�

and �z �� 	� i � J�� Also� since M is PD� the set fMi� � i � J�g�fI�i � i � J�g is linearly

independent and linearly spans all the row vectors of the constraint coe�cient matrix

of the system ������ From the lemma of P� G!acs and L� Lov!asz mentioned above� these

facts imply that if �z is a solution of the system of equations �

Mi�z � �qi� i � J�

zi � 	� i � J�
����	�

then �z also satis�es � �Mi�z �� qi� i � � to n

�zi �� 	� i � � to n

So �z �� 	� ew � M �z � q �� 	 and since �zi � 	 for i � J� and Mi�z � qi � 	 for i � J�

we have f��z� � 	 �since J� � J� � � and J� � J� � f�� � � � � ng�� So � ew� �z� is the

solution of the LCP �q�M�� Since �z is the solution of ����	�� � ew� �z� is the BFS of the

system� w �Mz � q� w �
� 	� z �

� 	� corresponding to the basic vector y� So y is a

complementary feasible basic vector for the LCP �q�M��

The Algorithm

Fix � � �� � ����L���� So E� � E�	� ��LI�� De�ne N � ��n � ������L � �� in this

section� With z� � 	� A� � ��LI� E�z�� A�� go to Step ��
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General Step r � � � Let zr� Ar� Er � E�zr� Ar�� be respectively the center� PD

symmetric matrix� and the ellipsoid at the beginning of this step� If zr satis�es �

�Mz � q �� 	

�q �� 	
������

zT �Mz � q� �� � ������

terminate the ellipsoid algorithm� call zr as �z and go to the �nal step described

below� If zr violates ������� select a constraint in it that it violates most� breaking ties

arbitrarily� and suppose it is �az �
� d�� If zr satis�es ������ but violates ������� let


r be the point of intersection of the line segment joining the center of the ellipsoid

E�� �this is� z� � ��M�MT

�

���
� q��� and zr with the boundary E�� � Therefore 
r �

�z� � �����zr� where � is the positive root of the equation ��z� � �����zr�TM��z� �

��� ��zr� � q � ��� Let az � d by the equation of the tangent hyperplane to E�� at


r� where the equation is written such that the half�space az �� d does not contain zr�

De�ne �r��� Ar��� as in ����� and

zr�� � zr �
��� �rn

� � n

	� Ara
Tp

aAraT

	
With zr��� Ar��� Er�� � E�zr��� Ar���� move to the next step in the ellipsoid algo�

rithm�

After at most N steps� this ellipsoid algorithm will terminate with the point zr in

the terminal step lying in E� �E�� �K� Then go to the �nal step described below�

Final Step� Let the center of the ellipsoid in the terminal step by �z� Using �z� �nd

the complementary BFS as outlined in Theorem �����

Proof of the Algorithm

The updating formulas used in this ellipsoid algorithm are the same as those used in

the algorithm of Section ���� Hence using the same arguments as in Section ���� we

can verify that Er � E� � E�� �K for all r� The volume of E� is � ��Ln� After each

step in the ellipsoid algorithm� the volume of the current ellipsoid Er gets multiplied

by a factor of e�
�

��n��� or less� So if the ellipsoid algorithm does not terminate even

after N steps� the volume of EN �
� e��n������L�����Ln � ��L��n����n� contradiction

to the fact that EN � E� � E�� �K and Theorem ����� So for some r �� N � we will

have zr � E� � E�� �K� and in that step the ellipsoid algorithm terminates� Hence

the algorithm is obviously polynomially bounded�

Comments made in Section ��� about the precision of computation required� re�

main valid here also�
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��	 An Ellipsoid Algorithm for LCPs

Associated with PSD Matrices

In this section we consider the LCP �q�M� where M denotes a given PSD matrix of

order n �symmetric or not� with integer entries� and q denotes a given integer column

vector in Rn�

De�nitions

Let K� E� Bd�E�� L� E� be as de�ned in Section ���� Let E� � fz � zT z �� ���L���g�
Since M is only PSD here� K may have no interior� in fact K may even be empty� Also

E� E� may not be ellispoids� Let en � ��� � � � � ��T � Rn�

Some Preliminary Results

Theorem ���� In this case the LCP �q�M� has a solution i� K �� �� If K �� ��
there exists a solution� �w� �z�� to the LCP �q�M� where �z is an extreme point of K�

When K �� �� the LCP �q�M� may have many solutions� but the set of all solutions is

a convex set which is E �K � Bd�E� �K�

Proof� Since M is PSD� the fact that �q�M� has a solution i� K �� � follows from

Theorem ���� When K �� �� the complementary pivot algorithm produces a solution

�w� �z�� to the LCP �q�M� which is a BFS and this implies that �z is an extreme point

of K� The set of all solutions of the LCP �q�M� is obviously Bd�E��K� and from the

de�nition of K� and E here it is clear that in this case Bd�E� �K � E �K� and since

both E and K are convex sets �E is convex because M is PSD�� this set is convex�

Theorem ���� When K �� �� E� � E� �K contains all the extreme points z of K

such that �w � Mz � q� z� is a solution of the LCP �q�M��

Proof� By the results discussed in Chapter �� of 
���� if �w� �z� is solution of �q�M�

which is BFS� then z � E�� The rest follows from Theorem �����

In this case E� �E� �K may not contain all the z which lead to solutions of the

LCP �q�M�� Theorem ���� only guarantees that E� �E� �K contains all the z which

are extreme points of K that lead to solutions of �q�M�� Since M is PSD� the set of

solutions of the LCP �q�M� may in fact be unbounded and hence all of it may not lie

in E��

Theorem ���	 If zi is positive in some solution of �q�M�� then its complement wi

is zero in all solutions of �q�M�� Similarly if wi is positive in some solutions of �q�M��

then zi is zero in all solutions of �q�M��
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Proof� By Theorem ����� the set of all solutions of �q�M� is convex set� So if �w�� z���

�w�� z�� are two solutions of �q�M� satisfying the properties that z�i � 	 and w�
i � 	�

then the other points on the line segment joining �w�� z��� �w�� z�� cannot be solutions

of �q�M� �because they violate the complementarity constraint wizi � 	� contradicting

the fact that the set of solutions of �q�M� is a convex set�

Theorem ���� If �z is an extreme point of K� for each i either �zi � 	 or ��L �
� �zi ��

�L

n
� Also either Mi��z� qi is zero or ��L �

� Mi��z� qi ��
�L

n
� Also at every extreme point

�z of K that does not lead to a solution of �q�M�� we will have f��z� � �zT �Mz � q� �

���L�

Proof� Similar to the proof of Theorem ���� in Section ����

Theorem ���
 K �� � i� the set of solutions of

Mz � q �� �����Le

z �� �����Le
������

has a nonempty interior�

Proof� By the results of P� G!acs and L� Lov!asz in 
���� �also see Chapter �� in 
������

������ is feasible i� K �� �� Also any point in K is an interior point of the set of feasible

solutions of �������

Let K� denote the set of feasible solutions of �������

Theorem ���� Let �� � ����L���� For any point �z � E� � E�� �K�� we have for

each i � � to n� either �zi � ���L� or Mi��z � qi � ���L�

Proof� Suppose that �zi �� ���L and Mi��z � qi �� ���L� Since �z � E�� � �zT �M �z � q� ��
����L���� Then we have

Pn

t���t��i �zt�Mt��z � qt� �� ����L��� � ���L �
� �����L���� But

from ������ and the de�nition of E� we arrive at the contradiction
Pn

t���t��i �zt�Mt��z�qt�

�
� ��n� ������L���L�� � �L� � �����L����

Theorem ���� Let �� � ����L���� If K �� �� the n�dimensional volume of E� �
E�� �K� is �� ����nL�

Proof� Assume K �� �� So �q�M� has a solution� Let �w� �z� be a complementary BFS

of �q�M�� So� by Theorem ����� �z � Bd�E��K� For � � 	 de�ne the hypercube� C� �

fz � z � Rn� jzj��zj j �� �
� for all j � � to ng� Then� clearly� the n�dimensional volume of

C� is �n� We will now prove that C� � K��E��E�� for � �
� ����L� Since the radius of

E� is �L��� C� � E� by the de�nition of C� and the fact that jj�zjj � �L from Theorem

����� Let �z be any point in C�� Since �zi �� 	� Mi��z � qi �� 	 for all i � � to n� we have�

�zi �� �zi � �
�
�
� ��

�
�
� �����L� Mi��z � qi �� Mi��z � qi � �

�

Pn

j�� jmij j �� ������L��� 	
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�L �
� �����L� So C� � K�� Also� since �zT �M �z � q� � 	 �since �w � M �z � q� �z�

solves �q�M��� we have� �zT �M �z� q� � ��z� �z�T �M �z� q�MT �z� � ��z� �z�TM��z� z� ��
�
�n��L � �L�L� � ��� ��

P
i�j jmij j �� �����L���n��L�� � n��L�����L��� �

� ��� This

implies that C� � E�� � Hence C� � K� � E� � E�� � Now letting � � ����L� the

volume of C� is ����L� and these facts imply the theorem�

Let �z be any point in E� �E�� �K�� De�ne

J�� � fi � Mi��z � qi �� 	g � J�� � fi � 	 � Mi��z � qi �� ���Lg �
J�� � fi � �zi �� 	g � J�� � fi � 	 � �zi �� ���Lg �

Then by Theorem ���	� J�� � J�� � J�� � J�� � f�� � � � � ng� Furthermore� �z is a solution

of �
�Mi�z �� qi � ���L� i � � to n

�zi �� ���L� i � � to n

Mi�z �� �qi � ���L� for i � J��

zi �� ���L� for i � J��

������

Theorem ���� Let �z be any point in E� � E�� � K�� Let I be the unit matrix

of order n� Using the constructive procedure described by P� G�acs and L� Lov�asz in

�	�

� �see also Theorem 
��� Chapter 
 of ������� obtain a new solution� which we

will denote by the same symbol �z� such that if J�� � J
�
� � J

�
� � J

�
� are the index sets

corresponding to this new �z� then the new �z also satis�es �	�
��� and there exists a

linearly independent subset� D � fMi� � i � J�� � J�� g � fIi� � i � J�� � J�� g such that

D spans linearly fMi� � i � � to ng � fIi� � i � � to ng� Furthermore� if �z is a solution

of � �Mi�z � qi� for i such that Mi� � D

zi � 	� for i such that Ii� � D

then �w � M �z � q� �z� is a solution of the LCP �q�M��

Proof� This theorem follows from the results of P� G!acs and L� Lov!asz in 
���� �or

Theorem ����� Chapter �� in 
����� applied on ������� We know that �z satis�es �

�Mi��z �� qi� for i � J��

Mi��z �� �qi� for i � J��

��zi �� 	� for i � J��

�zi �� 	� for i � J��

By these results� �z is a solution of

�Mz �� q

�z �� 	 �

Furthermore� �z satis�es �

Mi��z � �qi� for i � J�� � J��
�zi � 	� for i � J�� � J��
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by the spanning property of D and these results� Also� since f�� � � � � ng is the union

of J�� � J�� � J�� � J�� � at least one of wi or zi is zero for each i � � to n� All these facts

together clearly imply that �w� �z� is a solution of the LCP �q�M��

The Algorithm

Apply the ellipsoid algorithm discussed in Section ��� to get a point �z in E� � E�� �
K�� initiating the algorithm with z� � 	� A� � ���L���I� E� � E�z�� A��� In this

case K could be �� This could be recognized in the ellipsoid algorithm in two di�erent

ways� For any r� if the quantity �r in step r of the ellipsoid algorithm turns out to be
�
� ��� it is an indication that the set E� �E�� �K� � �� terminate� in this case K � �
and the LCP �q�M� has no solution �for a proof of this see Chapter �� of 
������ If

�r � ��� compute xr��� Ar�� and continue� The volume of E� here is � ��n�L����

and if K �� �� the volume of E� � E�� �K� is � ����nL by Theorem ����� Hence if

K �� �� this ellipsoid algorithm will terminate in at most ��n� ������L� �� steps with

a point �z � E� � E�� �K�� So� if the ellipsoid algorithm did not �nd a point in E� �
E�� �K� even after ��n � ������L � �� steps� we can conclude that K � �� that is�

that the LCP �q�M� has no solution� On the other hand� if a point �z in E� � E�� �
K� is obtained in the ellipsoid algorithm� then using it� obtain a solution �w� �z� of the

LCP �q�M� as discussed in Theorem �����

��
 Some NP�Complete Classes of LCPs

The ellipsoid algorithm discussed in Section ���� ���� ��� can only process LCPs asso�

ciated with PSD matrices �the class of these LCP is equivalent to the class of convex

quadratic programs�� In 
���� ���� it was shown that certain LCPs satisfying special

properties can be solved as linear programs� and these LCPs are therefore polynomially

solvable using the ellipsoid algorithm �see Chapter �� in 
����� on the resulting linear

programs�

For the general LCP� the prospects of �nding a polynomially bounded algorithm

are not very promising� in view of the result in 
��� where it is shown that this problem

is NP�complete� See reference 
���� for the de�nition of NP�completeness� Let a�� � � � �

an� a� be positive integers and let Mn�� and q�n � �� be the following matrices �

Mn�� �

��������In 	 	
eTn �n 	

�eTn 	 �n

������� � q�n � �� �

��������������
a�
��
an
�a�
a�

��������������
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where In denotes the unit matrix of order n� and en is the column vector in Rn all

of whose entries are �� Also consider the 	�� equality constrained Knapsack feasibility

problem �
nP
i��

aixi � a�

xi � 	 or � for all i � � to n �
������

If � ew� �z� is a solution of the LCP �q�n � ���Mn���� de�ne �xi � �zi
ai

� i � � to

n� and verify that �x � ��x�� � � � � �xn�T is a feasible solution of the Knapsack problem

������� Conversely of �x � ��x�� � � � � �xr�
T is a feasible solution of ������� de�ne bwn�� �

�zn�� � bwn�� � �zn�� � 	 and �zi � ai�xi� bwi � ai�� � �xi�� i � � to n� and verify that

� bw � � bw�� � � � � bwn���� �z � ��z�� � � � � �zn���� is a solution of the LCP �q�n � ���Mn����

Since the problem of �nding whether a feasible solution for ������ exists is a well

known NP�complete problem �see 
������ the problem of checking whether the LCP

�q�n����Mn��� has a solution isNP�complete� Also� since the matrixMn�� is negative

de�nite� the class of LCPs associated with negative de�nite or negative semide�nite

matrices are NP�hard� Also Mn�� is lower triangular� This shows that the class of

LCPs associated with lower or upper triangular matrices is NP�hard� if negative entries

appear in the main diagonal�

Let M be a given negative de�nite matrix with integer entries� and let q � Rn be

a given integer column vector� In this case the LCP �q�M� may not have a solution�

and even if it does� the solution may not be unique� From the results in Chapter �

we know that the number of distinct solutions of the LCP �q�M� in this case is �nite�

De�ne �
K � fz � z �� 	� Mz � q �� 	g
E � fz � zT �Mz � q� �� 	g

Since M is negative de�nite� E is an ellipsoid� Let Bd�E� � boundary of E �

fz � zT �Mz � q� � 	g�
Clearly any point z � Bd�E� �K satis�es the property that �w � Mz � q� z� is

a solution of the LCP �q�M� and vice versa� So solving the LCP �q�M� is equivalent

to the probem of �nding a point in Bd�E� � K� However� in this case K � E� and

in general� Bd�E� �K � E �K� See Figure ���� So the nice property that E �K �

Bd�E� � K which held for LCPs associated with PSD matrices does not hold here

anymore� which makes the LCP associated with a negative de�nite matrix much harder�

In this case �i� e�� with M being negative de�nite�� it is possible to �nd a point in E�K
using an ellipsoid algorithm �actually since K � E here� a point in K can be found

by the ellipsoid algorithm of Chapter �� of 
���� and that point will also lie in E��

but the point in E �K obtained by the algorithm may not be on the boundary of E�

and hence may not lead to a solution of the LCP �q�M�� In fact� �nding a point in

Bd�E� �K is a concave minimization problem� and that�s why it is NP�hard�

The status of the LCPs �q�M� where M is a P�but not PSD matrix� is unresolved�

In this case the LCP �q�M� is known to have a unique solution by the results in

Chapter �� but the sets fz � zT �Mz � q� �
� 	g are not ellipsoids� The interesting

question is whether a polynomially bounded algorithm exists for solving this special
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class of LCPs� This still remains an open question� It is also not known whether these

LCPs are NP�hard�

KK
E E

Figure ��� When M is negative de�nite� E and K may be as in one of the

�gures given here� Points of K on the boundary of E� if any� lead to solutions

of the LCP �q�M��

��� An Ellipsoid Algorithm for

Nonlinear Programming

In 
��� J� Ecker and M� Kupferschmid discussed an application of the ellipsoid algo�

rithm to solve NLPs of the following form �

minimize f��x�

subject to fi�x� �� 	� i � � to m

where all the fi�x� are di�erentiable functions de�ned on Rn� and we assume that

n � ��

For the convergence of the ellipsoid algorithm� we need to specify an initial el�

lipsoid whose intersection with a neighborhood of an optimum solution has positive

n�dimensional volume� This requirement prevents the algorithm from being used in a

simple way for problems having equality constraints� but the penalty transformation

discussed in Section ����� can be used for them�

It is assumed that lower and upper bounds are avaible on each variable� l� u are

these lower and upper bound vectors� The initial ellispoid is chosen to be the one

of smallest volume among those ellipsoids with center x� � l�u
� and containing fx �

l �� x �� ug� Let this be E� � fx � �x� x��TD��
� �x� x�� �� �g � E��x

�� D��� where

D� �
n

�

������������������

�u� � l��
� 	 	 � � � 	

	 �u� � l��
� 	 � � � 	

	 	
� � � � � � 	

���
���

���
� � �

���
	 	 	 � � � �un � ln��

������������������
�
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Suppose we have Er�x
r� Dr�� If xr is infeasible� choose a violated constraint� say the

ith� where fi�x
r� � 	� In case xr is infeasible� the index i of the selected constraint

is that of the �rst violated constraint encountered under a search of the constraints

in cyclical order beginning with the constraint selected in the previous step� If xr is

feasible and rf��xr� � 	� terminate� xr is optimal to NLP �under convexity assuptions�

it is a stationary point otherwise�� If xr is feasible and rf��xr� �� 	� choose the index

i to be zero�

Having selected the index i �corresponding to a violated constraint if xr is in�

feasible� or the objective function if xr is feasible and rf��xr� �� 	�� let Hr be the

hyperplane

Hr � fx � ��rfi�xr���x� xr� � 	g �
The hyperplane Hr supports the contour fi�x� � fi�x

r� and divides the ellipsoid in

half� The center xr�� of the next ellipsoid Er�� and the PD matrix Dr�� used in

de�ning Er�� are determined by the updating formulae

h �
rfi�xr�
jjrfi�xr�jj

d �
�Drh

T

�
p
hDrhT

xr�� � xr �
d

n � �

Dr�� �
n�

n� � �

�
Dr � �

n � �
ddT

	
�

The best point obtained during the algorithm and its objective value are main�

tained� Various stopping rules can be employed� such as requiring the di�erence be�

tween successive best values to be su�ciently small� etc�

The method is best suited for solving the NLP above� when all the functions fi�x�

are convex� If a nonconvex function is used to generate the hyperplane Hr that cuts

Er in half� the next ellipsoid may not contain the optimal point� and the algorithm

may converge to a point that is not even stationary�

In computational tests carried out by J� G� Ecker and M� Kupferschmid 
���� this

method performed very well�
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f x(  ) = 0

f x(  ) = 0

f x(  ) = 0

Er +1

r +1

rx

2

1

3

x
Er

Figure ��� Construction of the new ellipsoid when xr is infeasible� The arrow

on constraint surface fi�x� � 	 indicates the feasible side� that is satisfying

fi�x� �� 	� f��x� �� 	 is violated at xr and is selected�

��� Exercises

��� Let A� D� b� d be given matrices of orders m� 	 n� m� 	 n� m� 	 �� m� 	 �

respectively with integer entries� Let F be a given PD symmetric matrix of order n

with integer entries� De�ne�

K� � fx � Ax �� bg
K� � fx � Dx �� dg
E � fx � xTFx �� �g �

Construct polynomially bounded algorithms for checking whether

�i� K� � K�

�ii� E � K��

Does a polynomially bounded algorithm exists for checking whether K� � E �

Why �

��� Consider the quadratic program

minimize cx � �
�x

TDx

subject to x �� b
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where b � 	 and D is a Z�matrix of order n� Express the KKT optimality conditions

for this problem in the form of a special type of linear complementarity problem� and

develop a special direct method for solving it� based on Chandrasekaran�s algorithm

discussed in Section ����

�J� S� Pang 
�����

��� Study the computational complexity of the problem of checking whether the ellip�

soid E � fx � �x� �x�TD�x� �x� �� �g where D is given integer PD symmetric matrix

and �x is a given noninteger rational point� contains an integer point�

��	 Show that the LCP �q�M� is equivalent to the following piecewise linear concave

function minimization problem�

minimize
nP

j��
�minimumf	�Mj�z � zj � qjg� zj�

subject to Mz � q �� 	

z �
� 	�

�O� L� Mangasarian�
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Chapter �

ITERATIVE METHODS FOR LCP�s

��� Introduction

The name iterative method usually refers to a method that provides a simple formula

for computing the �r � ��th point as an explicit function of the rth point� xr�� �

f�xr�� The method begins with an initial point x� �quite often x� can be chosen

arbitrarity� subject to some simple constraints that may be speci�ed� such as x� �� 	�

etc�� and generates the sequence of points fx�� x�� x�� � � �g one after the other using
the above formula� The method can be terminated whenever one of the points in the

sequence can be recognized as being a solution to the problem under consideration�

If �nite termination does not occur� mathematically the method has to be continued

inde�nitely� In some of these methods� it is possible to prove that the sequence fxrg
converges in the limit to a solution of the problem under consideration� or it may be

possible to prove that every accumulation point of the sequence fxrg is a solution of
the problem� In practice� it is impossible to continue the method inde�nitely� In such

cases� the sequence is computed to some �nite length� and the �nal solution accepted

as an approximate solution of the problem�

In this chapter we consider the LCP �q�M� which is to �nd w� z � Rn satisfying

w �Mz � q

w� z �
� 	

wT z � 	

�
���
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whereM � q are given matrices of orders n�n and n��� respectively� We discuss several
iterative methods for solving this LCP �q�M�� All the methods that we have discussed

so far for solving this problem �the pivotal methods and the ellipsoid methods� have

the �nite termination property� In contrast� the iterative methods discussed here do

not in general terminate in a �nite number of steps �even though the special structure

of the problem discussed in Section 
��� makes it possible to construct a modi�cation

of the iterative method discussed there that terminates after a �nite amount of work��

However� these iterative methods have the advantage of being extremely simple and

easy to program �much more so than all the methods discussed so far in this book�

and hold promise for tackling very large problems that have no special structure �other

than possibly symmetry and�or positive de�niteness as required by the algorithm��

Most of the algorithms for solving nonlinear programming problems are iterative in

nature �see references �	�
� �	���� �	����� and the iterative methods discussed here can

be interpreted as specializations of some nonlinear programming algorithms applied to

solve a quadratic program equivalent to the LCP�

The word sequence here usually refers to an in�nite sequence� An in�nite se�

quence of points fxr � r � �� �� � � �g in Rn is said to converge in the limit to the given

point x� if� for each � � 	� there exists a positive integer N such that kxr � x�k � �

for all r �
� N � As an example the sequence in R�� fxr � where xr � �

r
� r �
� � and

integerg converges to zero� However� the sequence fxr � where xr � �
r
if r � �s for

some positive integer s� and xr � � if r � �s� � for some positive integer sg does not
converge� A point x� � Rn� is said to be a limit point or an accumulation point

for the in�nite sequence fxr � r � �� �� � � �g of points in Rn� if for every � � 	 and

positive integer N � there exists a positive integer r � N such that kxr�x�k � �� If x�

is a limit point of the sequence fxr � r � �� �� � � �g� then there exists a subsequence of
this sequence� say fxrk � k � �� �� � � �g� which converges in the limit to x�� where frk �
k � �� �� � � �g is a monotonic increasing sequence of positive integers� If the sequence
fxr � r � �� �� � � �g converges in the limit to x�� then x� is the only limit point for this
sequence� A sequence that does not converge may have no limit point �for example�

the sequence of positive integers in R� has no limit point� or may have any number

of limit points� As an example� consider the sequence of numbers in R�� fxr � where
xr � �

r
� if r � �s for some positive integer s� otherwise xr � � � �

r
� if r � �s � � for

some non�negative integer sg� This sequence has two limit points� namely 	 and ��
The subsequence fx�s � s � �� �� � � �g of this sequence converges to the limit point 	�
while the subsequence fx�s�� � s � �� �� � � �g converges to the limit point ��

The discussion in this section also needs knowledge of some of the basic properties

of compact subsets of Rn� See 
�����
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��� An Iterative Method for LCPs

Associated with PD Symmetric Matrices

The method discussed in this section is due to W� M� G� Van Bokhoven 
����� We

consider the LCP �q�M� whereM is assumed to be a PD symmetric matrix� For q �� 	�

�w � q� z � 	� is the unique solution of the LCP �q�M�� So we only consider the case

q ��� 	� For any vector x � �xj� � Rn we denote by jxj the vector �jxjj� in this section�
The symbol I denotes the identity matrix of order n� We will now discuss the main

result on which the method is based�

Theorem ��� Let M be PD and symmetric� The LCP �q�M� is equivalent to the

�xed point problem of determining x � Rn satisfying

f�x� � x �
���

where f�x� � b�Bjxj� b � ��I �M���q� B � �I �M����I �M��

Proof� In �
��� transform the variables by substituing

wj � jxj j � xj � zj � jxjj� xj � for each j � � to n �
���

We verify that the constraints wj �� 	� zj
�
� 	 for j � � to n automatically hold� from

�
���� Also substituing �
��� in �w �Mz � q � 	�� leads to f�x� � x � 	� Further�

wjzj � 	 for each j � � to n� by �
���� So any solution x of �
��� automatically leads to

a solution of the LCP �q�M� through �
���� Conversely suppose �w� z� is the solution

of the LCP �q�M�� Then x � �
� �z � w� can be veri�ed to be the solution of �
����

Some Matrix Theoretic Results

If A is square matrix of order n� its norm� dented by kAk� is de�ned to be the Supremum
of fkAxkkxk � x � Rn� x �� 	g� From this de�nition� we have kAxk �

� kAk�kxk for all
x � Rn� See references 
�
� 
��	� �	�����

Since M is symmetric and PD� all its eigenvalues are real and positive �see refer�

ences 
��� 
�
� 
��	� �	���� for de�nition and results on eigenvalues of square matrices��

If ��� � � � � �n are the eigenvalues of M � then the eigenvalues of B � �I �M����I �M�

are given by �i �
����i�
����i�

� i � � to n� and hence all �i are real and satisfy j�ij � � for
all i �since �i � 	�� Since B is also symmetric we have kBk � Maximumfj�ij � i � �
to ng � ��

The Iterative Scheme for Solving �����

The scheme begins with an initial point x� � Rn chosen arbitrarily �say x� � 	�� For

r �� � de�ne

xr�� � f�xr� � b�Bjxrj � �
���
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The equation �
��� de�nes the iterative scheme� Beginning with the initial point

x� � Rn chosen arbitrarily� generate the sequence fx�� x�� � � �g using �
��� repeatedly�
This iteration is just the successive substitution method discussed in Section ����� for

computing the Brouwer�s �xed point of f�x�� We will now prove that the sequence

generated fx�� x�� � � �g converges in the limit to the unique �xed point x� of �
����

Convergence Theorems

Theorem ��� When M is PD and symmetric� the sequence of points fxrg de�ned

by ����� converges in the limit to x�� the unique solution of ������ and the solution �w��
z�� of the LCP �q�M� can be obtained from x� from the transformation ������

Proof� For any x� y � Rn we have kf�x��f�y�k � kB�jxj�jyj�k �� kBk�k�jxj�jyj�k �
kx � yk� since k�jxj � jyj�k �� kx � yk and kBk � � as discussed above� So f�x� is a
contraction mapping �see reference 
��	�� and by Banach contraction mapping theorem

the sequence fxrg generated by �
��� converges in the limit to the unique solution x�
of �
���� The rest follows from Theorem 
���

We will denote kBk by the symbol �� We known that � � �� and it can actually
be computed by well known matrix theoretic algorithms�

Theorem ��� If x� is the unknown solution of ������ kx�k ��
kbk
����� �

Proof� From �
��� kx�k � k�b � Bjx�j�k �
� kbk � k�Bjx�j�k �

� kbk � �kx�k� So
kx�k ��

kbk
����� �

Theorem ��� Let xr be the rth point obtained in the iterative scheme ����� and let

x� be the unique solution of ������ Then for r �� �� kx� � xr��k ��
�

�r

���
�kx� � x�k�

Proof� We have x� � xr�� � f�x�� � f�xr�� So kx� � xr��k � kf�x�� � f�xr�k �
�

�kx� � xrk �by the argument used in the proof of Theorem 
��� since kBk � ���

Applying the same argument repeatedly we get

kx� � xr��k �� �rjx� � x�k � �
���

Now� for r � � we have xr�� � xr � f�xr� � f�xr���� So we have kxr�� � xrk �
kf�xr�� f�xr���k �� �kxr � xr��k� Using this argument repeatedly� we get

kxr�� � xrk �� �r��kx� � x�k� for r � � � �
���

We also have x� � x� � x� � x� � �x� � x��� So we have kx� � x�k �
� kx� � x�k �

kx� � x�k� Using this same argument repeatedly� and the fact that the x� � limit
xt as t tends to �� �and therefore limit kx� � xtk as t tends to � is 	�� we get

kx� � x�k ��
P�

t�� kxt�� � xtk �� kx� � x�k�P�
t�� �

t
�
�from �
���� � kx��x�k

����� � Using

this in �
��� leads to kx� � xr��k ��
�

�r

���
�kx� � x�k for r �� ��
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Theorem ��� If x� � 	� we have kx� � xr��k �� �r
� kbk
���

�
�

Proof� Follows from Theorem �
����

Theorem ��� If x� � 	� we have for r �� �� kxr��k �� kbk� �
��� � �r

���
�
�

Proof� We know that kx�k�kxr��k �� kx��xr��k� So kxr��k �� kx�k�kx��xr��k�
The result follows from this and Theorems 
��� 
���

How to Solve the LCP �q�M� in a Finite Number of Steps

Using the Iterative Scheme �����

Initiate the iterative scheme �
��� with x� � 	� Then for r � � from Theorem 
��� we

know that there must exist an i satisfying

jxr��i j ��
kbkp
n

� �

� � �
� �r

�� �

�
� �
���

But from Theorem 
��� for the same i� we must have jx�i � xr��i j �� kbk� �r

���
�
� So if

r is such that �p
n

�
�

��� � �r

���
�
� �r

����� � that is r � N �
�
log
� �����
���

p
n������

�
�log�

�
for

the same i satisfying �
��� we must have both xr��i and x�i nonzero� and both have
the same sign� Hence� after N � � iterations of �
��� we know at least one i for which

x�i is nonzero� and its sign� If x
�
i is known to be negative� from �
���� the variable

wi is positive in the solution of the LCP �q�M� �and consequently zi � 	�� On the

other hand� if x�i is known to be positive� from �
���� the variable zi is positive and
consequently wi � 	 in the solution of the LCP �q�M�� Using this information� the

LCP �q�M� can be reduced to another LCP of order �n� �� as discussed in Chapter
�� Since N de�ned above is �nite and can be computed once the matrix B is known�

after a �nite number of steps of the iterative scheme �
���� we can identify a basic

variable in the complementary feasible basic vector for the LCP �q�M�� and reduce

the remaining problem into an LCP of order �n � ��� and repeat the method on it�
The same thing is repeated until a complementary feasible basic vector for the LCP

�q�M� is fully identi�ed� In 
���� W� M� G� Van Bokhoven has shown that the total

number of steps that the iterative method has to be carried out before a basic variable

in the complementary feasible basic vector for any of the principal subproblems in this

process is identi�ed� is at most N � where N is the number depending on the original

matrixM � given above� So after at most nN steps of the iterative scheme �
��� applied

either on the original problem or one of its principal subproblems� a complementary

feasible basic vector for the LCP �q�M� will be identi�ed�



��� Chapter �� Iterative Methods for LCPs

Exercise

��� Consider the LCP �q�M� where

M �

��� 	 AT

�A 	

	�

which comes from transforming an LP into an LCP� Here M is neither PD nor even

symmetric� but is PSD� Show that �I �M��� exists in this case� De�ne� as before
b � ��I �M���q� B � �I �M����I �M�� Apply the transformation of variables as

in �
��� in this LCP� and show that it leads to the �xed point problem �
���� Consider

in this following iterative scheme for solving this �xed point problem in this case�

x� � 	

xr�� �
b� xr �Bjxrj

�
�

�
���

Show that if the LCP �q�M� has a solution� then the sequence fxrg generated by �
���
converges to a solution of the �xed point problem and that the limit of this sequence

leads to a solution of the LCP �q�M� in this case through the transformation �
����

�W� M� G� Van Bokhoven 
������

��� Iterative Methods for LCPs

Associated with General Symmetric Matrices

In this section we consider the LCP �q�M�� in which the only assumption made is

that M is a symmetric matrix� The method and the results discussed here are due

to O� L� Mangasarian 
����� even through in some cases these turn out to be gener�

alizations of the methods developed in references �	����� We begin with some basic

de�nitions� We assume that q ��� 	� as otherwise �w � q� z � 	� is a solution of the

LCP �q�M��

A square matrix P � �pij� is said to be strictly lower triangular if pij � 	 for

i �� j� It is said to be strictly upper triangular if pij � 	 for all i �� j� Given a

square matrixM � �mij� it can be written as the sum of three matricesM � L�G�U �

where

L �

������������������

	 	 � � � 	 	
m�� 	 � � � 	 	

m�� m��
� � � 	 	

���
���

���
���

mn� mn� � � � mn�n�� 	

	����������������

� G �

������������
m�� 	 � � � 	
	 m�� � � � 	
���

���
� � �

���
	 	 � � � mnn

	����������
 �
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U �

����������������

	 m�� m�� � � � m��n�� m��n

	 	 m�� � � � m��n�� m��n

���
���

���
� � �

���
���

	 	 	 � � � 	 mn���n
	 	 	 � � � 	 	

	��������������

The matrices L� G� U de�ned above� are respectively known as the strictly lower

triangular part� the diagonal part and the strict upper triangular part of the

given square matrix M � If M is symmetric we will have LT � U �

Let z � �xj� � Rn be any column vector� We denote by x� � �x�j � where x
�
j �

Maximum f	� xjg� for each j � � to n� The vector x� can be veri�ed to be the nearest
point in the nonnegative orthant to x�

The Iterative Method

Let x� �
� 	 be an arbitrarily chosen initial point in the nonnegative orthant of R

n�

The iterative method is de�ned by the formula

zr�� � �
�
zr � 	Er�Mzr � q �Kr�zr�� � zr��

��
� ��� ��zr �
�
�

for r � 	� �� � � �� where �� 	 are parameters satisfying 	 � � �
� �� 	 � 	� whose

values have to be chosen� for each r� Kr is a strictly lower triangular or strictly upper

triangular matrix� and Er is a positive diagonal matrix� which together satisfy

Er � 
I

yT
�
��	Er��� �Kr � M

�

�
y � �kyk�� for all y � Rn �
��	�

for some positive numbers 
� �� Also fEr � r � 	� �� � � �g� fKr � r � 	� �� � � �g are
bounded sequences of matrices� When Kr is strictly lower triangular� �
�
� yields�

zr��� � �
�
zr� � 	Er

���M��z
r � q��

��
� ��� ��zr� � and

zr��j � �
�
zrj � 	Er

jj�Mj�z
r � qj �

j��X
l��

Kr
jl�z

r��
l � zrl ��

��
� ��� ��zrj � for j � � to n�

where Er
jj is the j

th diagonal entry in the diagonal matrix Er and Kr
jl is the �j� l�

th

entry in Kr� So in this case zr��j can be computed� very conveniently� in the speci�c

order j � �� �� � � � � n� If Kr is strictly upper triangular� �
�
� yields

zr��n ��
�
zrn � 	Er

nn�Mn�z
r � qn�

��
� ��� ��zrn� and

zr��j ��
�
zrj � 	Er

jj�Mj�z
r � qj �

nX
l�j��

Kr
jl�z

r��
l � zrl ��

��
�

��� ��zrj � for j � n� � to ��
and so in this case zrj�� can be computed very conveniently in the speci�c order j �

n� n� �� � � � � �� ��
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How is the Iterative Method Obtained �

The formula �
�
� for the iterative method is obtained by considering the quadratic

programming problem

Minimize f�z� � �
�z

TMz � qT z

Subject to z �� 	
�
����

In this section f�z� denotes the function de�ned in �
����� Remembering that M is

a symmetric matrix� it can be veri�ed that every KKT point for �
���� leads to a

solution of the LCP �q�M� and vice versa� The iteration �
�
� comes from an SOR

�Successive Overrelaxation� type of gradient�projection algorithm for solving �
�����

We will discuss the choice for the parameters �� 	 and the matrices Er� Kr in �
�
��

later on� We will now characterize the convergence properties of the iterative method

de�ned by �
�
��

Convergence Theorems

Theorem ��� Let E be a diagonal matrix with positive diagonal entries� Then

�w �M �z � q� �z� is a solution of the LCP �q�M� i	 �z satis�es�
z � 	E�Mz � q�

�� � z � 	� for some or all 	 � 	 � �
����

Proof� Suppose �w � M �z � q� �z� is a solution of the LCP �q�M�� Let 	 � 	 be

arbitrary� If j is such that �zj � 	� Mj��z � qj �� 	� we have ��zj � 	Ejj�Mj��z � qj��
� �

�zj � ��	Ejj�Mj��z � qj��
� � 	� If j is such that Mj��z � qj � 	 and �zj �� 	� we have

��zj � 	Ejj�Mj��z � qj��
� � �zj � �zj � �zj � 	� So in this case �z satis�es �
�����

Conversely suppose �z � Rn satis�es �
����� Then �z � ��z � 	E�M �z � q��� �
� 	�

Also� if for some j� we haveMj��z�qj � 	� then from �
����� 	 �
�
�zj�	Ejj�Mj��z�qj�

��
� �zj � �	Ejj�Mj��z�qj�� a contradiction� SoM �z�q �� 	 too� Now� for any j between

� to n� if �zj � 	Ejj�Mj��z � qj� �� 	� we have 	 � ��zj � 	Ejj�Mj��z � qj��
� � �zj �

�	Ejj�Mj��z � qj�� and hence we must have Mj��z � qj � 	� On the other hand if �zj �
	Ejj�Mj��z � qj� � 	� we have 	 � ��zj � 	Ejj�Mj��z � qj��

� � �zj � ��zj � and hence we
must have �zj � 	� Thus depending on whether �zj �	Ejj�Mj��z� qj� in nonnegative or

negative� we must have Mj��z � qj or �zj equal to zero� So �z
T �M �z � q� � 	� Together

with the nonnegativity proved above� we conclude that �w � M �z � q� �z� is a solution

of the LCP �q�M��

Theorem ��	 Let E be a diagonal matrix with positive diagonal entries and let

z � Rn� Then �z� � z�TE���z� � y� �� 	 for all y
�
� 	�

Proof� We have �z� � z�TE���z� � y� �
Pn

j����z
�
j � zj��z

�
j � yj��Ejj�� Here Ejj

is the jth diagonal entry of the matrix E� If j is such that zj �� 	� then z
�
j � zj � 	�

If j is such that zj � 	� then �z
�
j � zj��z

�
j � yj��Ejj � zjyj�Ejj �� 	 since yj

�
� 	� So

�z�� z�TE���z��y� is the sum of non�postive quantities� and hence is non�positive�
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Theorem ��� Let fzr � r � �� �� � � �g be the sequence of points obtained under

the iterative scheme ������ If �z is an accumulation point of this sequence� then �w �

M �z � q� �z� is a solution of the LCP �q�M��

Proof� Since the initial point z� �� 	� and from �
�
� we conclude that z
r �
� 	 for all

r � �� �� � � �� From strightforward manipulation it can be veri�ed that

f�zr���� f�zr� �

�
�
	Er�Mzr � q�

�T
�	Er����zr�� � zr�

� �zr�� � zr�TM �zr���zr�
�

�
�
zr��������zr

�
� zr � 	Er�Mzr � q

�Kr�zr�� � zr��
�T
�	Er����zr�� � zr��

� �zr�� � zr�
�
M
� � ��	Er��� �Kr

�
�zr�� � zr�

� �
� zr��������zr

�
� �zr � 	Er�Mzr � q

�Kr�zr�� � zr���
�T
�	Er���

�
zr��������zr

�
� zr

�
�

� �zr�� � zr�T
�
M
� � ��	Er��� �Kr

�
�zr�� � zr�

�
����

From �
�
� we know that zr��������zr
�

�
�
zr�	Er�Mzr� q�Kr�zr��� zr��

��
� Also

� � 	� Using these� and Theorem 
��� we conclude that the �rst term in the right hand

side of �
���� is �� 	� So f�z
r����f�zr� �� �zr���zr�T

�
M
� ���	Er����Kr

�
�zr���zr��

So�

f�zr�� f�zr��� �� �z
r�� � zr�T

�
��	Er��� �Kr � M

�

�
�zr�� � zr�

�
� �kzr�� � zrk�

�
����

The last inequality �
���� follows from the conditions �
��	�� Since � � 	� �
���� implies

that f�zr� � f�zr��� �� 	� Hence ff�zr� � r � �� �� � � �g is a monotone non�increasing
sequence of real numbers�

Let �z be an accumulation point of fzr � r � 	� �� � � �g� So there exists a sequence
of positive integers such that the subsequence of zr with r belonging to this sequence

of integers converges to �z� Since fEr � r � 	� �� � � �g� fKr � r � 	� �� � � �g are bounded
sequences of matrices� we can again �nd a subsequence of the above sequence of positive

integers satisfying the property that both the subsequences of Er and Kr with r

belonging to this subsequence converge to limits� Let frt � t � �� �� � � �g be this �nal
subsequence of positive integers� So limit zrt as t tends to � is �z� Also limits of Ert �

Krt as t tends to � exist� and denote these limits respectively by E and K� Since

each Er is a diagonal matrix satisfying Er �
� 
I� for some positive 
 for all r� we

know that E � limits Ert as t tends to �� is itself a diagonal matrix with positive
diagonal entries� Since f�z� is continuous� we have f��z� � limit f�zrt� as t tends to

��� Since ff�zr� � r � 	� �� � � �g is non�increasing sequence of real numbers� and
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its subsequence ff�zrt� � t � �� �� � � �g converges to the limit f��z�� we conclude that
ff�zr� � r � 	� �� � � �g is a non�increasing sequence of real numbers bounded below
by f��z�� Hence the sequence ff�zr� � r � 	� �� � � �g itself converges� This and �
����
together imply that 	 � lim

t���
�
f�zrt�� f�z��rt�

�
�
� lim

t���
�kz��rt � zrtk� �� 	� From

this and the fact that the sequence fzrt � t � �� �� � � �g converges to �z� we conclude that
the sequence fz��rt � t � �� �� � � �g also converges to �z� These facts imply that

	 � lim
t���

kz��rt � zrtk
� � lim

t���
k�zrt � 	Ert�Mzrt � q �Krt�z��rt � zrt���� � zrtk

� �k��z � 	E�M �z � q��� � �zk �

So we have ��z � 	E�M�z � q��� � �z � 	� So by Theorem 
��� �w � M �z � q� �z� is a

solution of the LCP �q�M��

Theorem 
�
 does not guarantee that the sequence fzr � r � 	� �� � � �g generated
by the iterative method �
�
� has any limit points� When additional conditions are

imposed� it is possible to guarantee that this sequence has some limit points�

Theorem ���
 Let M be a symmetric and copositive matrix of order n� Suppose

fzs � s � �� �� � � �g is an unbounded sequence �i� e�� limit kzsk as s tends to � is ��

satisfying zs �� 	 and f�zs� �� 
 for all s � �� �� � � �� where 
 is a constant� Then� there

exists a subsequence fzst � t � �� �� � � �g such that the sequence fyst � yst � zst

kzstk �
t � �� �� � � �g converges to a point �y satisfying �y � 	� �yTM �y � 	� qT �y �

� 	� If� in

addition� M is copositive plus� then �y also satis�es M �y � 	� and in this case either

���
�� or ���
�� have no solution z � Rn�

Mz � q � 	 �
����

Mz � 	 �
����

Proof� Since kzsk diverges to ��� and zs �� 	� we have zs � 	 when s is su�ciently
large� Eliminating some of the terms in the sequence fzs � s � �� �� � � �g at the beginning
of it� if necessary� we can therefore assume that zs � 	 for all s in the sequence� So
kzsk � 	 and hence ys � zs

kzsk is de�ned for all s� The sequence fys � s � �� �� � � �g is
an in�nite sequence of points lying on the boundary of the unit sphere in Rn �i� e��

satisfying kysk � � for all s�� and hence if has a limit point �y� and there exists a
subsequence fyst � t � �� �� � � �g coverging to �y� Clearly k�yk � �� and since ys � 	 for
all s� we have �y � 	� From the conditions satis�ed by the sequence fzs � s � �� �� � � �g
we have




kzstk� �
�

f�zst�

kzstk� �
�

�
�yst�TMyst �

qT yst

kzstk �

Taking the limit in this as t tends to ��� we have 	 �
� �

�
���y

TM �y� and since M is

copostive and �y � 	� this implies that �yTM �y � 	� Also� we have �
kzstk �

�
f�zst �
kzstk �



���� Iter� Methods for LCPs Assoc� with General Symmetric Matrices ���

� ���kzstk�yst�TMyst � qT yst �� qT yst � since M is copositive and yst � 	� Now taking
the limit as t tends to ��� we get 	 �� qT �y�

If� in addition� M is copositive plus� and symmetric� �yTM �y � 	� �y � 	 implies
M �y � 	 by the de�nition of copositive plus� Also� in this case� if �
���� has a solution z�

multiplying both sides of �
���� by �yT on the left yields �since �y �� 	� 	 � �y
T �Mz�q� �

qT �y � zT �M �y� � qT �y �
� 	� a contradiction� Similarly� if �
���� has a solution z in

this case� multiplying both sides of �
���� on the left by �y � 	 yields 	 � �yTMz �

zT �M �y� � 	� a contradiction�

Hence �
���� has no solution z in this case� Also the system �
���� has no solution

z in this case�

Theorem ���� Suppose either

�a� M is a symmetric strictly copositive matrix� or

�b� M is a symmetric copositive plus matrix satisfying the condition that either

���
�� or ���
�� has a feasible solution z�

Then the sequence fzr � r � 	� �� � � �g generated by the iterative scheme ����� is bounded

and has an accumulation point which leads to a solution of the LCP �q�M��

Proof� From Theorem 
�
 we know that f�zr� �� f�z�� for all r � �� �� � � �� If the

sequence fzr � r � 	� �� � � �g is not bounded� it must have a subsequence which diverges�
and using it together with the results in Theorem 
��	� we get a contradiction� Hence

the sequence fzr � r � 	� �� � � �g must be bounded� So it must possess an accumulation
point� and by Theorem 
�
� every accumulation point of this sequence leads to a solution

of the LCP �q�M��

Corollary ��� If M is symmetric� nonnegative and has positive diagonal elements�

the sequence fzr � r � 	� �� � � �g obtained under ����� is bounded� and every accumula

tion point of it leads to a solution of the LCP �q�M��

Proof� Follows from Theorem 
����

Corollary ��� If M is symmetric� copositive plus� and either ���
�� or ���
�� has

a feasible solution z� then the LCP �q�M� has a solution� In this case when the

complementary pivot method is applied on the LCP �q�M�� it cannot terminate in a

ray� it terminates with a solution for the problem�

Proof� Follows from Theorem 
��� and Theorem ����
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Exercise

��� Suppose that M is symmetric and copositive plus� If q � 	 and there exists a z

satisfying Mz � q �� 	� prove that the LCP �q�M� has a solution�

Now we state a theorem due to Ostrowski �Theorem ���� in reference 
����� The�

orem ����� in reference 
����� which we will use in proving Theorem 
��� later on�

Theorem ���� If the sequence fxr � r � 	� �� � � �g in Rn is bounded and limit

kxr�� � xrk as r tends to � is zero� and if the set of accumulation points of fxr �
r � 	� �� � � �g is not a continuum �i� e�� a closed set which cannot be written as the

union of two nonempty disjoint closed sets�� then fxr � r � 	� �� � � �g converges to a

limit�

Proof� See references 
���� mentioned above�

Theorem ���� Suppose M is symmetric� copositive plus and nondegenerate� Then

the sequence fzr � r � 	� �� � � �g obtained under ����� converges to a solution of the

LCP �q�M��

Proof� In this case the determinant of M is nonzero� so M�� exists� The vector z �
M��e can be veri�ed to be a feasible solution for �
����� so by Theorem 
���� the

sequence fzr � r � 	� �� � � �g of points obtained under the iterative scheme �
�
� for this
case is bounded� and has at least one limit point� So the nonincreasing sequence of

real numbers ff�zr� � r � 	� �� � � �g is also bounded and hence converges� From �
����
we also conclude that limit kzr��� zrk as r tends to � is zero� By Theorem 
�
 every

accumulation point of fzr � r � 	� �� � � �g leads to a solution of the LCP �q�M�� But the
LCP �q�M� has only a �nite number of solutions in this case� sinceM is nondegenerate

�Theorem ����� So the sequence fzr � r � 	� �� � � �g has only a �nite number of limit
points in this case� This� together with the fact that limit kzr�� � zrk as r tends to
�� is zero� implies by Theorem 
���� that the sequence fzr � r � 	� �� � � �g converges
to a limit� say �z� By Theorem 
�
� �z leads to a solution of the LCP �q�M��

Corollary ��� If M is symmetric and PD� the sequence fzr � r � 	� �� � � �g produced
by the iterative scheme ����� converges to a point �z that leads to a solution of the LCP

�q�M��

Choice of Various Parameters in the Iterative Scheme �����

By setting Kr � 	� Er � E for all r� where E is a diagonal matrix with positive

diagonal elements� the iterative scheme �
�
� becomes the following scheme

z� �� 	� an initial point

zr�� � ��zr � 	E�Mzr � q��� � ��� ��zr� r � 	� �� � � �
�
����
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where 	 � � � �� 	 � 	 are chosen to satisfy th property that the matrix ���	E����M
is PD �to meet condition �
��	��� This special scheme is a projected Jacobi over�

relaxation scheme �see reference �	������

By setting Kr � L or U � Er � E where E is a diagonal matrix with positive

diagonal entries we obtain the following scheme which is a projected SOR �successive

over relaxation� scheme�

z� �� 	� an initial point

zr�� � ��zr � 	E�Mzr � q �Kr�zr�� � zr���� � ��� ��zr� r � 	� �� � � �
�
����

where 	 � � �
� �� 	 � 	 satisfying the condition that

�	 � ��Maximum fGjjEjj � j such that Gjj � 	g �
��
�

�where G is the diagonal part of M � and Gjj denotes the j
th diagonal element fo G if

the set fj � j such that Gjj � 	� j � � to ng is non�empty�� This is to meet condition
�
��	��

In �
�
�� by setting Kr � L and U alternately� we get the following projected

symmetric SOR scheme�

z� �� 	� an initial point�

zr�� � ��zr � 	E�Mzr � q � L�zr�� � zr���� � ��� ��zr� r � 	� �� �� � � �

� ��zr � 	E�Mzr � q � U�zr�� � zr���� � ��� ��zr� r � �� �� �� � � �

�
��	�

where 	 � � �
� �� 	 � 	 and E is a diagonal matrix with positive diagonal entries

satisfying �
��
��

����� Application of These Methods to Solve

Convex Quadratic Programs

The LCP ����
� corresponding to the quadratic program ������ is associated with a

matrix M which is not symmetric� and hence the iterative methods discussed in this

section cannot be applied to solve it� Here we show that by treating the sign restrictions

on the variables� also as contraints� and writing down the KKT optimality conditions

for the resulting problem� we can derive an LCP associated with a symmetric matrix

M corresponding to the problem� if the objective function is strictly convex �i� e�� if D

is PD�� We consider the quadratic program ������� but include all the sign restrictions

under the system of constraints� This leads to a problem in the following form �

Minimize Q�x� � cx� �
�x

TDx

Subject to Ax �� b
�
����
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where A is a given matrix of order m � n� b� c are given vectors� and D is a given

symmetric matrix of order n� We assume that D is PD� So �
���� is a convex program

with a strictly convex objective function� Associate the Lagrange multiplier ui to the

ith constraint in �
����� i � � to m� and let u � �u�� � � � � um�
T � The Lagrangian for

this problem is L�x� u� � cx� �
�x

TDx � uT �Ax� b�� The KKT necessary optimality

conditions for this problem are �since D is symmetric�

�

�x
L�x� u� � cT �Dx� ATu � 	

u �� 	

uT �Ax� b� � 	

Ax� b �� 	 �

�
����

Since D is assumed to be PD here� D�� exists� So from the �rst set of conditions

in �
����� we get x � D���ATu � cT �� Using this we can eliminate x from �
�����

Denoting the slack variables Ax� b by v� this leads to the LCP

v � �AD��AT �u � ��b�AD��cT �

v �� 	� u �� 	

vTu � 	 �

�
����

So if ��u� �v� is a solution of the LCP �
����� then �x � D���AT �u�cT � is a KKT point for
the quadratic program �
����� Applying Theorems ����� ���� to the convex quadratic

program �
����� we conclude that an optimum solution of �
���� is a KKT point and

vice versa� So solving �
���� is equivalent to solving the LCP �
����� Since the matrix

AD��AT is symmetric this is an LCP associated with a symmetric matrix� and can

be solved by the iterative methods discussed above� In particular� let L� G� U be

respectively the strictly lower triangular part� the diagonal part� and the strictly upper

triangular part of the matrix AD��AT � Generate the sequence fur � r � 	� �� � � �g in
Rm by the following iterative scheme �

u� �� 	 selected arbitrarily

ur�� � �ur � 	E�AD��ATur � b� AD��cT �Kr�ur�� � ur����
�
����

where E is a diagonal matrix with positive diagonal entries� Kr is either L or U and

	 � 	 � �� Maximum fGjjEjj � j such that Gjj � 	g �
����

Note that �
���� corresponds to setting � � � in �
�
�� Also �
���� is the condtion

�
��
� for this case� Also� using �
����� ur�� is computed from ur in the speci�c order

j � �� �� � � � � n if Kr � L� or in the speci�c order j � n� n � �� � � � � � if Kr � U �as

discussed earlier� We have the following theorems�
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Theorem ���� Each accumulation point �u of the sequence fur � r � 	� �� � � �g
generated by ������ satis�es the property that ��v � AD��AT �u� �b� AD��cT �� �u� is
a solution of the LCP ������� and �x � D���AT �u� cT � is the optimum solution of the

quadratic program ����
��

Proof� Follows by applying Theorem 
�
 to this case�

Theorem 
��� does not� of course� guarantee that the sequence fur � r � 	� �� � � �g
generated by �
���� has an accumulation point� This requires some more conditions

on �
���� as discussed below in Theorem 
����

Theorem ���� If the set of feasible solutions of ����
� has an interior point �i� e��

there exists an x satisfying Ax � b� and D is symmetric PD� then the sequence fur �
r � 	� �� � � �g generated under ������ is bounded� and has at least one accumulation

point� Each accumulation point �u satis�es the statement in Theorem ��
��

Proof� Since Ax � b is feasible� there exists a  � 	 such that the set of feasible

solutions of

Ax �� b� e �
����

is nonempty� Fix  at such a positive value� Since the set of feasible solutions of �
����

is nonempty� and Q�x� is strictly convex� the problem of minimizing Q�x� subject to

�
���� has an optimum solution and it is unique� Suppose this optimum solution is �x�

The KKT necessary optimality conditions for this problem are

cT �Dx� ATu � 	

u �� 	

Ax �� b� e

u�Ax� b� e� � 	 �

�
����

So there exists a �u � Rm such that �x� �u together satisfy �
����� Hence �AD��AT ��u�

��b�AD��cT � �� e � 	� This is like condition �
���� for the LCP �
����� Using this�

this theorem follows from Theorem 
����

����� Application to Convex Quadratic Program

Subject to General Constraints

The constraints in a quadratic program may be either linear inequalities or equations�

Here we discuss how to apply the iterative scheme to solve the quadratic program

directly without carrying out any transformations �rst to transform all the constraints

into inqualities� We consider the quadratic program

Minimize Q�x� � cx� �
�x

TDx

Subject to Ax �� b

Fx � d

�
����
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where A� F are given matrices of orders m � n� k � n respectively� b� d� c are given

vectors� and D is a given symmetric positive de�nite matrix of order n� Associate the

Lagrange multiplier ui� to the i
th inequality constraint in �
��	�� i � � to m� and the

Lagrange multiplier �t to the t
th equality constraint in �
����� t � � to k� Let u � �ui��

� � ��t�� The Lagrangian for this problems is L�x� u� �� � cx� �
�x

TDx�uT �Ax� b��
�T �Fx� d�� Since D is symmetric� the KKT necessary optimality conditions for this

problem are �
�

�x
L�x� u� �� � cT �Dx� ATu� FT � � 	

u �� 	

uT �Ax� b� � 	

Ax� b �� 	

Fx� d � 	 �

�
��
�

From �
��
� we get x � D���ATu � FT � � cT �� Using this we can eliminate x from

�
��
�� When this is done� we are left with a quadratic program in terms of u and

� associated with a symmetric matrix� in which the only constraints are u �
� 	� The

iterative scheme discussed above� specialized to solve this problem� becomes the fol�

lowing� Let L� G� U be respectively the strict lower triangular part� the diagonal part�

and the strict upper triangular part of

���A
F

	�
D�� �AT FT �� Generate the sequence

f�ur� �r� � r � 	� �� � � �g by the following scheme

�u�� ��� selected arbitrarily to satisfy u� �� 	����ur��

�r��

	�
 � ���ur

�r

	�
� 	E

����A
F

	�
D�� �AT FT �

���ur

�r

	�

�
���A
F

	�
D��cT �
��� b
d

	�
�Kr

����ur��

�r��

	�
�
���ur

�r

	�
��
�
��	�

where� as before� E is a diagonal matrix with positive diagonal entries� Kr is either L

or U � 	 is a positive number satisfying �
����� and

���u
�

	�
� � ���u�

�

	�

In �
��	�� if Kr � L� ur��j are computed in the order �� �� � � � �m �rst and then �r��

is computed� If Kr � U � �r�� is �rst computed and then ur��j are computed in the

order j � m�m��� � � � � �� We have the following theorems about this iterative scheme�
corresponding to Theorems 
���� 
��� discussed earlier�

Theorem ���� Each accumulation point ��u� ��� of f�ur� �r� � r � 	� �� � � �g generated
by ������ satis�es the property that ��u� ��� �x � D���AT �u� FT �� � cT ��� satis�es ������

and �x is the optimum solution of the quadratic program �������

Proof� Similar to Theorem 
����
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Theorem ���� If there exists an �x satisfying A�x � b� F �x � d� and the set of rows

of F is linearly independent� then the sequence f�ur� �r� � r � 	� �� � � �g generated by

������ is bounded� and at last one accumulation point�

Proof� Similar to Theorem 
����

����� How to Apply These Iterative Schemes in Practice

In practice we can only carry out the iterative scheme up to a �nite number of steps�

and obtain only a �nite number of elements in the sequence� Usually the iterative

scheme can be terminated whenever the current element in the sequence satis�es the

constraints in the LCP to a reasonable degree of accuracy� or when the di�erence

between successive elements in the sequence is small�

Exercise

��� Consider the LP
Minimize ��x� � cx

Subject to Ax �� b
�
����

where A is a given matrix of order m � n� and b� c are given vectors� Suppose this

problem has an optimum solution� and let �� denote the unknown optimum objective

value in this problem� Now consider the following quadratic programming pertubation

of this LP where � is a small positive number

Minimize �
�x

Tx� cx

Subject to Ax �� b
�
����

i� Prove that if �
���� has an optimum solution� there exists a real positive number

�� such that for each � in the interval 	 � � �� ��� �
���� has an unique optimum

solution �x which is independent of �� and which is also an optimum solution of

the LP �
�����

ii� If �� is the nonnegative optimal Lagrange multiplier associated with the last con�

straint in the following problem� where �� is the optimum objective value in �
�����

prove that the �� in �i� can be selected to be any value satisfying 	 � �� � �
�� � If

�� � 	� �� can be chosen to be any postive number�

Minimize �
�x

Tx

Subject to Ax �� b

�cx �� ���

�O� L� Mangasarian and R� R� Meyer 
�����
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��� Sparsity Preserving SOR Methods

For Separable Quadratic Programming

The iterative SOR methods discussed in Section 
�� for quadratic programming require

the product of the constraint matrix by its transpose which can cause loss of both

sparsity and accuracy� In this section we discuss special sparsity preserving versions

of the general SOR algorithms presented in Section 
�� for the LCP associated with

a symmetric matrix� or equivalently for the quadratic program with nonnegativity

constraints only� these versions are given in a simple explicit form in terms of the rows

of the matrix M � and very large sparse problems can be tackled with them� Then

we specialize these algorithms into SOR algorithm for solving separable quadratic

programming problems that do not require multiplication of the constraint matrix

by its transpose� The algorithms and the results discussed in this section are from

O� L� Mangasarian 
�����

We consider the LCP �
��� in which M � �mij� is a symmetric matrix� As

discussed in Section 
��� solving �
��� is equivalent to �nding a KKT point for the

quadratic programming problem �
����� The SOR algorithm given here is a type of

gradient projection algorithm for �
���� with 	 as the relaxation factor or step size that

must satisfy 	 � 	 � �� and is based on those discussed in Section 
��� The algorithm

is the following� Choose z� �� 	 as the initial point� For r � 	� �� � � � de�ne for j � � to

n�

zr��j � �zrj � 	
j��
r��
j �

nX
t�j

mjtz
r
j � qj��

� �
����

where 
j �
�

mjj
if mjj � 	� and 
j � � if mjj �� 	� �

r��
� � 	� �r��j �

Pj��
t�� mjtz

r��
t

for j � ��

Convergence Theorems

Theorem ���	 Let M be a symmetric matrix� Then the following hold�

�
� Each accumulation point of the sequence fzr � r � 	� �� � � �g generated by the

iterative scheme ������ leads to a solution of the LCP ���
��

��� If M is symmetric and PSD and the system� Mz � q � 	� has a solution z�

the sequence fzr � r � 	� �� � � �g generated by ������ is bounded and has an

accumulation point that leads to a solution of ���
��

��� IfM is symmetric and PD the sequence fzr � r � 	� � � � �g generated by ������

converges to a point �z that leads to the unique solution of the LCP ���
� �i� e��

�w �M �z � q� �z� is the solution of the LCP��

��� If M is symmetric and PSD and ���
� has a nonempty bounded solution set�

the sequence fzr � r � 	� �� � � �g generated by ������ is bounded and has an

accumulation point that leads to a solution of ���
��
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Proof� Part ��� follows from Theorem 
�
� Part ��� follows from Theorem 
���� Part

��� follows from Corollary 
��� To prove part ���� notice that if the sequence fzr �
r � 	� �� � � �g generated by �
���� is unbounded� by Theorem 
��	� there exists a �y � Rn

satisfying� �y � 	� M �y � 	� qT �y �
� 	� So� if �w � M �z � q� �z� is a solution of �
����

then �M��z � ��y� � q� �z � ��y� is also a solution of �
��� for all � �
� 	 �since �z � ��y �� 	�

M��z � ��y� � q �� 	 and 	
�
� ��z � ��y�T �M��z � ��y� � q� � �qT �y �� 	� contradicting the

boundedness assuption of the solution set of �
����

����� Application to

Separable Convex Quadratic Programming

Consider the quadratic program

Minimize cx� �
�x

TDx

Subject to Ax �� b

x �� 	
�
����

where A is a given matrix of order m�n and D is a positive diagonal matrix of order n�
Let uT � Rm� vT � Rn be the row vectors of Lagrange multipliers associated with the

constraints and sign restrictions in �
����� From the necessary optimality conditions

for �
���� it can be veri�ed that an optimum solution for �
���� is given by

x � D���ATu� v � cT � �
����

where �u� v� is an optimum solution of

Minimize �bTu� �
��A

Tu� v � cT �TD���ATu� v � cT �

Subject to �u� v� �� 	 �
�
����

The problem �
���� is in the same form as �
���� and so the iterative algorithm �
����

can be applied to solve it� It leads to the following iterative scheme� Choose �u�� v�� ��
	� 	 � 	 � �� Having �ur� vr� de�ne for i � � to m�

ur��i �

�
uri �

	

kAi�D�
�
� k�

��
Ai�D

����i�r�� �
mX
t�i

�At��
Turt � vr � cT �

�� bi

���

vr�� �
�
vr � 	�ATur�� � vr � cT �

��
�
����

where �i�r�� � 	 for i � �� or �
Pi��

t���At��
Tur��i for i � �� Notice that the sparsity or

any structural properties that the constraint coe�cient matrix A may have are taken

advantage of in �
�����
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Theorem ���� The following hold�

�
� Each accumulation point ��u� �v� of the sequence f�ur� vr� � r � 	� �� � � �g gen

erated by ������ solves ������ and the corresponding �x determined by ������

solves �������

��� If fx � Ax � b� x � 	g �� �� the sequence f�ur� vr� � r � 	� �� � � �g generated by

������ is bounded and has an accumulation point �u� v� and the corresponding

x determined by ������ solves �������

Proof� Part ��� follows from Theorem 
���� To prove part ���� if fx � Ax � b� x � 	g ��
�� the perturbed positive de�nite quadratic program� minimize cx� �

�x
TDx subject to

Ax �� b� em� x � en� where et is the column vector of all ��s in R
t for any t� has an

optimum solution �x� If ��u� �v� are the corresponding Lagrange multiplier vectors� from

the KKT necessary optimality conditions we have

�x � D���AT �u� �v � cT � �� en � 	

AD���AT �u� �v � cT �� b �� em � 	 �

These conditions are equivalent to the condition Mz � q � 	 in Theorem 
��� for

the LCP corresponding to problem �
����� Hence� by Theorem 
���� the sequence

f�ur� vr� � r � 	� �� � � �g generated by �
���� is bounded� and hence has an accumulation
point �u� v�� The corresponding x determined from �
���� solves �
���� by the result

in part ����

In 
���� O� L� Mangasarian used the iterative scheme �
���� to develop a spar�

sity preserving SOR algorithm for solving linear programs� These schemes are also

discussed in Section ���� ������

Note ��� Suppose we have observations on the yield at at values of the temperature

t � �� �� � � � � n� and it is believed that this yield can be approximated very closely by

a convex function of t� Let x�t� be a convex function in t� and denote x�t� by xt
for t � �� � � � � n� The problem of �nding the best convex approximation to the yield�

usng the least squares formulation� leads to the quadratic programming problem � �nd

x � �x�� � � � � xn�
T to

minimize
Pn

i���xi � ai�
�

subject to xi�� � xi �� xi � xi��� i � �� � � � � n� �
This leads to the LCP �q�M�� where

M �

�����������������������

� �� � 	 	 	 � � � 	
�� � �� � 	 	 � � � 	
� �� � �� � 	 � � � 	
	 � �� � �� 	 � � � 	

���
� � �

� � �
� � �

� � �
���

���
���

	 	 	 	 	 � �� �

	���������������������

and q � �a� � a�� a� � a�� a	 � a�� � � ��

T �
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J� S� Pang has tried to solve this class of LCPs for n � �		� using various iterative

SOR methods discussed in this section and in Section 
�� and found that convergence is

not obtained even after several thousands of iterations� The matrixM given above is a

very specially structured positive de�nite symmetric matrix� and the pivotal methods

discussed in Chapters ��� perform very well in solving LCPs associated with this matrix

M � An explanation for the poor performance �slow convergence� of SOR iterative

methods on LCPs associated with M can be given in terms of the eigenvalues of M �

At any rate� this example shows that iterative methods may not perform well on some

classes of LCPs� These iterative methods are particularly useful for solving LCPs of

very large orders or those which lack special structure� and thus are not easily handled

by pivotal methods�

��� Iterative Methods for General LCPs

The results in Section 
�� have been generalized by B� H� Ahn to the case of LCPs in

which the matrixM may not be symmetric 
���� We discuss his results in this section�

We want to solve the LCP �q�M� �
���� where M is a given matrix of order n� not

necessarily symmetric�

Given any matrix A � �aij� we will denote by jAj the matrix �jaijj�� Also if A is
a square matrix of order n� the matrix C � �cij� of order n where cii � jaiij for i � �
to n� and cij � �jaij j� i� j � � to n� i �� j� is known as the comparison matix of A�

We will now discuss some results on which the algorithm will be based�

Suppose we are given a square matrix A of order n which is not necessarily sym�

metric� So some of the eigenvalues of A may be complex� The spectral radius of A

denoted by ��A�� is the maximum fj��j� � � � � j�njg where ��� � � � � �n are the eigenvalues
of A� See Ortega and Rheinboldt �	���� for results on the spectral radius of A�

Theorem ���
 Let x� y � Rn� Then �x � y�� �
� x� � y�� also x �

� y implies

x� �
� y�� Also �x� y�� �

� x� � y��

Proof� Follows by direct veri�cation�

Theorem ���� Let g�z� � �z � 	E�Mz � q���� 	 � 	 and E is a diagonal matrix

with positive diagonal entries� �w � Mz � q� z� is a solution of the LCP �q�M� i	

g�z� � z�

Proof� Follows from Theorem 
�� of Section 
���

The Iterative Scheme

Choose z� �� 	 in R
n arbitrarily� Given zr� determine zr�� from

zr�� �
�
zr � 	E

�
Mzr � q �K�zr�� � zr�

���
� r � 	� �� � � � �
����
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where 	 � 	� E is a diagonal matrix with positive diagonal entries� and K is either a

strictly upper triangular or a strictly lower triangular matrix� This scheme is a special

case of �
�
� discussed earlier in Section 
��� We will now study the convergence

properties of the sequence fzr � r � 	� �� � � �g when M is not necessarily symmetric�

Notice that the convergence properties of this sequence established in Section 
�� using

the descent function �
�
zTMz� qT z� need the symmetry of M � and hence may not hold

when M is not symmetric�

Convergence Properties

Theorem ���� The vectors in the sequence fzr � r � 	� �� � � �g obtained using ������

satisfy for each r � �� �� � � �

jzr�� � zrj �� �I � 	EjKj���jI � 	E�M �K�j�jzr � zr��j � �
��
�

Proof� From �
����� we have zr���zr � �zr�	E�Mzr�q�K�zr���zr������zr���
	E�Mzr���q�K�zr�zr������ �

� ��z
r�zr����	EM�zr�zr����	EK�zr���zr��

	EK�zr � zr����� from Theorem 
��	� So �zr�� � zr�� �
� ��I � 	E�M �K���zr �

zr����� � ��	EK�zr�� � zr���� We can obtain a similar result for zr � zr��� that is

�zr�zr���� �
� ��I�	E�M�K���zr���zr������	EK�zr�zr������ Remembering

that jxj � x����x�� for any vector x � Rn� and adding the above two inequalities we

get jzr��� zrj �� jI �	E�M �K�j�jzr � zr��j�	EjKj�jzr��� zrj� Since K is strictly

lower or upper triangular� the matrix I � 	EjKj is either a lower or upper triangular
matrix� is invertible� and has a nonnegative inverse� Using this we get �
��
� from the

last inequality�

Theorem ���� Suppose the iteration parameters 	� E� K and the underlying

matrix satisfy ��Q� � kQk � �� where Q � �I � 	EjKj����jI � 	E�M �K�j�� Then
the sequence of points fzr � r � 	� �� � � �g generated by ������ converges to a point �z

where �w �M �z � q� �z� is a solution of the LCP�

Proof� Since ��Q� � �� by the result in Theorem 
��� we conclude that limit of

�zr��� zr� as r tends to�� is zero� Also� clearly Q �
� 	� Now jzr� z�j �� jzr� zr��j�

� � � � jz� � z�j �� �Qr � � � � � I�jz� � z�j �� �I � Q���jz� � z�j� �since kQk � �� �

a constant vector independent of r� So the sequence fzr � r � 	� �� � � �g is bounded�
So it has a subsequence fzrt � t � �� �� � � �g which converges to a limit� �z� say� So
lim
t�� jzrt��� �zj � lim

t�� jzrt��� zrt j� lim
t�� jz

rt � �zj � 	� which shows that limit zrt�� as
t tends to � is �z too� Now by the de�nition of zrt�� from equation �
����� and taking

the limit as t tend to ��� we conclude that �z � ��z � 	E�M �z � q���� So by Theorem


���� �w �M �z � q� �z� is a solution of the LCP� Also� as in the proof of Theorem 
����

we can show that jzr�� � �zj �� Qjzr � �zj holds for all r� Since j��Q�j � �� we conclude
that limit jzr � �zj as r tends to �� is zero� So the entire sequence fzr � r � 	� �� � � �g
itself converges in the limit to �z�
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Theorem ���� Let L� D� U be respectively the strictly lower triangular� diagonal

and strictly upper triangular parts respectively of M � Let K be L or U or �� Let

B � I � 	EjKj� C � jI � 	E�M � K�j� A � B � C� If A is a Pmatrix� then

the sequence fzr � r � 	� �� � � �g generated by ������ converges to a point �z where

�w �M �z � q� �z� is a solution of the LCP �q�M��

Proof� From the de�nition of B� we know that B is invertible and B�� �
� 	� Also

C �
� 	� So by ������ of Ortega and Rheinboldt�s book �	����� ��B

��C� � � i� A��

exists and is nonnegative� Since A is a Z�matrix� for it to have a nonnegative inverse�

it su�cies if A is a P �matrix� The result follows from these and from Theorem 
����

Theorem ���� If D � jL� U j is a P matrix� then the sequence fzr � r � 	� �� � � �g
generated by ������ with K � L or U or � and 	 � 	 � ��maxfMjjEjj � j � �

to ng where Mjj � Ejj are the jth diagonal entries of the matrices M � E respectively�

converges to a solution �z where �w �M �z � q� �z� is a solution of the LCP�

Proof� Follows from Theorem 
����

��� Iterative Methods for LCPs

Based on Matrix Splittings

The iterative scheme and the results discussed in this section are due to J� S� Pang


����� Consider the LCP �q�M�� �
���� of order n� If B� C are square matrices of order

n satisfying

M � B � C � �
��	�

�
��	� is said to be a splitting of the matrixM � Let E be a square nonnegative diagonal

matrix of order n with diagonal entries Eii � � for all i� This iterative scheme generates

a sequence of points fzr � r � 	� �� � � �g by the following� Let B� C� be a splitting of
M as in �
��	�� z� � Rn be an arbitrarily selected nonnegative vector� Given zr� solve

the LCP with data �qr� B� where qr � q � �C � BE�zr� and let the solution of this

LCP be �ur�� � Bzr�� � qr� zr���� Then zr�� is the next point in the sequence�

For this scheme to be practical� the matrix B should be such that the LCP �p�B�

can be solved easily for any p � Rn� If B is a diagonal matrix with positive diagonal

entries� or a triangular matrix with positive diagonal entries this will be the case� We

assume that the splitting B� C of M is chosen so that the computation of the LCP

�p�B� is easily carried out� Matrix splittings are used extensively in the study of

iterative methods for solving systems of linear equations� The results in this section

show that they are also useful for contructing iterative methods to solve LCPs� It can

be veri�ed that the iterative scheme discussed in Section 
�� is a special case of the

scheme discussed here� obtained by setting� E � ��� ��I and the splitting B� C given
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by B � K � G���	��� and C � �M �K� � G���	�� where 	 � � � �� 	� � 	� and
K is either a strictly lower triangular or a strictly upper triangular matrix and G is a

diagonal matrix with positive diagonal entries�

Theorem ���� Suppose the following conditions hold�

�i� B satis�es the property that the LCP �p�B� has a solution for all p � Rn�

�ii� B � U � V � CT with U � V being matrices satisfying conditions mentioned

below�

�III� there exists a permutation matrix P such that the following matrices have

the stated partitioned structure�

PTV P �

���V

 	
	 	

	�
 � PTCP �

���C

 	
	 	

	�
 �

PTEP �

���E

 	
	 	

	�
 � PTUP �

��� 	 U

�UT




	

	�
 �

with V

 being symmetric positive de�nite matrix� where ��� 	 f�� � � � � ng� ��� �
f�� � � � � ng n ���� and V

 is the matrix of Vij with i � ���� j � ���� etc�

�iv� the initial vector z� �� 	 satis�es q
 � UT




z�
 �
� 	�

Then every accumulation point� �z of the sequence f�z � r � 	� �� � � �g generated
by the scheme discussed above� satis�es the property that �w � M �z � q� �z�

is a solution of the LCP �q�M�� Also if the following additional condition is

satis�ed�

�v� the matrix A

 � �V �C �CT �

 is copositive plus and there exists vectors

y�
� y
�

 such that

q
 � A

y
�

 � 	� �
����

y�
 �� 	� q
 � UT




y�
 � 	 �
����

then the sequence fzr � r � 	� �� � � �g generated by the above scheme is

bounded� and has an accumulation point�

Proof� De�ne f�z� � qT
 z
�
�
�z

TMz� From the choice of z�� and the iteration formula

it is clear that zr �
� 	 for all r� and that q
 � UT




zr �
� 	 for all r

�
� 	� In order to

satisfy all these conditions� the matrix M need not be symmetric or PSD� but it must

be copositive plus �for condition �iv��� and a principal rearrangement of M is given by��� A

 U


�UT




	

	�
 �

So f�z� � qT
 z
 � zT
A

z
��� Hence

f�zr���� f�zr� �

� �q
 �A

z
r

�

T �zr��
 � zr
� � �z
r��

 � zr
�

TA

�z
r��

 � zr
���

� �q
 � C

z
r

 � �V � CT �

z

r��

 �T �zr��
 � zr
�

� �zr��
 � zr
�
TV

�z

r��

 � zr
���

� �q
 � C

z
r

 � �V � CT �

z

r��

 � U

z

r��



�T �zr��
 � zr
�

� �zr��


�T �UT




zr��
 � UT




zr
�� �zr��
 � zr
�

TV

�z
r��

 � zr
���

� �q
 � C

z
r

 � �V � CT �

z

r��

 � U

z

r��



�T ��zr�� � Ezr� � �E � I�zr�


� �zr��


�T ��q
 � UT




zr��
 �� �q
 � UT




zr
��� �zr��
 � zr
�

TV

�z
r��

 � zr
��� �
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because �ur�� � Bzr���qr� zr��� solves the LCP �qr� B�� From this we conclude that

f�zr���� f�zr� �� ��
�
�zr��
 � zr
�

TV

�z
r��

 � zr
� �� 	 � �
����

Now let z� be an accumulation point of the sequence fzr � r � 	� �� � � �g and let fzrt �
t � �� �� � � �g be a subsequence coverging to z�� This clearly implies by �
���� that the
sequence ff�zr� � r � 	� �� � � �g converges� As in the proof of Theorem 
�
� it can be
shown that in this case�

lim
t��

zrt��
 � lim
t��

zrt
 � z�
 � �
����

Also� for each rt we have

urt
 � q
 � C

z
rt��

 � B

z

rt


�
� 	� zrt �� E

z

rt��

 �
����

urt


� q
 � B

z

rt


�
� 	� zrt



�
� 	 � �
����

�urt
 �
T �zrt
 �E

z

rt��

 � � �urt



�T zrt



� 	 � �
����

Taking the limit as t tends to� and usng �
����� we conclude that �w� �Mz��q� z��
solves the LCP �q�M��

Suppose now that condition �iv� holds� We will �rst show that the sequence fzr
 �
r � 	� �� � � �g remains bounded� If not� by the results in Section 
��� there must exist a
�z
 satisfying �z
 � 	� qT
 z
 �

� 	� �z
T

A

�z
 � 	� Since A

 is copositive plus� this implies

that A

�z
 � 	� These facts contradict the existence of a solution to the system �
�����

So fzr
 � r � 	� �� � � �g must be bounded�
Now we will prove that the sequence fzr



� r � 	� �� � � �g must be bounded too�

Suppose not� Then there exists a subsequence fzrt


� t � �� �� � � �g such that kzrt



k

diverges to �� as t tends to �� Let yrt


� zrt



�kzrt



k� This normalized sequence

fyrt


� t � �� �� � � �g is bounded and hence has an accumulation point y�



� Take a

subsequence of fyrt


� t � �� �� � � �g which converges to y�



� Denote this subsequence

by fyrs


� s � �� �� � � �g� Since the sequence fzrs
 � s � �� �� � � �g is bounded� it has a

limit point� By considering a suitable subsequence again� if necessary� we can assume

that we �nally have a subsequence fzrs
 � s � �� �� � � �g which converges to z�
� Dividing
�
���� by kzrs



k and taking the limit as s tends to �� we get B

y

�


�
� 	� From

�
���� we have ��I � E

�z
�

�

TB

y
�


� 	� and since �I � E

� is a positive diagonal

matrix� this implies that �z�
�
TB

y

�


� 	� Similarly� from �
����� �
����� we obtain

that �y�


�T �q
 � B

z

�

� � 	� Since B

 � U

 � �BT




� it follows that �y�



�T q
 � 	�

This together with B

y
�


�
� 	 and the fact that y

�


� 	 contradicts the existence of

a solution to �
����� So fzr


� r � 	� �� � � �g is also bounded� Hence the sequence fzr �

r � 	� �� � � �g is bounded when the additional condition �iv� holds�

In 
���� J� S� Pang� has established the convergence properties of the sequence

fzr � r � 	� �� � � �g generated by the scheme discussed here� under various other sets of
conditions on M � B� C� q�
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��� Exercises

��� Consider the problem of �nding x� y � Rn satisfying

cT �Dx� y �� 	� x �� 	� y �� 	

b� x �� 	

xT �cT �Dx� y� � yT �b� x� � 	

�
����

where b � 	� c� D are given matrices of order n � � and n � n respectively� When D

is symmetric� these are the necessary optimality conditions for the quadratic program�

minimize cx� �
�x

TDx� subject to 	 �� x �� b� A model of type �
���� arises in the study

of multicommodity market equilibrium problems with institutional price controls �here

D is not necessarily symmetric��

�� Show that �
���� is equivalent to the LCP �q�M� where

q �

��� cT

b

	�
 � M �

��� D I
�I 	

	�
 �

�� Let    � fx � 	 �� x �
� bg and let P��y� denote the nearest point in    �in terms

of the usual Euclidean distance� to y� Give �x �    � de�ne the corresponding
�y � ��yi� � Rn by �yi � 	 if �xi � bi� or � �Di� �x � ci if �xi � bi� We say that �x

leads to a solution of �
���� if ��x� �y� solves �
����� Consider the following iterative

scheme� Choose x� �    � For r � 	� �� � � �� given xr� de�ne

xr�� � �P��x
r � 	E�Dxr � cT �K�xr�� � xr��� � ��� ��xr �
��
�

where 	 � � �
� �� 	 � 	� E is a positive diagonal matrix of order n� and K is

either the strictly lower or the strictly upper triangular part of D� Using the result

in Exercise ���� xr��j in �
��
� can be determined in the order j � � to n if K

is the strictly lower triangular part of D� or in the order j � � to n if K is the

strictly upper triangular part of D� In the sequence fxr � r � 	� �� � � �g generated
by �
��
�� xr �    for all r� so� it has at least one accumulation point� If D is

symmetric and �	 � �� �maximumfDjjEjj � j such that Djj � 	g�� �here Djj �

Ejj are the j
th diagonal entries in the matrices D� E respectively�� prove that

every accumulation point of the sequence generated by �
��
� leads to a solution

of �
����� In addition� if D is also nondegenerate� prove that the sequence fxr �
r � 	� �� � � �g generated by �
��
� in fact converges to a point �x that leads to a
solution of �
�����

�� If D is a Z�matrix� not necessarily symmetric� and x� � T � fx � x �    and

for each i either xi � bi or ci � Di�x �
� 	g� �for example� x� � b will do� and

�	 �
� �� �maximumfDjjEjj � j such that Djj � 	g�� prove that the sequence

fxr � r � 	� �� � � �g generated by �
��
� is a monotonic sequence that converges to
a point �x leading to a solution of �
�����
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�� A square matrix is said to be a H�matrix if its comparison matrix �which is a Z�

matrix by de�nition� is a P �matrix� If D is a H�matrix� not necessarily symmetric�

with positive diagonal elements� prove that the sequence fxr � r � 	� �� � � �g gen�
erated by �
��
�� with 	 �

� �� �maximumfDjjEjj � j � � to ng� converges to the
point �x that leads to the unique solution of �
�����

�B� H� Ahn 
����

��� For each i � � to m� let fi�x� be a real valued convex function de�ned on R
n�

Let K � fx � fi�x� �� 	� i � � to mg� Assume that K �� �� Let x� � Rn be

an arbitrary initial point� The following iterative method known as the method of

successive projection is suggested as a method for �nding a point in K� Given xr� let

xr�� be the nearest point in the set fx � fir �x� �� 	g to xr� The index ir is choosen by
one of the following

Cyclic Order  Here the indices fir � r � 	� �� � � �g are choosen in cyclical order
from f�� �� � � � �mg� So i� � �� i� � �� � � �� im � �� im�� � �� and so on�

Most Violated Criterion  Here ir is the i for which the distance between x
r

and the nearest point to xr in the set fx � fi�x� �� 	g is maximum �ties for this
maximum are broken arbitrarily��

Prove that the sequence fxr � r � 	� �� � � �g converges to a point in K�
�L� M� Bregman 
����
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Chapter ��

SURVEY OF DESCENT BASED

METHODS FOR UNCONSTRAINED

AND LINEARLY CONSTRAINED

MINIMIZATION

Nonlinear Programming Problems

Eventhough the title �Nonlinear Programming� may convey the impression that the

subject includes all optimization problems other than linear programming problems�

it is not usually the case� Optimization problems involving discrete valued variables

�i� e�� those which are restricted to assume values from speci�ed discrete sets� such

as ��� variables	 are not usually considered under nonlinear programming� they are

called discrete� ormixed�discrete optimization problems and studied separately�

There are good reasons for this� To solve discrete optimization problems we normally

need very special techniques �typically of some enumerative type	 di
erent from those

needed to tackle continous variable optimization problems� So� the term nonlinear

program usually refers to an optimization problem in which the variables are continuous

variables� and the problem is of the following general form�

minimize ��x	

subject to hi�x	 � �� i � � to m

gp�x	 �
� �� p � � to t

�P	

where ��x	� hi�x	� gp�x	 are all real valued continuous functions of x � �x�� � � � � xn	 �
Rn�

Suppose some of these functions are not di
erentiable at some points x� Assume

that gradients exist for each function almost everywhere� but are not continuous� Then

problem �P	 is known as a non�smooth or non�di�erentiable optimization prob�

lem� On such a problem� the usual gradient�based methods and results may fail� and
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special attention must be given to the surfaces of non�di
erentiability� it becomes very

important to consider generalized gradients to handle such problems�

If all the functions ��x	� hi�x	� gp�x	 are continuously di
erentiable� problem �P	

is known as a smooth nonlinear program� In this book we only study smooth

nonlinear programs� However� some of the techniques that we discuss may convert a

smooth NLP into a special type of nonsmooth NLP� and then solve it� As an example�

the simplicial method discussed in Section ���� to solve the smooth NLP� minimize

��x	� subject to gi�x	 �� �� converts it into the NLP� minimize ��x	� subject to s�x	 �� ��

where s�x	 � max �fg��x	� g��x	� � � � � gm�x	g� This modi�ed problem is a nonsmooth

optimization problem� since s�x	 may not be di
erentiable at some points x� However�

because of the special nature of s�x	� we know that �s�x	 � convex hull of frgi�x	 � i
such that gi�x	 � s�x	g� and hence for any given x� it is easy to �nd at least one point

in �s�x	� and the special simplicial algorithms discussed in Section ��� are able to

solve this modi�ed problem using only this information�

Consider the NLP �P	 and assume that all the functions are continuously di
eren�

tiable� The constraints in �P	 are either equality constraints� or inequality constraints�

�P	 is the general form of the problem� and in a particular instance of �P	� there may

or may not be such constraints� This problem is said to be�

an unconstrained minimization problem� if there are no constraints on the

variables� in the statement of the problem�

a linear programming problem� if all the functions ��x	� hi�x	� gp�x	 are a�ne

functions�

a quadratic programming problem� if ��x	 is a quadratic function� and all

hi�x	 and gp�x	 are a�ne functions�

an equality constrained problem� if there are no inequality constraints on the

variables�

a linearly constrained NLP� if all the constraint functions hi�x	� gp�x	 are a�ne

functions�

a convex programming problem if ��x	 is a convex function� all hi�x	 are

a�ne functions� and all gp�x	 are concave functions�

a nonconvex programming problem� if it is not a convex programming prob�

lem as de�ned above�

In this chapter� we provide a brief survey of some commonly used algorithms for

smooth NLPs� those in the areas of unconstrained and linearly constrained NLPs� which

constitute alternate methods to those discussed so far for solving quadratic programs�
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���� A FORMULATION EXAMPLE FOR

A LINEARLY CONSTRAINED

NONLINEAR PROGRAM

We begin this chapter with a practical example due to C� H� White� of a nonlinear

model in which the constraints are linear� It arose in the boiler shop of a company

which has �ve ��	 boilers operating in parallel for generating steam� Data on the

boilers is given below�

Tableau ����

Boiler Boiler load range

i limits

lower upper

li ki a�i a�i a�i a�i

� �� units �� ����� ���� ����� ������

 �� �� ����� ���� ����� ������

� �� �� ���� ��� ���� ������

� ��� ���� ����� ��� ����� ������

� �� ��� ���� ���� ����� ������

The unit measures the rate at which steam is produced per unit time� If the ith boiler

is kept on� it must be operated within its load range limits li� ki� The boiler�s energy

e�ciency de�ned as a percentage is ��� � �energy content of output steam	��energy

content in the input fuel	� It tends to increase as the load moves up from the minimum

allowable operating load� and then peaks and drops as the load approaches the upper

limit� Data was collected on the boiler e�ciencies at di
erent operating load levels�

and the plots indicated that boiler e�ciency can be approximated very well by a cubic

polynomial of the operating load� Let y��	 � e�ciency of a boiler when it is operating

at load � units� We approximate y��	 by f��	 � a� � a�� � a��
� � a��

�� where a�� a��

a�� a� are parameters to be estimated from data� The problem of determining the best

values of the parameters that give the closest �t between observed e�ciency and the

cubic polynomial� is known as the parameter estimation problem or the curve

�tting problem� Suppose we have r observations on a boiler� at load levels �t� t � �

to r yielding observed e�ciencies of yt� t � � to r respectively� To derive the closest

�t we need to construct a measure of deviation of the functional value f��	 from the

observed y��	 over the range of values of � used in the experiment� depending on the

parameter vector a � �a�� a�� a�� a�	� Three di
erent measures are in common use�
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They are

L��a	 �
rX

t��

�yt � a� �
�X

s��

as�
s
t 	
�

L��a	 �
rX

t��

jyt � a� �
�X

s��

as�
s
t j

L��a	 � Maximum fjyt � a� �
�X

s��

as�
s
t j � t � � to rg�

Since the L��a	 measure is a sum of squares� the technique which chooses the parameter

vector a to minimize L��a	 is called the least squares approach or the method of

least squares� If �a � ��a�� �a�� �a�� �a�	 is the best vector of parameter values obtained

under this method� the function �a� � �a�� � �a��
� � �a��

� is called the least squares

approximation for y��	�

If the parameter vector a is determined so as to minimize the measure L��a	� the

resulting function f��	 is known as the Tschebyche� approximation for y��	�

If all the parameters appear linearly in the functional form f��	 �as in this boiler

e�ciency example	 the problem of minimizing either the L�� or L��measures can both

be posed as linear programs and solved by the e�cient simplex method� However� if

the parameters appear nonlinearly in the functional form� the least squares method is

preferred for parameter estimation�

If the measure of deviation is too large even at the best parameter values� it is

necessary to review the choice of the functional form and modify it� Besides� it is

possible that no simple function provides a good approximation for all possible values

of load� It is only necessary to �nd a good functional representation of the e�ciency

in the neighborhood of the optimum load values� if some reliable practical knowledge

is available on the likely location of this optimum�

Thus� even the process of constructing a mathematical model for the problem

might itself need the application of optimization algorithms for parameter estimation�

The Basic Di�erence Between Linear and Nonlinear Models

To construct a linear programming model involving n nonnegative variables subject to

m constraints� we need to estimate the �m� �	�n� �	� � coe�cients of the variables

in the constraints and the objective function� these are the data elements in the model�

Real life LP applications routinely involve models with n � ���� ��� or more� and m

as large as ����� A large scale LP model is usually of this size�

To construct a nonlinear model� we have to determine the functional form of the

objective and each constraint function� and obtain the best values for any parameters

in each� For this reason� practical nonlinear models tend to have fewer variables than

linear models� Depending on how complicated the functions involved are� a nonlinear

model with about �� variables could usually be considered as a large scale model�
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Boiler Example� Continued

For the boiler problem� estimates of the best parameter values in the functional form

for the e�ciency of each boiler are given in Tableau �����

At a point of time� the Company�s steam requirements are ��� units per unit time�

The problem is to determine how this total load of ��� units should be shared across

the �ve ��	 parallel boilers so as to minimize the total fuel cost� It may be possible to

get a lower overall cost by shutting down one or more of the boilers and meeting the

demand using only the remaining boilers� For example� here it can be veri�ed that the

total load of ��� units can be met using boilers �� �� and � only� Thus the problem of

determining the most e�cient plan to meet a load of exactly ��� units� leads to a mixed

integer nonlinear programming problem in which there are �ve zero�one variables to

determine which of the �ve boilers are shut down and which are kept operating� and

the operating load level for the boilers that are kept operating� In this plant however�

it is known that the Company�s steam requirements vary with time� When the demand

for steam goes up� if a boiler is kept operating� it is a relatively easy matter to increase

the boiler�s steam output by turning a few valves� On the other hand turning on a

shut down boiler is an expensive operation� In order to be able to meet the varying

steam requirements over time� it was determined that all the �ve boilers should be

kept operating� Under this condition� since xi�fi�xi	 is a measure of the energy cost of

obtaining a load of xi units from boiler i� we are lead to the following nonlinear model�

minimize
�X

i��

xi�fi�xi	

subject to
�X

i��

xi � ���

li �� xi �� ki� i � � to �

which is a linearly constrained nonlinear program�

Exercise

���� Using the �� � variables yi de�ned by

yi � � if the ith boiler is kept operating

� � otherwise

formulate the problem of determining the most e�cient plan for producing exactly ���

units of steam per unit time as a mixed integer NLP�
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���� TYPES OF SOLUTIONS FOR

A NONLINEAR PROGRAM

Consider a NLP in which a function ��x	 is required to be optimized subject to some

constraints on the variables x � �x�� � � � � xn	
T � Let K denote the set of feasible so�

lutions for this problem� For this problem a feasible solution x � K is said to be

a

local minimum� if there exists an � � � such that ��x	 �� ��x	 for all x � K �
fx � kx� xk � �g�
strong local minimum� if there exists an � � � such that ��x	 � ��x	 for all

x � K � fx � kx� xk � �g� x �� x�

weak local minimum� if it is a local minimum� but not a strong one�

global minimum� if ��x	 �� ��x	 for all x � K�

local maximum� if there exists an � � � such that ��x	 �� ��x	 for all x � K �
fx � kx� xk � �g�
strong local maximum� if there exists an � � � such that ��x	 � ��x	 for all

x � K � fx � kx� xk � �g� x �� x�

weak local maximum� if it is a local maximum� but not a strong one�

global maximum� if ��x	 �� ��x	 for all x � K�

stationary point� if some necessary optimality conditions for the problem are

satis�ed at the point x�

These concepts are illustrated in Figure ���� for the one dimensional problem�

optimize ��x	 subject to x � R�� a �� x �� b� ��x	 is plotted in Figure �����

The points a� x�� x�� x��� x�� are strong local minima� x�� x�� x�� x��� b are

strong local maxima� x�� is the global minimum� x� is the global maximum� in this

problem� At the point x� the derivative of ��x	 is zero� and so it is a stationary point

�satis�es the necessary optimality condition d�	x

dx � �	 even though it is neither a local

minimum or maximum� In each of the intervals x� �� x �� x�� and x� �� x �� x�� ��x	 is

a constant� x�� x� are weak local minima� and x�� x� are weak local maxima� Every

point x satisfying x� � x � x�� x� � x � x� is both a weak local minimum and a weak

local maximum�
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���� TYPES OF NONLINEAR PROGRAMS�

WHAT CAN AND CANNOT BE DONE

EFFICIENTLY BY EXISTING METHODS

Every local minimum is a global minimum for the problem of minimizing a convex

objective function on a convex set� Likewise� every local maximum is a global maximum

for the problem of maximizing a concave function on a convex set� Problems of this type

are considered to be nice problems in nonlinear programming� they are called convex

programming problems� The other class of NLPs in which a nonconvex objective

function is required to be minimized� or in which the set of feasible solutions is not

convex� are called nonconvex programming problems�

In general� it is very hard to �nd the global minimum� or even to check whether

a given feasible solution is a global minimum in a nonconvex programming problem�

E
orts have been made to �nd global minima by enumerating all local minima� but

these methods tend to be very ine�cient� The enormity of this task can be appreciated

when we realize that some of the most di�cult problems in mathematics that have

remained unresolved for centuries� can be posed as nonconvex programming problems�
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As an example� consider Fermat�s last Theorem �unresolved since ���� AD� see

�������	 which states that the equation� xn � yn � zn � �� has no solution in integers

in the region x �
� �� y �

� �� z �
� �� n �

� �� Consider the following NLP� where 	

is some positive parameter� 
 denotes the irrational number which is the length of

the circumference of the circle with unit diameter in R�� and cos � denotes the cosine

function of the angle � measured in radians�

minimize �xn � yn � zn	� � 	���� � cos�
x		� � ��� � cos�
y		��

��� � cos�
z		� � ��� � cos�
n		�	

subject to x� y� z �� �� n �
� ��

�����	

�����	 is a linearly constrained NLP� It can be veri�ed that Fermat�s last Theorem

is false i
 the optimum objective value in �����	 is � and attained� since any feasible

solution �x� y� z� n	 to �����	 which makes the objective value zero provides a coun�

terexample to Fermat�s last Theorem� �����	 is a nonconvex programming problem in

which every integer feasible solution is a local minimum� The objective function in

�����	 is a sum of several penalty terms� The number of distinct local minima can be

very large even in nonconvex programming problems that do not have such penalty

terms in the objective function� As an example� consider the concave minimization

problem

minimize ��x	 � �
nX

j��

�xj � ���		�

subject to � �� xj �� �� j � � to n�

����	

Each of the n extreme points of the set of feasible solutions of ����	 is a local mini�

mum� Unfortunately� there are no techniques known for determining how many local

minima a general nonconvex programming problem has� other than plain enumeration�

In nonconvex programming problems� since in general it is very di�cult to guarantee

that a global minimum will be obtained� the best thing that we can expect from an

algorithm is that it leads to a point satisfying a necessary condition for being a local

mimimum� and many of the descent type methods discussed in this chapter do that�

In these methods� the terminal solution obtained may depend on the initial point with

which the method is initiated� Usually� by running the algorithm with di
erent initial

points� several local minima may be obtained� and the best among them might be a

reasonably good solution for the problem�

Starting the algorithm with an initial point� suppose a local minimum x is obtained

for a nonconvex programming problem� A technique often used to move to a di
erent

local minimum is to add a penalty term like 	��kx� xk	p where 	 � � and p �� � to

the objective function� and use the algorithm again on the augmented problem� As x

approaches x� the penalty term 	��kx�xk	p blows up to �� and this guarantees that

the algorithm moves to a point di
erent from x� But this may not be a satisfactory

approach to enumerate the local minima in a nonconvex program� because of the

numerical di�culties created by the addition of the penalty terms to avoid previously
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obtained local minima� Also� the augmented problem may have new local minima

which are not local minima of the original problem�

Because of this� if someone can establish the global minimum in a class of noncon�

vex programming problems� it is considered to be a mathematical breakthrough and

becomes a major international headline item� An example of this is the recent break�

through on establishing the minimum value of the permanent of a doubly stochastic

matrix of order n� Given a square matrix A � �aij	 of order n� its permanent is de�ned

by

f�A	 �
X

���a�p�	 � � � �anpn	� � sum over all the n�

permutations �p�� � � � � pn	 of f�� � � � � ng	�
A doubly stochastic matrix of order n is a nonnegative square matrixX � �xij	 of order

n� whose row sums and column sums are all equal to �� The problem of minimizing the

permanent of doubly stochastic matrix of order n is therefore the NLP� �nd a square

matrix X � �xij	 of order n to

minimize f�X	

subject to
nX

j��

xij � �� i � � to n

nX
i��

xij � �� j � � to n

xij �� �� i� j � � to n�

The objective function in this NLP is nonconvex� hence� this is a nonconvex pro�

gramming problem� In ��� B� L� vanderWaerden ������� conjectured that the global

optimum for this problem is the doubly stochastic matrix �xij	 in which xij � ��n

for all i� j� with an optimum objective value of n��nn� This conjecture resisted the

attacks of many of the world�s greatest mathematicians� but was �nally resolved in the

a�rmative by G� P� Egorychev in ����� see references ������� ������ ������

���� CAN WE AT LEAST COMPUTE A

LOCAL MINIMUM EFFICIENTLY�

In convex programming problems� any point satisfying any of the well known necessary

optimality conditions such as the KKT conditions� is a local minimum and therefore it

is also a global minimum for the problem� To solve a convex programming problem� any

algorithm that is guaranteed to �nd a KKT point� if one exists� is thus adequate� Most

of the algorithms for solving NLP�s discussed in this book can be shown to converge

to a KKT point� if one exists� and so these algorithms compute local� and thus global

minima when applied on convex programming problems�
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In a nonconvex program� given a feasible solution x satisfying the usual necessary

optimality conditions� it may or may not even be a local minimum� If x does not satisfy

the su�cient optimality condition given in Appendix � for being a local minimum� it

may be very hard to verify whether it is a local minimum� As an example� consider

the problem discussed in Section ����

minimize xTDx

subject to x �� �

where D is a given square matrix of order n� When D is not PSD� this NLP is the

simplest nonconvex NLP�

A su�cient condition for � to be a local minimum for this problem is that D

be PSD� If D is not PSD� � is a local minimum for this problem i
 the matrix D is

copositive� no e�cient methods are known at the moment for doing this� The method

discussed in Section ���� for testing copositiveness is a �nite enumeration method�

but it may not be practically useful when n is large� As discussed in Section ����� the

problem of checking whether � is a local minimum for this problem is a hard problem�

On nonconvex programs involving inequality constraints� existing algorithms can

at best guarantee convergence to a KKT point in general� If the KKT point obtained

does not satisfy some known su�cient condition for being a local minimum� it is then

hard to check whether it is actually a local minimum� However� as mentioned in Section

����� if the algorithm is based on a descent process �i� e�� in a minimization problem�

if the algorithm is designed to obtain a sequence of points with decreasing objective

values	 one can be reasonably con�dent that the solution obtained is likely to be a

local minimum�

���� PRECISION IN COMPUTATION

In linear or in convex quadratic programming problems� if all the data are rational

numbers� and if an optimum solution exists� there exists an optimum solution which is

a rational vector that can be computed exactly with �nite precision arithmetic using

algorithms like the simplex algorithm or the complementary pivot method discussed

earlier� However� in general nonlinear programming� even when the constraints are

linear� and all the data in the model is rational� there may be optimum solutions�

but no rational optimum solution� For example consider the simple one dimensional

optimization problem� �nd x � R� that minimizes f�x	 � �x � �x���	 subject

to x �
� �� The unique optimum solution of this problem is x �

p
� an irrational

number� so we can never compute the exact optimum solution of this problem on

digital computers that operate with �nite precision arithmetic�

Hence� when dealing with general nonlinear programs� emphasis is placed on get�

ting an approximate optimum solution� In practical implementations� nonlinear algo�

rithms are usually terminated when optimality conditions are satis�ed to a reasonable

degree of approximation� or when it is evident that the algorithm has obtained an

interval of su�ciently small length containing the true optimum solution�
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���	 RATES OF CONVERGENCE

The algorithms discussed in this chapter are iterative in nature� They generate a

sequence of points fxr � r � �� �� � � � �g beginning with an initial point x�� Under

some conditions on the problem being solved� for most of these methods� it is usually

possible to prove that the sequence converges in the limit to a point x� which is a

point satisfying the necessary optimality conditions for a local minimum� Even when

this convergence is mathematically proven� the method is useful for solving practical

problems only if xr converges rapidly to x� as r increases� Here we discuss how this

rate of convergence is measured mathematically�

Finite Termination Property� The sequence is said to have this property� if there

exists a �nite value N such that xN � x� and the method terminates�

Quadratic Termination Property� The method is said to have this property if the

sequence generated terminates in a known �nite number of iterations when applied to

a strictly convex quadratic function minimization problem�

Suppose the method does not have either of the above properties� Then it gen�

erates the truly in�nite sequence fxr � r � �� �� � � � �g� Assume that the sequence

converges to x�� that xr �� x� for any r� The measure of the rate of convergence of

this sequence� tries to assess the improvement that occurs in each step� that is� in

e
ect it measures how close xr� is to x� compared to the closeness of xr to x��

as r goes to �� The converging sequence fxrg is said to converge with order k

�or to have an asymptotic convergence rate k	 if k is the largest number such that

limitr���kxr� � x�k�kxr � x�kk	 � �� When k � �� the sequence is said to have

linear �or �rst order� or geometric	 convergence rate� if limitr���kxr� � x�k�
kxr � x�k	 � � � �� In this case� the quantity � is called the convergence ratio of

the sequence� If in fact � � � in this case� the sequence is said to have superlinear

convergence rate�

As an example consider the sequence of real numbers f	r � r � �� �� � � �g where

� � 	 � �� The sequence converges to zero linearly� On the other hand the sequence

of real numbers fxr � ���r	 � r � �� � � � �g converges to zero with k � �� but its rate

of convergence is not linear� since limitr���kxr�k�kxrk	 � limitr����r��r��		 � �

which is not strictly less than one�

If k � � the sequence fxrg is said to have quadratic �or second order	 conver�

gence rate� Quadratic convergence is rapid� since it implies that once the sequence

reaches a small neighborhood of x�� the error in a step decreases as the square of the

error in the previous step �i� e� � the number of digits to which xr agrees with x� begin

to double after each step� after a certain number of steps	�

Summary of Later Sections

In the following sections we discuss various descent methods in common use for solving

linearly constrained NLPs� These algorithms typically use some unconstrained mini�

mization algorithms and algorithms for solving nonlinear programs in a single variable
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�the so�called line minimization algorithms	 as subroutines� So we survey these algo�

rithms �rst�

���
 SURVEY OF SOME

LINE MINIMIZATION ALGORITHMS

The line minimization problem is the problem of minimizing a real valued function

f��	 of one variable �� either over the whole real line� or over the half�line � �
� l for a

speci�ed number l� or over a speci�ed �nite interval �l� u� � f� � l �� � �
� ug� Assuming

that f��	 is continuously di
erentiable� the global minimum for f��	 in the interval

l �� � �� u is the point �� in this interval which gives the minimum value for f��	 among

those � satisfying df	�

d�

� �� and the points l� u� if these are �nite� In fact if f��	 is

concave and l� u are �nite� the global minimum for f��	 in the interval l �� � �
� u is

either l or u� whichever gives a smaller value for f��	� See Figure ����

In the interval �a� b� if f ��a	 � �� a is a local minimum for f��	� and if f ��b	 � ��

b is a local minimum for f��	�

When f��	 is a general function� a bracket is de�ned to be an interval in the

feasible region which contains the minimum� When the derivative f ���	 � df	�

d�

is

not available� a bracket usually refers to an interval ���� ��� in the feasible region�

satisfying the property that we have a �� satisfying �� � �� � �� and f���	 �
�

minimum ff���	� f���	g� If the derivative f��	 is available� a bracket usually refers

to an interval ���� ��� with �� � ��� satisfying the property that f ����	 � � and f ����	

� ��
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Figure ���� The global minimum for one dimensional concave minimization

problem is a boundary point �l here	�

How to Select an Initial Bracket�

First consider the problem in which we are required to minimize f��	 over the entire

real line� Begin with an initial point �� and choose a positive step lenth �� Compute

f���	 and f���	� where �� � ����� If f���	 � f���	� the direction of increasing � is

the right direction to pursue� otherwise� replace � by �� to reverse the direction and

go through the procedure discussed next� De�ne �r � �r�� � r��� for r � � �� � � �

as long as they keep on decreasing� until either the upper bound on � is reached or

a value k for r is found such that f��k�	 � f��k	� In this case we have �k��� �k�

�k� satisfying f��k	 � f��k��	� f��k�	 � f��k	� Among the four points �k��� �k�

��k��k�	�� and �k�� drop either �k�� or �k�� whichever is farther from the point

in the pair f�k� ��k��k�	�g that yields the smallest value to f��	� Let the remaining

points be called �a� �b� �c� where �a � �b � �c� These points are equi�distant� and

f��b	 �� f��c	� f��b	 �� f��a	� So this interval �a to �c brackets the minimum�

If the problem is to minimize f��	 over � �
� l or u �

� � �
� l� it is reasonable to

expect that f��	 decreases as � increases through l �i� e�� the derivative f ��l	 � ��

otherwise l is itself a local minimum for the problem	� So in these problems� we can

get a bracket by beginning with �� � l and applying the above procedure�
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������ The Golden Section Search Method

The function f��	 is said to be a unimodal function in the interval a �� � �
� b if it has

a unique local minimum in the interval� See Figures ����� �����

(   )f λ

a b
λ

Figure ���� A unimodal function in the interval �a� b��

(   )

da bc

f λ

λ

Figure ���	 This function is constant in the interval c � � � d� so every point

in this interval is a local minimum� So this function is not unimodal in the

interval �a� b��
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In many practical applications� it is reasonable to assume that the interval has

been narrowed down using prior knowledge of the problem such that the objective

function has a single minimum in the interval� A unimodal function f��	 in the interval

a �� � �
� b satis�es the property that there exists a unique �� in the interval �this �� is

the minimum	 such that given any ��� �� in the interval with �� � ��� if �� � �� we

have f���	 � f���	� and if �� � ��� we have f���	 � f���	� The golden section search

method is a method for minimizing a unimodal function in an interval by sectioning

�i� e�� interval reduction	 using only function values evaluated at selected points�

The number  � ��� �
p
�	 � ���� is known as the golden ratio� Let �	� ��

be the current interval in which the minimum is known to lie� If function value has

not been evaluated at any interior point in this interval� let �� � 	 � ����� � 		�

�� � 	 � ������ � 		� evaluate f���	� f���	 �depending on what happened in the

previous step� it is possible that the function value at one of these points �� or ��
has already been computed in the previous steps	� If f���	 � f���	� the minimum is

contained in the interval �	� ���� If f���	 � f���	� the minimum is contained in the

interval ���� ��� If f���	 � f���	� the minimum is contained in the interval ���� ����

Repeat this process with the new interval�

There is a reduction in the length of the interval of uncertainty �i� e�� the bracket

length	 by a factor of ���� or more in each step� The length of the interval of uncertainty

converges linearly to zero� When the length of the interval of uncertainty has become

less than a speci�ed tolerance� �� any point in the �nal interval could be taken as an

approximation for the minimum�

������ The Method of Bisection

This method can be used if f��	 is continuously di
erentiable and the derivative f ���	

can be computed� It starts with an initial bracket for the minimum �a� b� satisfying

f ��a	 � � and f ��b	 � �� Evaluate f ���a�b	�	� If f ���a�b	�	 � �� the point �a�b	�

satis�es the �rst order necessary condition for a local minimum� If f ���a� b	�	 � ��

take �a� �a�b	�� as the new bracket and continue� If f ���a�b	�	 � �� take ��a�b	�� b�

as the new bracket and continue�

Since the bracket is cut in half each time� the length of this interval converges

to zero linearly� When its length has become less than a speci�ed tolerance �� any

point in the �nal interval could be taken as an approximation to the minimum� One

disadvantage of this method is that it relies totally on the values of the derivative f ���	

and does not use the values of the function f��	 being minimized�

������ Newton�s Method

This is a second order gradient method that can be used if f��	 is twice continuously

di
erentiable and the second derivative f ����	 can be computed easily either through
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a subroutine or by using a �nite di
erence approximation� and f��	 is required to be

minimized over the entire real line� The method is the application of the Newton�

Raphson method to �nd a solution of the equation� f ���	 � �� The method generates

a sequence f�r � r � �� �� � � �g beginning with an initial point ��� Given �r� the

second order Taylor series approximation for f��	 at �r is f��r	 � f ���r	�� � �r	 �

���	f ����r	��� �r	
�� If f ����r	 � �� this has a minimum at

�r� � �r � f ���r	�f
����r	� �����	

Equation �����	 gives the iterative scheme for Newton�s method� The method is not

suitable to be used if f ����	 turns out to be �� � at any point encountered during the

algorithm� It is quite suitable if an initial point �� in the vincinity of a local minimum

is known� In the vincinity of a minimum� the second derivative f ����	 is of constant

sign �nonnegative	 and the �rst derivative f ���	 changes sign from a negative to a

positive value� If f��	 is a quadratic function with a minimum� this method �nds the

minimum in one step� In general� any twice continuously di
erentiable function has a

Taylor series expansion around a point� the �rst three terms of this series �which form

a quadratic function	 are dominant when the point is in the vincinity of the minimum�

The method has rapid convergence �quadratically	 once the vincinity of the minimum

is reached� A result on the convergence rate of this method follows as a corollary of

Theorem ����� where a convergence rate result for Newton�s method applied to �nd

the unconstrained minimum of a real valued function ��x	 over x � Rn is proved�

See references ������ ������ ����� ������ for results on the convergence and rates of

convergence of Newton�s method�

������ Modi�ed Newton�s Method

Several modi�cations have been proposed for Newton�s method to handle cases where

a good initial point is not available to initiate Newton�s method� or when a point

satisfying f ����	 �� � is encountered during the method� and to handle the problem

in which the feasible range is a speci�ed interval and not the entire real line� We

discuss one such modi�cation here� We consider the problem of minimizing a twice

continuously di
erentiable function f��	 in the interval �a� c� � f� � a �
� � �

� cg and

we have a piont b satisfying a � b � c and f�b	 � minimum ff�a	� f�c	g� This method

generates a sequence of points f�r � r � �� �� � � �g satisfying the property that the

entire sequence lies in the interval �a� c� and that f��r�	 � f��r	 for all r� Initiate

the method with �� � b� and select a constant 	 satisfying � � 	 � �� The quantity

	 is called the attenuation factor�

Given �r� the point obtained by moving in the direction of f ���r	 a step of length

� is �r � �f ���r	� From the Taylor series� f��r � �f ���r		 � f��r	 � ��f ���r		
��

error term� where the error term tends to zero faster than �� So� if � � �� we make

improvement in the objective value by this move� Notice that Newton�s method takes
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� � ��f ����r	 to get the next point in the sequence� In this method you do the

following�

�a	 If f ����r	 � � compute yr � �r � f ���r	�f
����r	� If yr � �a� c� and f��r	� f�yr	 ��

�	�	�f ���r		
��f ����r	� de�ne �r� � yr� If yr � �a� c� but f��r	 � f�yr	 �

�	�	�f ���r		
��f ����r	� use a �rst order Armijo step size procedure which requires

the determination of the smallest nonnegative integer s satisfying

��r � f ���r	�
s	 � �a� c�� and

f��r	� f��r � f ���r	�
s	 � �	�s	�f ���r		

�

and then de�ne �r� � �r�f ���r	�s� The motivation for this step size procedure

is explained in Section �������

�b	 If f ����r	 �� �� de�ne � � �� if f ���r	 �� �� �� if f ���r	 � � and use the second

order Armijo step size procedure� This requires the determination of the smallest

nonnegative integer s satisfying

��r � �f ���r	�
s	 � ���s��		 � �a� c�� and

f��r	� f��r � �f ���r	�
s	 � ��s��	 �� 	���f ���r		

��s	� f ����r	�
s�	�

For a �nite s satisfying these conditions to exist� it is su�cient that f ����r	 � � if

f ���r	 � �� Then de�ne �r� � �r � �f ���r	�
s	 � ��s���

Under certain conditions it can be shown that this method has second�order con�

vergence� See references ������ ����� ������

�����	 Secant Method

In Newton�s method or modi�ed Newton�s method discussed above� we need to com�

pute the value of the second derivative f ����r	� This may be hard� In the secant method

we replace f ����r	 by its �nite di
erence approximation �f ���r	�f ���r��		���r��r��	�
This is the only change in the Secant method from Newton�s or modi�ed Newton�s

method� The secant method is initiated with two initial points ��� �� in the feasible

region satisfying �� � �� and f ����	 � �� f ����	 � ��

�����
 The Method of False Position

In the secant method we always use f ���r	 and f ���r��	 to get a �nite di
erence

approximation for f ����r	 for each r� Even though initially f ����	� f
����	 are of opposite

signs� after some steps it may happen that f ���r	 and f
���r��	 have the same sign� and

this could make the iterates diverge when minimizing over the real line� In this method

we make sure that f ����	 is always approximated using the values of f ���	 of opposite

signs at two di
erent values of �� For some r� suppose f ����r	 was approximated

using f ���r	 and f ���s	 for an s �
� r � �� Compute �r� using this approximation

as under the secant method� and compute f ���r�	� Determine which of f ���t	 for

t � r or s has a sign opposite to that of f ���r�	� Then approximate f ����r�	 by

f ���r� � f ���t		���r� � �t	� and continue in the same way�
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������ Univariate Minimization by

Polynomial Approximation Methods

The essential feature of these methods is to approximate the original function f��	

by a simpler function P ��	 �normally a second or third degree polynomial	 by curve

�tting� and then using the minimum of P ��	 to approximate that of f��	� These

methods are also called polynomial interpolation methods� If the minimum is known

to lie in a small enough interval� the application of these methods usually produces

very satisfactory results�

Quadratic Interpolation

This method needs an interval of the form �� � �� � �� with f���	 � minff���	�
f���	g� a bracket for the minimum� as discussed earlier� ��� the initial best point� is the

initial point in the sequence� It constructs a quadratic approximation P ��	 � a�� �

b�� c which coincides with f��	 at � � ��� ��� ��� By the properties mentioned above�

P ��	 determines a parabola� The three independent pieces of information �value of

P ��	 � value of f��	 at � � ��� ��� ��	 are used to determine a� b� c in P ��	 uniquely�

Since P ��	 is a parabola �by the condition imposed	� the minimum of P ��	 lies in the

interval ���� ��� at the point � satisfying dP 	�

d� � �� It can be veri�ed that this point

is

�� �
���� � ���	f���	 � ���� � ���	f���	 � ���� � ���	f���	

���� � ��	f���	 � ��� � ��	f���	 � ��� � ��	f���	�

�� is a minimum for P ��	 if

��� � ��	f���	 � ��� � ��	f���	 � ��� � ��	f���	

��� � ��	��� � ��	��� � ��	
� �

a condition which will hold because of the properties satis�ed by ��� ��� ���

It is possible for �� to be equal to �� even though this point is far away from a

local minimum of f��	� See Figure ����� If this happens� the quadratic interpolation

has failed to generate a new trial point�

If j�� � ��j is not too small� we can replace one of the points in ��� ��� �� by ��
so that the new set of three points again satis�es the conditions for a bracket for the

minimum of f��	� The best point among these three is the next point in the sequence�

and the procedure is repeated with the new bracket� If �� and �� are too close �even

if they are not equal	 repeating the procedure with such close values could lead to

numerical problems in the next step� In this case� we select a small distance �� and

take the new point to be either ��� � or ��� � whichever leads to the smallest length

new bracket�
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Figure ���
 The minimum of f��	 in the bracket ���� ��� is at �� But the

minimum of Quadratic approximation� �� is the same as ���

Note ���� Newton�s method is a quadratic approximation method� Given the cur�

rent point �r at which the second derivative f ����r	 � �� Newton�s method constructs a

quadratic function P ��	 satisfying the three properties P ��r	 � f��r	� P
���r	 � f ���r	

and P ����r	 � f ����r	� It can be veri�ed that the function P ��	 is just the second order

Taylor series approximation to f��	 around this point �r� and that the next point in

the sequence �r� is the minimum of this quadratic approximation P ��	�

Cubic Interpolation Method

This method can be used when f��	 is di
erentiable and the derivative f ���	 can

be computed either numerically using a �nite di
erence approximation or computed

directly using a subroutine for evaluating it� The method needs a bracket ���� ���

satisfying the property that f ����	 � �� f ����	 � �� A cubic function P���	 � a�� �

b�� � c� � d can be �tted such that it agrees in value with f��	 at �� and �� and

its derivative has the same value as f ���	 at �� and ��� From the bracket conditions

the minimum of this cubic function occurs inside the bracket at the point �� satisfying
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d
d� �P���		 � �� It can be veri�ed that

�� � �� � ��� � ��	
�
�� f ����	 � � � �

f ����	� f ����	 � �

�

where

� �
��f���	� f���		

�� � ��
� f ����	 � f ����	

� � ��� � f ����	f
����		

����

If jf ����	j is small� �� can be accepted as a good approximation for the minimum�

Otherwise� if f ����	 � �� repeat the process with ���� ��� as the new bracket� If

f ����	 � �� repeat the process with ���� ��� as the new bracket�

It can be shown that these polynomial approximation methods have superlinear

or better convergence rate under certain conditions� See ������� ������ A��� It is

possible to develop algorithms based on a combination of sectioning and polynomial

interpolation steps�

Di�culty in Computing Derivatives During

Line Minimization Steps Encountered in Solving

NLPs Involving Several Variables

Let ��x	 be a continuously di
erentiable real valued function de�ned on Rn� Consider

the NLP in which ��x	 is to be minimized� possibly subject to some constraints� Many

algorithms for solving such a problem make repeated use of line minimization algo�

rithms to solve problems of the form� given a point x� � Rn and a search direction

y � Rn� y �� �� �nd the step length � that minimizes ��x� � �y	 subject to � �
� ��

In this problem� since x� and y are given vectors� ��x� � �y	 � f��	 is purely a

function of the step length parameter �� If the problem of minimizing f��	 in � �
� �

needs the derivative f ���	 for some given value of �� we use

f ���	 �
d

d�
���x� � �y		 � �r��x� � �y		y

where r��x���y	 is the row vector of partial derivatives of ��x	 evaluated at x � x��

�y� So� the computation of f ���	 needs the evaluation of each of the partial derivatives

of ��x	 at the point x� � �y� which in the worst case takes n function evaluations �the

work would be less if� for example� we know from the structure of ��x	 that some of

these partial derivatives are zero	� Thus� evaluating f��	 � ��x�� �y	 needs only one

function evaluation� while evaluating f ���	 needs n function evaluations� considerably

more work� In the same manner� evaluation of the second derivative f ����	 for any ��

needs n� function evaluations in the worst case� These facts should be considered in

choosing an algorithm for line minimization� to be used as a subroutine in algorithms for

NLPs involving many variables� Since evaluating derivatives �f ���	 or f ����		 requires a
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lot more function evaluations� typically line minimization algorithms based on function

values only� are to be preferred as far as possible�

When f��	 � ��x� � �y	� the formula f ���	 � �r��x� � �y		y is an analytical

formula for the exact derivative of f��	 at �� and the value of f ���	 computed using

this formula is known as the analytically computed derivative� Since the analytical

computation of the derivative is so expensive� it may be appropriate to use an ap�

proximation for it� Let � be a small positive number� it is called the �nite di
erence

interval� Then f ���	 can be approximated by any of the three following quantities

f��	� f��� �	

�

or
f��� �	� f��	

�

or
f��� �	� f��� �	

�
�

The topmost quantity is called the backward�di
erence approximation� the middle

quantity is known as the forward�di
erence approximation� and the bottom quantity is

known as the central�di
erence approximation� to f ���	� If the value of f��	 is already

known� the computation of the forward or backward�di
erence approximation to f ���	

needs one more function evaluation� whereas the computation of the central�di
erence

approximation needs two more function evaluations� If � is small compared to jf ���	j
and the magnitude of jf ����	j in the neighborhood of �� the error in approximation

will be small� because f�� � �	 � f��	 � �f � � ��

� f
���� � �	 for some � �

� � �
� �� by

Taylor�s theorem� Thus with a suitable choice of the �nite di
erence interval� these

�nite di
erence approximations provide a reasonable approximation to the derivative�

with much less computational e
ort than that involved in using the analytical formula�

Because of this� many professional software packages for NLP algorithms use �nite

di
erence approximations to the derivatives�

Even the partial derivatives of ��x	 can be approximated by �nite di
erence ap�

proximations� Let I be the unit matrix of order n� Then

��x	� ��x� �I�j	

�

or
��x� �I�j	� ��x	

�

or
��x� �I�j	� ��x� �I�j	

�

where � is the suitable �nite di
erence interval� are the backward� forward and central�

di
erence approximations for the partial derivative ��	x

�xj

� respectively�
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������ Practical Termination Conditions for

Line Minimization Algorithms

In practice� line minimization algorithms discussed above are terminated either when

the bracket length is small� or when a point � satisfying jf ���	j � � for some speci�ed

tolerance � is obtained� or when the improvement in objective value between two

consecutive points obtained in the method is small� or when the di
erence between

two consecutive points obtained under the method is small� At termination� if we have

a bracket for the minimum� a �nal interpolation step can be carried out to provide the

approximate location of the minimum in the bracket�

������ Line Minimization Algorithms Based on

Piecewise Linear and Quadratic Approximations

In this section we discuss new line minimization algorithms based upon a combination

of piecewise linear �or polyhedral	 and quadratic approximations� due to C� Lemarechal

and R� Mi�in ������ ����� ������ These algorithms are rapidly convergent� and seem

best suited as line search subroutines in higher dimensional optimization algorithms�

Let f��	 � R� 	 R� be the real valued function de�ned on R� which is required

to be minimized over � � R�� At any given �� the limit �if it exists	 of f	��
�f	�

�

as

�	 � through positive values is known as the right derivative of f��	 at � and denoted

by f ���	� the limit of the same quantity as �	 � through negative values is known as

the left derivative of f��	 at � and is denoted by f ����	� If f��	 is di
erentiable at ��

then f ����	 � f ���	 � f ���	� If f��	 is convex� these f ����	 and f ���	 exist and they

satisfy

if � � �� then f ����	 �� f ���	 �� f ����	 �� f ���	�

When f��	 is convex� the subdi
erential �f��	 is the line segment �f ����	� f
�
��	�� and

a necessary and su�cient condition for a �� to be the minimizer point for f��	 is�

f �����	 �� � �� f ����	�

For the moment� let g��	 denote the derivative f ���	 if it exists� or a number from

�f��	� that is� a subgradient of f��	 at �� otherwise� Given two points � and �

satisfying the properties that f��	 �� f��	 and g��	g��	 � �� the interval between �

and � is a bracket for the minimum�

Polyhedral Approximation

The a�ne functions f��	 � g��	�� � �	� f��	 � g��	�� � �	� are the linearizations of

f��	 at � � �� � respectively� The pointwise supremum function P ��	 � max �ff��	�
g��	����	� f��	�g��	����	g provides a piecewise linear or polyhedral approximation
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for f��	 in the interval between � and �� If f��	 is convex� this piecewise linear function

underestimates f��	 at each point in the interval� see Figure ����� The point where

this piecewise linear function attains its minimum is the point that equalizes the two

expressions inside the max �� it is �� dP � where

dP �
f��	� f��	� g��	��� �	

g��	� g��	
�

This dP provides the polyhedral approximation step from the point � for the line

minimization problem� If f��	 is convex� the numerator in dP is �� � and �� dP lies

in the interval between � and ��

(   )

d
P

+

f λ

λ

λ

γ

Figure ���� A Polyhedral approximation �the dashed lines	 for f��	� and

the point �� dP where it attains its minimum�

Quadratic Approximation

A quadratic approximation for f��	 at � � � is of the form

Q��	 � f��	 � g��	��� �	 �
�


��� �	�G��	
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where G��	 approximates the second derivative of f��	 and is determined in a one�sided

secant manner� that is�

G��	 �
g��	� g�t	

�� t

where t is a point such that � is in the interval between t and the minimizer of f��	�

If f��	 is convex� G��	 is 
 �� If G��	 � �� the minimum of Q��	 is attained at ��dQ

where

dQ �
�g��	
G��	

�

If G��	 �� �� jdQj � ��� dQ is the quadratic approximation step from � for the line

minimization problem�

The algorithm uses a step that is the shorter of the quadratic approximation and

the polyhedral approximation steps� Some modi�cations are made to these steps if the

functions are not convex� to guarantee convergence to at least a stationary point�

These methods generate two sequences f�rg� f�rg where for each r� �r and �r
are on opposite sides of the minimizing point ��� The sequence ff��r	g will be non�

increasing� and j�r � �rj is a decreasing sequence� since at least one of the two points

�r� �r changes in each step�

We describe di
erent versions of the algorithm in various numbered subsections

in the following� for ease of cross referencing�

� Line Minimization of a Convex Function

Assume that f��	 is convex and that it is required to �nd the point �� that minimizes

f��	 over � � R�� In this subsection� g��	 denotes f ���	 if f��	 is di
erentiable at ��

or a subgradient of f��	 at � otherwise �i� e�� a point from �f��	� the interval between

f ����	 and f ���		� The method initially needs two points �� and �� satisfying

f���	 �� f���	 and g���	g���	 � ��

A pair of points like this can be generated by some initialization procedure� In this

case �� is in the interval between �� and ��� Choose G���	 � �g���	�g���		�������	�
We will now describe the general step�

Step r� At the beginning of this step we have �r� �r satisfying

f��r	 �� f��r	 and g��r	g��r	 � �

and we also have G��r	� Compute

dPr �
f��r	� �f��r	 � g��r	��r � �r		

g��r	� g��r	

dQr �
�g��r	
G��r	
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where jdQr j � �� if G��r	 � �� Now determine

dr � �sign of ��g��r			�min �fjdPr j� jdQr jg	
�r � �r � dr�

Terminate with the conclusion that �r is the minimizer of f��	 if either dr � � or

g��r	 � ��

Otherwise� update the quantities for the next step as given below� If f��r	 �
�

f��r	� then set �r� � �r� �r� � �r� G��r�	 � G��r	� In this case there is no move

in the �r�sequence�

If f��r	 � f��r	� then set �r� � �r� and

if g��r	g��r	 � �� then set �r� � �r

G��r�	 �
g��r	� g��r	

dr
if g��r	g��r	 � �� then set �r� � �r

G��r�	 �
g��r	� g��r	

�r � �r
�

Under rather general assumptions� it has been proved in ������ that if this algorithm

does not terminate in a �nite number of steps� then f��r	 	 f���	 as r 	 �� and

that the sequence f�rg itself converges superlinearly to ��� a minimizer of f��	�

� Constrained Line Minimization With Convex Functions

Need For a Constraint in Line Minimization

Let ��x	 be a real valued function de�ned on Rn� In algorithms for the unconstrained

minimization of ��x	� we start at a point x � Rn� develop a search direction y � Rn�

y �� �� which is a descent direction at x� and then have to solve the line minimization

problem of minimizing f��	 � ��x � �y	 over � �
� �� It has been shown that such

algorithms will have desirable convergence properties if the step length � �
� � is chosen

so as to satisfy

f��	� f��	 �� ��

where � is a negative number that is a positive fraction of an estimate of the directional

derivative of ��x	 at x in the direction y� To satisfy this condition� we de�ne c��	 �

f��	� f��	� ��� and solve the constrained line minimization problem

minimize f��	

subject to c��	 �� ��



	�	 Chapter ��� Survey of Descent Based Methods

For another application of constrained line minimization� consider the general NLP

minimize ��x	

subject to hi�x	 �� �� i � � to m�

Algorithms for solving these problems usually begin with an initial feasible point x� �nd

a descent search direction y at x� and do a line minimization in that direction� De�ne

c��	 � max �fhi�x� �y	 � i � � to mg� The problem of �nding the best feasible point

in this search direction� leads to the constrained line minimization problem� minimize

f��	� subject to c��	 �� ��

The Constrained Line Minimization Problem

Here we consider the constrained line minimization problem

minimize f��	

subject to c��	 �� �

where both functions f��	 and c��	 are convex� Let

S � f� � c��	 �� �g�

Since c��	 is convex� S is an interval� but it may be hard to determine S explicitly

if c��	 is nonlinear� However� we assume that S has a nonempty interior and that a

feasible point �i� e�� � � S	 may be found� for example� by �nding an unconstrained

minimum of c��	�

Here we discuss a modi�cation of the algorithm of Subsection � due to R� Mi�in

������ for solving this constrained problem�

The method generates two sequences f�rg� f�rg� where for each r� �r is feasible

and �r� �r are on opposite sides of any constrained minimization point ��� �r is either

infeasible �i� e�� c��r	 � �	 or f��r	 �� f��r	� The sequence ff��r	g is non�increasing

with r� In this subsection we de�ne

g��	 � �f��	 if c��	 �� � �i� e�� � � S	

g��	 � � c��	 if c��	 � � �i� e�� � �� S	�

We therefore have

c��	 �� c��	 � g��	 ��� �	� for all �� and � �� S

f��	 �� f��	 � g��	��� �	� for all �� and � � S�

For � feasible� as in Subsection �� we de�ne G��	 � �g��	 � g�t		��� � t	 where t is

feasible and � is between t and ��� The quadratic approximation step at a feasible

point � is de�ned as before� using G��	�
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In Step r of the algorithm� if both the points �r and �r are feasible� the polyhedral

approximation step is de�ned exactly as under Subsection ��

Given �r� �r� if �r is infeasible� then g��r	 is a subgradient of the constraint

function c��	� and is not related to the objective function f��	� Thus� in this case�

the polyhedral approximation step given �r� �r is not well de�ned as in Subsection

�� One aim for this step could be to move the ��sequence towards feasibility� Taking

this step to be �d� where �r � �d � �r � �c��r	�g��r		 would correspond to a Newton�

Raphson step for solving c��	 � � based upon linearization of c��	 at �r� On the other

hand� in order to make a move not just towards feasibility� but towards a minimizing

feasible point� we could take the step to be  d where �r �  d is the point at which the

linearization of f��	 at �r� and the linearization of c��	 at �r become equal� This leads

to  d � ��c��r	� g��r	��r� �r		��g��r	� g��r		� In order to achieve fast convergence�

the actual polyhedral approximation step in this case� from the feasible point �r� is

taken to be a compromise between �d and  d given by

dPr �
P ��r� �r	

g��r	� brg��r	

where P ��r� �r	 � �c��r	 � g��r	��r � �r	 and br � P ��r� �r	� We are now ready to

describe the algorithm�

The algorithm needs an initial pair of points ��� �� such that �� is feasible �i� e��

�� � S	� and either c���	 � � or f���	 �� f���	� and g���	g���	 � �� This implies that

a constrained minimizing point lies between �� and ��� Also choose G���	 �� �� We

will now describe the general step in the algorithm�

Step r� Let �r� �r be the points at the beginning of this step� De�ne

P ��r� �r	 � �c��r	� g��r	��r � �r	� and br � P ��r� �r	� if c��r	 � �

P ��r� �r	 � f��r	� f��r	� g��r	��r � �r	� and br � �� if c��r	 �� �

dPr �
P ��r� �r	

g��r	� brg��r	

dQr �
�g��r	
G��r	

� if G��r	 � �

jdQr j � ��� if G��r	 �� �

dr � �sign of ��g��r			�min �fjdPr j� jdQr jg	
�r � �r � dr�

Terminate with the conclusion that �r is the optimum solution of the problem if either

dr � � or g��r	 � ��

Otherwise� update the quantities for the next step as given below� If c��r	 � � or

f��r	 �� f��r	� set �r� � �r� �r� � �r� G��r�	 � G��r	�

If c��r	 �� � and f��r	 � f��r	� then set �r� � �r� and

if g��r	g��r	 � �� then set �r� � �r� G��r�	 �
g��r	� g��r	

dr

if g��r	g��r	 � �� then set �r� � �r� G��r�	 �
g��r	� g��r	

�r � �r
�
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Under rather general conditions� R� Mi�in ������ has proved that if the algorithm

does not terminate �nitely� then f��r	 converges to the minimum value of f��	 over

S� and that the sequence f�rg itself converges to an optimum solution of the problem�

��� with j�r � ��jj�r � �rj converging to zero superlinarly�

� General Constrained Line Minimization

Let f��	� c��	 be real valued functions de�ned on R�� not necessarily convex� Here we

consider the constrained line minimization problem

minimize f��	

subject to c��	 �� ��

The set S � f� � c��	 �� �g is the feasible set� Since c��	 is not assumed to be convex�

S may consist of a collection of disjoint intervals�

Let F ��	 denote either f��	 or c��	� If F ��	 is continuoulsy di
erentiable at �� we

let �F ��	 be the singleton set fdF 	�

d�

g� as in Appendix �� If F ��	 is not di
erentiable at

�� �F ��	 denotes the set of subgradients or generalized gradients� it is the convex hull of

all limits of sequences of the form fdF 	�k

d�

� f�kg 	 � and F ��	 is di
erentiable at each

�kg� With this de�nition �F ��	 agrees with the subdi
erential set when F ��	 is convex�

Also if F ��	 is not given explicitly� but is de�ned implicitly as the pointwise supremum�

say� as F ��	 � maxfF���	� � � � � Ft��	g where each Fi��	 is continuously di
erentiable�

then �F ��	 will be the convex hull of fdFi	�

d�

� over all i such that Fi��	 � F ��	g� The
algorithm discussed in this subsection needs a subroutine which can evaluate F ��	 for

any �� and another subroutine to obtain a number g��	 � �F ��	�

Stationary Points

A point �� � S is a stationary point for this constrained line minimization problem if

either c���	 � �� and � � �f���	

or c���	 � �� and � � convex hull of �f���	 � �c���	

because these are the necessary optimality conditions for this problem� See Figure

�����
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Figure ��� The feasible set S consists of the thick portion of the ��axis� ��
is a stationary point since c���	 � �� dc	��


d��
� �� df	��


d�
� � and so � is in the

convex hull of dc	��

d�

� and df	��

d�

� �� is another stationary point� but �� is not�

In the algorithm discussed in this subsection� we need

g��	 � �f��	 if � � S

g��	 � �c��	 if � �� S�

The algorithm generates two sequences of points f�rg� f�rg with �r feasible for all r

and f��r	 non�increasing� For each r we will have

c��r	 �� � and g��r	��r � �r	 � �

and either c��r	 � �� or c��r	 �� � and f��r	 �� f��r	�

These conditions imply that there exists a stationary point between �r and �r� The

algorithm needs a pair of initial points ��� �� satisfying the above conditions� these can

be obtained by a suitable initialization routine� The sequence of points f�rg obtained

in the algorithm converges to a stationary point �� and j�r � ��j� j�r � ��j converges
to zero superlinearly�
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The Quadratic Approximation Step

As before� G��r	 is an approximation to the second derivative of f��	 at �r� and it is

determined in a one�sided secant�manner� that is� when �r �� ���

G��r	 �
g��r	� g�tr	

�r � tr

where tr is a feasible �j or �j for some j � r and is on the opposite side of �r from �r�

If f��	 is convex� then we will have G��r	 �� � for all r� But due to nonconvexity we

may get some G��r	 �� �� So� the quadratic approximation step is de�ned here by

dQr �
�g��r	

max �fG��r	� �g
with the understanding that jdQr j � �� if G��r	 �� ��

The Polyhedral Approximation Step

Consider the case when both �r and �r are feasible �rst� In this case� if g��r	� g��r	

have opposite signs� we de�ne the polyhedral approximation step by

dPr �
P ��r� �r	

g��r	� g��r	

where P ��r� �r	 � f��r	 � f��r	 � g��r	��r � �r	� as before� If P ��r� �r	 �� � �which

will be the case when f��	 is convex	 then �r � dPr will be between �r and �r� Due to

nonconvexity it may happen that g��r	 and g��r	 do not have opposite signs and�or

P ��r� �r	 is negative� In this case� the polyhedral approximation step needs to be

modi�ed as follows� See Figure �����

Let Hr be a secant estimate of f ����	 near �r� that is when �r �� ���

Hr �
g��r	� g�ur	

�r � ur

where ur is a feasible �j or �j for some j � r on the opposite side of �r from �r� In

this case a quadratic approximation to f��	 around �r is

q��	 � f��r	 � g��r	��� �r	 �
�


Hr��� �r	

��

A linear approximation for q��r � d	 based at �r is

f��r	 � g��r	��r � �r	 �
�


Hr��r � �r	

� � �g��r	 �Hr��r � �r	�d�

We can take dPr to be the value of d which equalizes this to f��r	�dg��r	� This leads to

d � �f��r	�f��r	� �g��r	�h���r��r		��g��r	�h�g��r		� where h � �
�Hr��r��r	�

Since this needs to be carried out only under negative curvature� we de�ne a negative

curvature correction



���	� Survey of Some Line Minimization Algorithms 	��

(   )

(   ) r

linearization of
at

(   ) rat

r r
P

r r

linear approximation

(   )

f λ

f λ λ

f λ λ

λ d+λ γ
λ

to

q λ

Figure ���� q��	 �the dashed curve	 is the quadratic approximation to f��	

based at � � �r� The point �r�dPr is the point where the linearizations of f��	

and q��	 based at �r� become equal�

hr �
�


��r � �r	minfHr� �g

and let

Pr � f��r	� f��r	� �g��r	 � hr	��r � �r	

dPr

�
� �� if Pr �� �
� Pr��g��r	 � hr � g��r		� if Pr � ��

Now consider the case when �r �� S� In this case we make a similar quadratic approx�

imation to c��	� and using it estimate the point �r � d where c��r � d	 would be zero�

In this case Hr is an estimate of c����r	� and hr is de�ned as above� Using again the
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compromise as done in Subsection  for fast convergence� in this case we are lead to

the following polyhedral approximation step�

Pr � �c��r	� �g��r	 � hr	��r � �r	

dPr

�
� �� if Pr �� �
� Pr��g��r	 � hr � Prg��r		� if Pr � ��

To handle this general problem� we also de�ne a positive safeguard parameter � such

that

�j�r � �rj � �



so that

���r � �r	
� �

�


j�r � �rj � j�r � �rj � �j�r � �rj��

In the algorithm� the step dPr is modi�ed into d�r so that jd�rj is between the lower and

upper bounds in the above inequality� This guarantees that �r�dr is away from �r and

�r� If the problem functions are convex� then G��r	 �� �� Hr �� �� hr � � and Pr �� ��

and if � � �� the algorithm discussed below will be the same as the one discussed in

Subsection � Now we describe the algorithm�

The algorithm needs an initial pair of points �� and �� satisfying the conditions

mentioned above� Choose the safeguard parameter � � � such that ���� � ��	 �
�
� �

and choose the initial curvature estimates G���	 and H�� We will now describe the

general step in the algorithm�

Step r� Let �r� �r be the points at the beginning of this step� Let G��r	� Hr be the

curvature estimates� Set

hr �
�


��r � �r	minfHr� �g�

Pr � �c��r	� �g��r	 � hr	��r � �r	

and �r � g��r	 � hr � Prg��r	

�
if c��r	 � ��

Pr � f��r	� f��r	� �g��r	 � hr	��r � �r	

�r � g��r	 � hr � g��r	

�
if c��r	 �� ��

dPr � � if Pr �� �

� Pr��r if Pr � �

�r � �j�r � �rj�
	r � �� if � g��r	 � �

� �� if � g��r	 � ��

d�r � 	r�r� if jdPr j � �r

� 	rjdPr j� if �r �� jdPr j �� j�r � �rj � �r

� 	r�j�r � �rj � �r	� if jdPr j � j�r � �rj � �r
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dQr � �g��r	�maxfG��r	� �g
dr � 	r�minfjdQr j� jd�jg	
�r � �r � dr�

If c��r	 �� �� f��r	 � f��r	 and g��r	 � �� terminate with the conclusion that �r
is a stationary point�

Otherwise update the quantities for the next step as given below�

If c��r	 � �� or f��r	 �� f��r	� then set �r� � �r� �r� � �r� G��r�	 � G��r	�

and Hr� � �g��r	� g��r	����r � �r	�

If c��r	 �� �� f��r	 � f��r	� g��r	 �� �� and g��r	g��r	 � �� then set �r� � �r�

�r� � �r� G��r�	 � �g��r	� g��r		�dr� and Hr� � Hr�

If c��r	 �� �� f��r	 � f��r	� g��r	 �� �� and g��r	g��r	 � �� then set �r� � �r�

�r� � �r� G��r�	 � �g��r	� g��r	����r � �r	� and Hr� � G��r	�

Under rather general conditions on the functions� R� Mi�in ������ has proved

that if the algorithm does not terminate �nitely� then f�rg converges to a stationary

point of f��	 on S�

To start the algorithm from a feasible �� when a suitable �� is not known� one

can use a safeguarded quadratic step of the form

�g��j	�max�G��j	� aj�� j � �� 

where fajg is a bounded positive sequence chosen so that it converges to zero if fg��j	g
converges to zero�

���� SURVEY OF DESCENT METHODS FOR

UNCONSTRAINED MINIMIZATION IN Rn

In this section we consider methods for solving the problem

minimize ��x	

over x � Rn �����	

where ��x	 is a real valued continuously di
erentiable function de�ned over Rn� The

methods discussed in this section make use of the �rst and sometimes the second order

partial derivatives of ��x	 when they exist� or approximations for these constructed

from the information accumulated over the iterations� The methods are iterative� they

generate a sequence of points fx�� x�� x�� � � �g � Rn beginning with an initial point x��

and satisfy the property that ��xr	 monotonically decreases as r increases�

In this section r��xr	 denotes the row vector of partial derivatives of ��x	 at the

point xr �the gradient vector of ��x	 at xr	� When the second order partial derivatives

exist� we denote the n � n Hessian matrix of ��x	 at the point xr by H���xr		 �
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��
��	xr

�xi�xj

	� In the methods discussed in this section� each iteration or step consists of

three parts� The �k � �	th step begins with the point xk �xk is the point obtained at

the end of step k if k � �� x� is the initial point with which the method is initiated	

and consists of the following parts

i	 compute the search direction at xk� denoted by yk� yk � Rn� yk �� ��

ii	 compute the step length in the search direction� 	k � ��

iii	 compute the new point xk� � xk � 	ky
k and check whether termination criteria

are satis�ed� If the termination criteria are satis�ed� xk� is accepted as the

solution of �����	� Otherwise� continue the method by going to the next step�

In order to guarantee that ��xr	 decreases monotonically� we require the search

directions to be descent directions� The point y � Rn� y �� � is said to be a descent

direction for ��x	 at the point xk if there exists a � � � for which

��xk � �y	 � ��xk	� for all � � � �� �� �����	

Since ��x	 is di
erentiable at xk� �����	 implies that the limit of ���xk��y	���xk		��

as � approaches zero through positive values� is �� �� that is �r��xk		y �� �� Conversely�

it can be veri�ed that any y satisfying

�r��xk		y � � �����	

is a descent direction at xk� The condition �����	 is a su�cient condition for y to be a

descent direction at xk� We de�ne a descent direction for ��x	 at xk� to be a y � Rn�

y �� �� satisfying �����	� Similarly the point y � Rn� y �� � is said to be a nonascent

direction for ��x	 at xk if�

�r��xk		T y �� �� �����	

When ��x	 is twice continuously di
erentiable� the point y � Rn� y �� � is said to be a

direction of nonpositive curvature for ��x	 at xk if�

yTH���xk		y �� � �����	

and a direction of negative curvature if�

yTH���xk		y � �� �����	

������ How to Determine the Step Length

Let xk be the current point and suppose the search direction yk� which is a descent

direction� has been selected� Since xk� yk are given points� ��xk��yk	 is now a function

of � only� and it can be veri�ed that its derivative with respect to � is �r��xk��yk		yk�
The descent step length can be determined to minimize ��xk � �yk	 over � �

� �� This

operation is a line search operation� Step lengths determined to minimize ��xk � �yk	
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over � �
� � are referred to as optimal step lengths and algorithms using them are

called optimal step descent techniques� Since yk is a descent direction for ��x	 at

xk� the optimal step length �k is � � and

d�

d�
�xk � �ky

k	 � �r��xk � �ky
k		yk � �� ������	

So if optimal step lengths are used� the gradient direction at the termination of a line

search step is orthogonal to the descent direction�

In practice� it may not be e�cient to use optimal step lengths in every itera�

tion� Algorithms which allow for termination of line searches when conditions for an

approximate minimum on the line are satis�ed� are said to use partial or inexact

line searches� When using inexact line searches� it is necessary to make sure that

the line search achieves a su�cient decrease in objective value� to guarantee conver�

gence� A practical criterion requires that the step length � be determined to make

j�r��xk��yk		ykj su�ciently small� Stated in terms of the decrease in the magnitude

of the derivative of ��xk��yk	 with respect to � from that at � � �� another criterion

requires that the step length � be chosen to satisfy

j�r��xk � �yk		ykj �� �j�r��xk		ykj ������	

where � is a parameter satisfying � �� � � �� If � � � in ������	� exact line searches are

required� and when � is small� the line search procedure needs to be close to optimal�

Step Length Criterion to Achieve Su�cient Rate of Decrease

A fundamental requirement of step size procedures used in descent methods is that

there be a su�cient decrease in the objective value in each step� There are many ways of

specifying what a �su�cient�decrease� is� For example� consider the line minimization

problem of minimizing ��xk � �yk	 over � �
� �� where yk is a descent direction for

��x	 at xk� The quantity� �r��xk		yk� the directional derivative of ��x	 in the search

direction yk� is a measure of the rate of decrease in ��x	 at xk in the direction yk�

Select a number 	� � � 	 � �� known as the attenuation factor� One su�cient

decrease criterion requires that over the step length taken� the function value must

decrease per unit step� at least a fraction 	 of the rate of decrease in ��x	 at xk in the

direction yk� That is� that the step length � chosen satisfy

��xk	� ��xk � �yk	 �� �	j�r��xk		ykj� �����	

To depict this pictorially� we plot � on the horizontal axis� and function values on the

vertical axis in the two dimensional cartesian plane in Figure ����� The curve in Figure

���� is ��xk � �yk	 plotted against �� The straight lines in Figure ���� are plots of

l���	 � ��xk	� �	j�r��xk		ykj

against ��
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Figure ���� The dashed line is l���	 for 	 � �� The continuous straight line

is l���	 for 	 � �
� � �����	 requires that for step length � chosen� ��xk��yk	 ��

l���	�

The su�cient decrease condition �����	 states that the step size � chosen� should

satisfy

��xk � �yk	 �� l���	 � ��xk	� �	j�r��xk		ykj�

This inequality is called Armijo inequality�

Other Step Length Criteria

Many theoretical convergence proofs for descent algorithms assume that the step length

used is the �rst local minimum along the line in the direction � �
� ��
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The First Order Armijo Step Size Procedure

This procedure was introduced by L� Armijo ������� Let yk be the descent direction

for ��x	 at the current point xk� Let � � 	 � � be a predetermined constant� This

procedure �nds s � smallest nonnegative integer satisfying

��xk	� �
�
xk �

yk

s
�
�
� � 	

s
�r��xk		yk ������	

and chooses the step length to be ��s� Since yk is a descent direction� a �nite s

satisfying ������	 exists�

As an example� consider the problem depicted in Figure ����� Let the attenuation

factor 	 � �
� � In Figure ����� we verify that � � � violates the Armijo inequality

������	� since ��xk� yk	 � l���	 for 	 � �
� � Even � � �

� violates the Armijo inequality

������	 since ��xk � �
�y

k	 � l��
�
� 	 for 	 � �

� � � � �
� satis�es Armijo inequality ������	

because ��xk � �
�y

k	 � l��
�
�	 for 	 � �

� in Figure ����� So the step length chosen by

this procedure in this problem is �k � �
� �

It can be veri�ed that there is always a positive integer s satisfying ������	� So�

the step length indicated in this procedure is well de�ned and unique�

One thing that should be noted here is that the step length chosen by this pro�

cedure depends on the scaling of yk� Replacing yk by �yk where � � �� does not

change the search direction� or the line search problem� but it could change the step

length chosen by this procedure and the �nal point obtained in the line search by this

procedure� The direction yk is usually selected by a descent direction selection subrou�

tine� using the values of the function ��x	 or its gradient vectors or hessian matrices

evaluated at previous points� and this procedure takes the output of that subroutine

as it is�

Second Order Armijo Step Size Procedure

This procedure is useful when using second order methods like Newton�s method dis�

cussed below� Let xk be the current point� Here we will have two directions of

nonascent� yk and hk� If r��xk	 �� �� yk should be a descent direction satisfying

�����	� If r��xk	 � �� then hk is a direction of negative curvature satisfying �����	�

Let � � 	 � � be a predetermined constant� Let s be the smallest nonnegative integer

s satisfying

��xk	� �
�
xk �

yk

s
�

hk

s��

�
�
� � 	

s
��r��xk		yk � �


�hk	TH���xk		hk	 ������	

and take the next point to be xk� � xk � yk

�s � hk

�s��
� The conditions mentioned

above guarantee that a �nite s satisfying ������	 exists� It can be proved that if ��x	

is twice continuously di
erentiable� and a descent algorithm using this second order

Armijo procedure is carried out� then every limit point x of the sequences of points

fxrg generated by this method is a point x satisfying r��x	 � � and H���x		 is PSD

�the second order necessary optimality condition for x to be a local minimum of ��x		�

See ������ ����� ������
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������ The Various Methods

Now we present various descent methods for �����	� Since each method has the same

structure �each step consisting of three parts �i	� �ii	� �iii	 described under Section

����	� we will brie!y describe how the search direction is chosen in each step� what

step size procedures can be used� and a summary of convergence results�

������ The Method of Steepest Descent

In this method� the search direction in the �k � �	th step is chosen to be the steepest

descent direction at the current point xk� The steepest descent direction at xk is clearly

the direction d � Rn which minimizes

limit
����

��xk � �d	� ��xk	

�
� �r��xk		d

subject to kdk � �� In Rn� kdk� the distance between d and � can be measured by the

general distance function f�d	 �
p
dTAd where A is a PD symmetric matrix of order

n� If A � I� f�d	 becomes the usual Euclidean distance� The matrix A is known as the

metric matrix in the distance function f�d	� With respect to this metric matrix A� the

steepest descent direction at xk is therefore the d which minimizes �r��xk		d subject

to kdk � dTAd � �� It can be veri�ed that this direction is given by ��r��xk		A�� if

r��xk	 �� ��

The steepest descent method� dating back to Cauchy �����	 takes the metric

matrix to be I in each step� and thus uses the search direction to be yk � ��r��xk		T
when xk is the current point�

It can be shown that the steepest descent method converges when applied with

any of the step length procedures discussed in Section ������� Every limit point x of the

sequence fxrg generated satis�es the necessary optimality condition r��x	 � �� The

convergence rate for the algorithm is linear ������� ������ ����� ������� In practice�

the method has been observed to be notoriously slow and unreliable due to round�o


e
ects�

������ Newton�s Method

This is a second derivative method that can be used only if ��x	 is twice continuously

di
erentiable� At the current point xk� ��x	 is approximated by the quadratic function

��xk	��r��xk		�x�xk	� �
� �x�xk	TH���xk		�x�xk	� containing the �rst three terms

of the Taylor series expansion for ��x	 around xk� The �rst order necessary condition

for the minimum y � x� xk of this quadratic approximation is that y satis�es

H���xk		y � ��r��xk		T � ������	
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A direction y that satis�es ������	 is known as the Newton direction for ��x	 and

xk� Assuming the H���xk		 is PD �since this matrix is nonsingular� the solution of

������	 is unique	� the unique minimum of the quadratic approximation at xk is

xk� � xk � �H���xk			���r��xk		T ������	

the iterative scheme given by ������	 is the traditional Newton�s method� When

H���xk		 is PD� �H���xk			���r��xk		T is the steepest descent direction at xk using

H���xk		 as the metric matrix� and the formula ������	 is based on using a constant

step length of �� in this direction� When ��x	 satis�es the property that H���x		 is

PD for all x �in this case ��x	 is strictly convex	 Newton�s method uses the steepest

descent direction with the metric matrix H���xk		 in the step in which xk is the cur�

rent point� and since the metric matrix changes in each step� it is called a variable

metric method in this case�

As an illustration of convergence proofs we provide below a theorem on the con�

vergence of Newton�s method�

Theorem ���� Suppose ��x	 is twice continuously di�erentiable� Let H�x	 �

�hij�x		 � H���x		� So hij�x	 �
���	x

�xi�xj

� Suppose each of the functions hij�x	 satis�es

the Lipschitz condition� that is� there exists a positive number 	 satisfying jhij��	 �
hij��	j �� 	k� � �k for all �� � � Rn� Let x be a point satisfying r��x	 � �� H���x		

is PD� If the initial point x� is su�ciently close to x� the sequence of points fxr � r �

�� �� � � �g obtained by Newton�s method converges to x at a second order rate�

Proof� By Taylor expansion of r��x	 around xr we have �r��xr��		T � �r��xr		T�
H�xr	�� f��	 where jf��	j �� �k�k� for some positive number �� when � is su�ciently

close to zero� Assuming that xr is su�ciently close to x� and substituting � � x� xr�

we get � � �r��x		T � �r��xr		T � H�xr	�x � xr	 � f�x � xr	� By the continuity

of H�x	� and the hypothesis� when xr is su�ciently close to x� H�xr	 is also PD and

so �H�xr		�� exists� Multiplying the above equation on both sides by �H�xr		�� we

get �since xr� � xr � �H�xr		���r��xr		T in Newton�s method	 � � ��xr� � xr	 �

�x� xr	 � �H�xr		��f�x� xr	 � �x� xr�	� �H�xr		��f�x� xr	� Since H�x	 is PD�

when xr is su�ciently close to x� there exists a constant � such that kH�xr	��k �� ��

So from the above equation we conclude that

k�x� xr�	k � k � �H�xr		��f�x� xr	k �� �kf�x� xr	k �� ��kx� xrk��

Using this inequality for r � �� we conclude that there exists an � � � su�ciently

small� such that kx � x�k � � implies kx � x�k � �kx � x�k � �� where � � ��

Repeating this argument we conclude that kx � xrk 	 � as r 	 �� that is� the

sequence fxrg converges to x� That the convergence is of second order follows from

the above inequality�
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�����	 Modi�ed Newton�s Methods

When H���xk		 is PD� ��H���xk			���r��xk		T is a descent direction for ��x	 at xk�

but there is no guarantee that ��xk�	 �� ��xk	 when xk� is determined by ������	�

because the step length is a constant� �� independent of the data� The sequence can be

made into a descent sequence by modifying Newton�s method into Newton�s method

with line search� in which the direction of search is yk satisfying ������	� the sign

determined �when H���xk		 is not PD	 so as to ensure that the direction is a descent

direction� and any of the step length procedures discussed earlier are used for the line

search�

The major di�culty with Newton�s method arises when H���xk		 is not PD� If

H���xk		 is singular� ������	 may not have a solution� and even if it has a solution�

when H���xk		 is not PD� solutions of ������	 are not necessarily descent directions�

and methods based on using them may not converge� In the case when H���xk		 is not

even PSD� it is possible to modify Newton�s method by using directions of negative

curvature together with step size procedures such as the second order Armijo step�

One modi�cation suggested to guarantee that the search directions are descent

directions is to replace H���xk		 in ������	 by 	kQk �H���xk		 where Qk is either I

or a positive diagonal matrix and 	k is a positive number to ensure that the resulting

matrix is PD� and then solve the modi�ed equation to give the search direction to be

used at xk�

For other modi�ed versions of Newton�s method see ������ ������ ����� A���

One main di�culty in using Newton�s method �or modi�ed Newton methods	 is

that the Hessian matrix has to be evaluated in each step� If subroutines for directly

computing each element of the Hessian matrix are not available� they can be approx�

imated by �nite di
erences of the gradient vector� For this� select a positive number

	� the �nite di
erence interval� To approximate the Hessian at the point xk� compute

H�i �
�

	
�r��xk � 	I�i	�r��xk		T �

Let H be the matrix with columns H�i� i � � to n� Then �H � HT 	� can be used

as an approximation for H���xk		 in executing Newton�s or the appropriate modi�ed

Newton�s method� With this change� the method is usually called a discrete �or

�nite di�erence	Newton or modi�ed Newton method� These methods are very

worthwhile when the Hessian matrix has a known sparsity pattern�

�����
 Quasi Newton Methods

Newton�s method is di�cult to implement because of the computational burden in�

volved in calculating the Hessian matrix in each step �even if we decide to use a �nite

di
erence approximation for it	� The Quasi�Newton methods try to build up informa�

tion on the Hessian through various steps of the descent method using the computed
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values of r��x	 and ��x	� In these methods �H���xk			�� is approximated by a sym�

metric positive de�nite matrix� Dk� which is updated in each iteration� Thus in these

methods� the �k � �	th step consists of the following�

�a	 Initiate this step with the point xk obtained in the previous step �if k � �� initiate

this step with x�� some initial point with which the method is started	�

�b	 Compute the search direction at xk� denoted by yk � �Dk�r��xk		T �
�c	 Compute step length in the search direction� 	k � �� by doing a line search�

leading to the new point xk� � xk � 	ky
k�

�d	 Check whether termination criteria �see Section ������	 are satis�ed by the new

point xk�� in which case accept xk� as the solution of �����	 and terminate�

Otherwise update Dk giving Dk� and go to the next step�

The methods start out with an initial solution x�� and a symmetric positive de�nite

matrix D� �usually D� � I	� Dk is an approximation to the inverse Hessian at a

local minimum to which the sequence of points generated is presumed to converge�

Di
erent algorithms use di
erent formula for updating Dk from step to step� The

advantages are that these methods only need the computation of the gradient vector

r��x	 at one point in each step� When the matricesDk are all PD� the search directions

yk � �Dk�r��xk		T are descent directions� In some quasi�Newton methods Dk may

not always be PD� but the important methods do maintain this property� When Dk

is PD� the search direction yk is the steepest descent direction at xk using D��k as the

metric matrix� and since this metric matrix changes from iteration to iteration� these

methods are also known as variable metric methods�

The updating formula which gives Dk� as a function of Dk attempts to take into

account the second derivative information obtained during the �k � �	th step� The

formula is derived to ensure that Dk becomes a good approximation of �H���xk			��

as the method progresses� This is done through the use of an equation known as the

quasi�Newton condition� which we will now derive� By taking the Taylor series

expansion of r��x	 around the point xk and neglecting higher order terms� we get

�r��xk�		T � �r��xk		T �H���xk		�xk� � xk	�

So� if H���xk		 is invertible� we have

�H���xk			���r��xk�	�r��xk		T � �xk� � xk	� ������	

Since the quantities xk� and r��xk�	 are not available until the k � �th step is

completed� we cannot expect the matrixDk to satisfy ������	 in place of �H���xk			���

but we could require Dk� to satisfy

Dk��r��xk�	�r��xk		T � �xk� � xk	� ������	

This condition is the quasi�Newton condition� and the updating formulae for the

matrices Dk in quasi�Newton methods are usually formulated so that this condi�

tion holds for all k� If the updating formulae are such that this condition is satis�

�ed� and satis�es certain other prior conditions �sometimes it is also required that
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Dk��r��xj�	 � r��xj		T � �xj� � xj	 hold for all j �
� k	 it can be shown that

when the algorithm is applied to minimize �
�x

TAx� cx where A is PD and symmetric�

using exact line searches� then the search directions generated are conjugate directions

�see Section ������ for the de�nition of conjugate directions	� that Dn � A��� and that

the method terminates after at most n steps with the minimum�

The three basic considerations in constructing updating formulae for Dk in quasi�

Newton methods are �i	 the quasi�Newton condition ������	� �ii	 hereditary symmetry

�i� e�� if Dk is symmetric� the updating formula should guarantee that Dk� is also

symmetric	� and �iii	 hereditary positive de�niteness� Not all the quasi�Newton meth�

ods satisfy all these properties� In some of them� these properties may only hold if the

line searches are carried out to a high degree of precision in each iteration�

The updating formula usually has the form Dk� � Dk�Ck where Ck is a matrix

known as the correction term� Usually Ck has rank � or � and depending on its rank�

the methods are classi�ed either as rank�one or rank�two methods�

Now we will present the updating formulas used by some important quasi�Newton

methods� The remaining details are the same as discussed above� for each method�

For k �� �� we de�ne

�k � xk � xk��

�k � �r��xk	�r��xk��		T ������	

The Davidon�Fletcher�Powell �DFP� Method

Here the updating formula is

Dk� � Dk �
�k���k�	T

��k�	T �k�
� �Dk�

k�	�Dk�
k�	T

��k�	TDk�k�

where �k�� �k� are column vectors de�ned as in ������	� The method has the hered�

itary symmetry property� It also has the hereditary PD property if ��k�	T �k� � �

for all k� Notice that this condition will hold if the search direction yk is a descent

direction and the line search is carried out optimally or to a local minimum� The

method has superlinear rate of convergence� When applied to minimize a strictly con�

vex quadratic function �
�x

TAx � cx with exact line searches� the method preserves

the condition Dk��
j� � �j� for all j �� k� for all k� it generates conjugate search

directions and terminates after n steps with Dn� � A�� and the optimum solution�

See ������ ������ ������ A�� for proofs of these results�

The Broyden�Fletcher�Goldfarb�Shanno �BFGS� Method

Here the updating formula is

Dk� �Dk �

�
� �

��k�	TDk�
k�

��k�	T �k�

��
�k���k�	T

��k�	T �k�

�
�

�k���k�	TDk �Dk�
k���k�	T

��k�	T �k�
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where �k�� �k� are column vectors de�ned as in ������	� The method has the hered�

itary symmetry and hereditary PD properties� satis�es the quasi�Newton conditions

�Dk��
j� � �j� for all j �

� k	� and has the quadratic termination property� At

present this is considered the best quasi�Newton method� The method has been shown

to converge even with inexact line searches �using several of the line search termination

criteria discussed in Section ������	�

Resetting in Quasi�Newton Methods

In quasi�Newton methods� the steps can continue until termination� However� in some

implementations the method is reset by setting the matrix Dk to some positive de�nite

matrix �usually the same as D�� or I	 after every n steps� If implemented this way�

the method goes through cycles� Each cycle begins with the point obtained at the end

of the last step in the previous cycle �the initial cycle begins with the initial point x�

with which the method is initiated	 and the initial step of each cycle begins with the

matrix D� �usually I or some other PD symmetric matrix	 and the cycle consists of n

steps�

Also in each step one should check that the search direction yk satis�es �r��xk		yk
� �� as otherwise the direction is not a descent direction� Usually the method is also

reset whenever this descent condition is violated�

See references ����� ����� ����� ������ ����� ����� ������ A�� for a discussion of

various other quasi�Newton methods� their best computer implementations� and the

convergence results established about them�

������ Conjugate Direction Methods

These are a class of methods that use only �rst order derivatives� which obtain search

directions without the need for storing or updating a square matrix of order n� Conju�

gate direction methods were developed with the aim of solving strictly convex quadratic

programming problems with an e
ort of at most n line searches� For this� the search di�

rections have to be chosen to satisfy the conjugancy property� Let f�x	 � cx� �
�x

TAx

where A is a PD symmetric matrix of order n� Consider the linear transformation

x � Pz where P is a nonsingular square matrix of order n� This transforms f�x	 into

F �z	 � cPz � �
�z

TPTAPz� F �z	 can be minimized with an e
ort of at most n line

searches in the z�space if it is separable� that is� if PTAP � Q is a diagonal matrix

with positive diagonal entries Q��� � � � � Qnn� and

�P�i	
TAP�j � � for each i �� j� �����	

In this case F �z	 is equal to
Pn

j�� Fj�zj	 where Fj�zj	 involves only one variable� and

hence minimizing F �z	 over z � Rn can be achieved by n one dimensional problems

of minimizing Fj�zj	 over zj � R� for each j � � to n separately� that is� n line
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searches� The set of nonzero vectors fP��� � � � � P�ng is said to be conjugate with

respect to the PD symmetric matrix A if �����	 holds� Let � � ���� � � � � �n	 �

cP � So F �z	 �
Pn

j�� �jzj �
�
�

Pn
j��Qjjz

�
j � Hence� the point which minimizes F �z	

is z � �zj	 � ���j�Qjj	 and so the point which minimizes f�x	 in the x�space is

x � �xj	 � Pz� Since F �z	 is separable� we can visualize the minimum of F �z	 as

being obtained by starting at an arbitrary point z� in the z�space and doing n line

searches exactly� once in each direction I�j � j � � to n �the alternating variables

method	� Let zj be the point obtained at the end of the jth line search in this scheme�

So zj� is the minimizer of F �zj � 	I�j�	 over 	 � R�� j � � to n� �� Then zn � z�

If xj � Pzj � j � � to n� it can be veri�ed that xj� is the minimizer of f�xj �	P�j�	

over 	 � R�� j � � to n � � and that xn � x� the point which minimizes f�x	� The

following properties can be veri�ed to hold

�� the conjugacy condition �����	 implies that fP��� � � � � P�ng is linearly independent�

� �rf�xk�		P�j � �� for j � � to k�

�� Let 	j be the minimizer of f�xj � 	P�j�	 over 	 � R�� for j � � to n� �� Then

xj� � xj � 	jP�j�� So �rf�xj�	�rf�xj		T � A�xj� � xj	 � 	jAP�j�� So

�rf�xi�	�rf�xi		P�j � � for i �� j�

The conjugate gradient methods for minimizing f�x	 construct the conjugate di�

rections one after the other using information collected from earlier line searches� Each

direction will be a descent direction at the point which is the current point in the step

in which this direction is generated� We now describe these methods�

Step � is initiated with an arbitrary initial point x�� The search direction in

step � is the steepest descent one� y� � ��rf�x�		T � Do a line search to minimize

f�x� � 	y�	� 	 �
� ��

The general �k��	th step for k �� � begins with the point xk obtained at the end

of the line search in the kth step� The search direction in this step is

yk � ��rf�xk		T � �ky
k��

where �k is a scalar� The various conjugate gradient algorithms use di
erent formula

for �k� They are

�k � krf�xk	k��krf�xk��	k� �����	

in Fletcher and Reeves method ��������

� �rf�xk	�rf�xk��		�rf�xk		T�krf�xk��	k� ����	

in Polak and Ribiere and Polyak�s method ������� ������ �������

� � krf�xk	k���rf�xk��		yk �����	

in conjugate descent method ��������

It can be veri�ed that �rf�xk		yk � �krf�xk	k� if the line search in the previous

step is carried out exactly� and in this case yk is therefore a descent direction at xk�

Now do a line search to minimize f�xk�	yk	� 	 �
� �� If 	k is the optimum step length�
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xk� � xk � 	ky
k� If rf�xk�	 � �� xk� minimizes f�x	� terminate� Otherwise� go

to the next step�

The method terminates after at most n steps� It can be veri�ed that the search

directions generated are conjugate with respect to the Hessian matrix A� and they are

all descent directions if the line search is carried out exactly in each step� Since f�x	

is quadratic� it can be veri�ed that �k obtained in �����	 or ����	 or �����	 are

exactly the same if all the line searches are carried out exactly�

To solve the problem of minimizing ��x	� which is in general not quadratic� we

apply the method exactly as above� replacing f�x	 by ��x	 wherever it appears� In

this general problem� the search directions generated will be descent directions as long

as line searches are carried out exactly in each step� In this general problem� the

values for �k obtained from �����	� ����	� �����	 may be di
erent� In numerical

experiments the method using ����	 seemed to perform better� particularly when

n is large� The application of the method can be continued until some termination

condition is satis�ed �see Section ������	� In practical implementations to minimize

general non�quadratic functions ��x	� the method is usually restarted �or reset	 after

every n steps� If this is done� the method goes through several cycles� Each cycle

consists of n steps� Step � of each cycle begins with the point obtained at the end of

the previous cycle �or x�� the initial point� for the �rst cycle	 and uses the negative

gradient search direction� In the general non�quadratic case� if inexact line searches are

used� the directions generated� yk� may not be descent directions �that is� �r��xk		T yk
may not be � �	� The method based on updating using �����	 �the conjugate descent

method	 produces descent directions even when line searches are not very exact� If the

search direction in a step is not descent� we can carry out the line search in that step

over the entire line �instead of the half�line with step length 	 �
� � as is done usually�

that is� allow step length to be negative	� but usually the cycle is terminated in such a

step and the method is reset to begin the next cycle with the steepest descent direction

in step �� It can be shown that these methods have superlinear convergence in terms

of cycles� See ������ ������ ������ ����� �������

������ Practical Termination Conditions for

Unconstrained Minimization Algorithms

When the descent algorithm generates the sequence of points fxr � r � �� �� � � �g in

practical implementations for minimizing ��x	� the method can be terminated when

some or all of the following conditions are met

j��xk	� ��xk��	j � ��

kxk � xk��k � ��

kr��xk	k � ��

where the ��s are suitably chosen tolerances�
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���� SURVEY OF SOME METHODS FOR

LINEAR EQUALITY CONSTRAINED

MINIMIZATION IN Rn

Here we consider the NLP
minimize ��x	

subject to Ax � b
�����	

where A is a matrix of order m�n and rank m� and ��x	 is a real valued continuously

di
erentiable function� Given a feasible point x for this problem� the �rst order neces�

sary conditions for it to be a local minimum are that there exist a Lagrange multiplier

vector 
 � �
�� � � � � 
m	 satisfying

�r��x		 � 
A� �����	

Suppose �����	 is feasible� and let x be any feasible solution for it� Then every feasible

solution for �����	 is of the form  x� z where z satis�es

Az � �� �����	

There exists a matrix Z of order n� �n�m	 and rank n�m� such that every column

vector of Z is a solution of �����	 and conversely every solution of �����	 is a linear

combination of the column vectors of Z� To obtain a matrix like Z� �nd a basis B for

�����	� B is a square nonsingular submatrix of A of order m� Rearrange the variables

and their columns in A so that A can be partitioned into basic and nonbasic parts as

�B�D	 where D is the m � �n �m	 matrix of nonbasic columns� Then the matrix Z

can be taken to be

Z �

��B��D
In�m

�
�����	

where In�m is the unit matrix of order n � m� It is not necessary to compute Z

explicitly� All the computations in the algorithms discussed below can be carried out

using a factorization for B���

Since any solution for �����	 is of the form x �  x � Z� where  x is a solution

of �����	 and � � Rn�m� �����	 is equivalent to the problem of minimizing f��	 �

�� x�Z�	 over � � Rn�m� that is the unconstrained minimum of f��	 over � � Rn�m�

It can be veri�ed that rf��	 � �rx�� x � Z�		Z� Also if ��x	 is twice continuously

di
erentiable� H�f��		 � ZTHx��� x � Z�		Z� For x feasible to �����	 the vector

�r��x		Z is known as the projected gradient or the reduced gradient vector of

��x	 at x� and the matrix ZTH���x		Z of order �n �m	 � �n �m	 is known as the

reduced or projected Hessian matrix of ��x	 at x� The condition �����	 implies

�r��x		Z � �� �����	
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If ��x	 is twice continuously di
erentiable� a second order necessary condition for

the feasible solution x of �����	 to be a local minimum for it is that the matrix

ZTH���x		Z is PSD�

The algorithms discussed in this section generate a sequence of feasible points

fx�� x�� � � �g beginning with the initial feasible point x�� If xk is feasible� the search

direction at xk in step k � � must satisfy Ayk � �� that is� yk � Z�k for some

�k � Rn�m� such directions are called feasible search directions� because a move of any

length in such a direction� starting from a feasible point� remains in the feasible region

for �����	� Step k � � of the algorithm consists of the following tasks�

�� Compute a feasible search direction� First compute �k and then compute the

search direction yk � Z�k�

� Determine step length� Compute the positive step length 	k�

�� Compute the new point xk� � xk � 	ky
k�

�� Check whether xk� satis�es the conditions for termination� if so� accept xk� as

the solution of �����	 and terminate� Otherwise go to the next step�

The feasible search direction yk selected in �� above is a descent direction at xk if

��r��xk		Z	�k � �r��xk		yk � �� �����	

The method of steepest descent uses ��k	T � ��r��xk		Z to determine the feasible

search direction at xk� which is therefore yk � �ZZT �r��xk		T � and uses step length

procedures exactly as in the unconstrained case� However� this method has slow linear

rate of convergence�

Newton�s method is based on minimizing the second order Taylor approximation

for f��	 � ��xk�Z�	 around � � �� that is ��xk	� �r��xk		Z�� �
��

TZTH���xk		Z��

So� Newton�s method uses the search direction yk � Z�k� where �k solves

�ZTH���xk		Z	� � �ZT �r��xk		T ������	

and uses �xed step lengths of 	k � �� Modi�ed Newton methods replace the matrix

ZTH���xk		Z in ������	 �when this matrix is not PD	 by a PD approximation to

it such as ZTH���xk		Z � �I for some � � �� and step lengths determined by line

searches�

When the second derivatives are not available� the matrix ZTH���xk		Z can be

approximated by �nite di
erence approximation� For this� let �i be an appropriate

�nite di
erence interval� and for i � � to n�m let

W�i �
�

�i
�r��xk � �iZ�i	�r��xk		T

and let W be the n� �n�m	 matrix with column vectors W�i� i � � to n�m� Then

a symmetric approximation for ZTH���xk		Z is ���	�ZTW �WTZ	�

Quasi�Newton methods can be developed for �����	 by looking at the corre�

sponding unconstrained minimization problem of minimizing f��	 � ��xk � Z�	� but
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carrying out all the operations in the x�space� In this case the search direction in step

k � � will be yk � Z�k� where �k � �DkZ
T �r��xk		T � The matrix Dk is of order

�n�m	� �n�m	� We choose D� � In�m� and in updating Dk from step to step� we

use the updating formulas discussed in Section ������ with �k � ZT �xk� � xk	� and

�k � ZT �r��xk�	�r��xk		T instead of ������	�

Another approach for solving �����	 is to use a conjugate gradient method on

the corresponding reduced problem of minimizing f��	 � ��xk�Z�	� but doing all the

computations in the x�space� The search directions used are

y� � �Z�r��x�	Z	T
yk � �Z�r��xk	Z	T � �ky

k��

where �k � k�r��xk		Zk��k�r��xk��		Zk� or �r��xk	�r��xk��		ZZT �r��xk		T�
kr��xk��	Zk�� or �kr��xk	Zk���r��xk��	Z	�k �here �k is the unique solution of

Z�k � yk	� as in �����	� ����	� �����	� depending on the method used� Statements

made in Section ������ about resetting the algorithm remain valid here also �here

resetting is done after every n�m steps or whenever the search direction generated is

not a descent direction	�

������ Computing the Lagrange Multiplier Vector

Let x be the terminal point obtained in the algorithm for solving �����	� The corre�

sponding Lagrange multiplier vector is the vector 
 which satis�es �����	� Given x�

�����	 is a system of n equations in the m unknowns 
�� � � � � 
m� and since n � m�

this is an overdetermined system of equations� We can determine 
 as the row vector

in Rm which minimizes k�r��x		T �
Ak� over 
 � Rm� for which the solution is given

by


 � �AAT 	��Ar��x	� ������	

If x is a local minimum for �����	� the vector 
 given by ������	 is an exact solution for

�����	� If x is an approximation to a local minimum �obtained when the algorithms

discussed above are terminated using some practical termination criteria discussed in

Section ����� there is no 
 satisfying �����	 exactly� however� the 
 obtained from

������	 is a corresponding approximation to the Lagrange multiplier vector for �����	�

For other approximating estimates to the Lagrange multiplier vector see references

������� �������
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����� SURVEY OF OPTIMIZATION SUBJECT

TO GENERAL LINEAR CONSTRAINTS

������� The Use of Lagrange Multipliers to

Identify Active Inequality Constraints

For the purpose of this discussion� consider the following NLP�

minimize ��x	

subject to Ax �� b
�����	

where A is a matrix of order m� n� say� If x is feasible� the ith constraint in �����	

is said to be active or tight or binding at x if it holds as an equation at x� that is� if

Ai�x � bi� inactive if Ai�x � bi� For x feasible to �����	� let I�x	 � fi � i such that

Ai�x � big � index set of active constraints in �����	 at x� Let y � Rn� y �� �� y

is said to be a feasible direction at x� if x � �y remains feasible for �����	 for all

� �� � �� �� for some positive �� Clearly y is a feasible direction at x i


Ai�y �� �� for each i � I�x	� ������	

The direction y is said to be a binding direction or a non�binding direction at x

with respect to the ith constraint for i � I�x	� depending on whether Ai�y � � or Ai�y �

� respectively� A move in a binding direction continues to keep the constraint active�

while any move of positive length in a non�binding direction makes the constraint

inactive� that is� moves o
 the constraint�

Now consider the corresponding equality constrained NLP�

minimize ��x	

subject to Ax � b
������	

and further assume that the set of row vectors of A is linearly independent� Suppose

x is a KKT point for ������	 with the associated Lagrange multiplier vector 
 �

�
�� � � � � 
m	� So x� 
 together satisfy the �rst order necessary optimality conditions

r��x	 � 
A� ������	

Since the set of feasible solutions of ������	 is a subset of the set of feasible solutions

of �����	� an optimum solution for ������	 may not be optimal for �����	 in general�

The point x is of course feasible to �����	 and clearly it is also a KKT point for �����	

if 
 �
� ��
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Suppose there is a t such that 
t � �� we will now show that there exists a descent

feasible direction at x for �����	 which moves o
 the tth constraint� Since the set of

row vectors of A is assumed to be linearly independent� by standard results in linear

algebra� there exists a y � Rn satisfying

Ai�y � � for i � t

� � for i �� t�
������	

Let y be a solution for ������	� From ������	 and ������	� we have �r��x		y � 
Ay �


t � �� and hence y is a descent feasible direction for �����	 at x�

Thus a necessary condition for a KKT point of ������	 to be a KKT point for

�����	 is that all the Lagrange multipliers be nonnegative� Otherwise we can construct

a descent feasible direction for �����	 at such a point� These results are used in some of

the algorithms discussed below� to solve NLP�s involving linear inequality constraints

using techniques for solving NLP�s involving linear equality constraints only� They try

to guess the set of active inequality constraints at the optimum� and apply the equality

constraint techniques to the problem treating these active constraints as equations�

Modi�cations are made in the active set using Lagrange mulitplier information gathered

over each step�

������� The General Problem

Here we consider the NLP

minimize ��x	

subject to Ai�x � bi� i � � to m
�
� bi� i � m� � to m� p

������	

where x � Rn� and ��x	 is a real valued continuously di
erentiable function� Given

a feasible point x� the �rst order necessary conditions for x to be a local minimum

for this problem are that there exists a Lagrange multiplier vector 
 � �
�� � � � � 
mp	

satisfying

r��x	 �
mpX
i��


iAi�


i �� �� i � m� � to m� p


i�Ai�x� bi	 � �� i � m� � to m� p�

������	

Without any loss of generality we assume that fAi� � i � � to mg is linearly inde�

pendent� Let K denote the set of feasible solutions of ������	� Given x � K� all the

equality constraints for i � � tom are active at x in ������	� Form�� �� i �� m�p� the

ith constraint in ������	 is active at x �also said to be an active inequality constraint

at x	 if Ai�x � bi� inactive otherwise� Let I�x	 � fi � Ai�x � big� the index set of active
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constraints at x� The point y � Rn� y �� �� is a feasible direction at x if x � �y � K

for � �� � �
� �� for some positive �� Clearly y is a feasible direction at x i


Ai�y � �� i � � to m

�
� �� i � I�x	 � fm� �� � � � �m� pg�

If y is a feasible direction at x and Ai�y � � for some i � I�x	 � fm� �� � � � �m� pg� a
move in the direction y from x is said to move o
 the ith constraint in ������	�

We will now discuss some algorithms for solving ������	�

������� The Frank�Wolfe Method

To solve ������	� this method generates a descent sequence of feasible points fxr � r �
�� �� � � �g beginning with an initial feasible solution x�� satisfying ��xr�	 � ��xr	 for

all r�

For k �
� �� in step k � �� the initial point is xk� the feasible point obtained at

the end of the previous step if k � �� or the feasible point with which the method is

initiated� if k � �� In this step the search direction yk is of the form zk � xk where zk

is a feasible point satisfying �r��xk		�zk � xk	 � �� and so yk is a descent direction at

xk� To �nd a point like zk� we solve the LP in variables x

minimize �r��xk		x
subject to x � K�

������	

If zk is an optimum solution obtained when the LP is solved and �r��xk		T zk �

�r��xk		Txk� then xk is also optimal to the LP ������	� By the duality theorem of

linear programming� there exists a vector 
k such that xk� 
k together satisfy the �rst

order necessary optimality conditions ������	 for ������	� and so we terminate with xk

as the solution for ������	� Otherwise� since xk � K� we must have �r��xk		�zk�xk	 �
�� and so yk � zk � xk is a feasible descent direction at xk� Now do a line search to

�nd the minimum of ��xk � 	yk	 subject to � �� 	 �
� �� If 	k is the minimum for this

line search problem� the next point in the sequence is xk� � xk � 	ky
k� continue�

We have the following results about the convergence properties of this method�

Theorem ���� Suppose K �� � and that the linear function in x� �r�� x		x� is
bounded below on x � K for each  x � K� Assume that K has at least one extreme

point� and that for each k� the optimum solution zk for the LP ����	
� obtained in

the method is an extreme point of K� If the method does not terminate after a �nite

number of steps� the sequence fxr � r � �� �� � � �g generated by the above method has

at least one limit point� and every limit point of this sequence is a KKT point for

����	��� if the line searches are carried out exactly in each step�

Proof� Since r�� x	x is bounded below for x � K for each  x � K� the LP ������	 has

an optimum solution always� The LP ������	 may have alternate optima� and we are
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assuming that zk is an optimum solution for ������	 which is an extreme point of K

�this will be the case� for example� if K has at least one extreme point and ������	 is

solved by the simplex method	� Since K is a convex polyhedron� it has a �nite number

of extreme points� and let K� be the convex hull of these extreme points� Because of

the descent property ��xr	 is monotonic decreasing as r increases� and by the manner

in which the algorithm is carried out� it is clear that every point in the in�nite sequence

fxrg lies in the convex hull of K� and x�� a compact set� So the sequence fxrg has at

least one limit point� Let x be a limit point of the sequence fxrg� Let S be an in�nite

set of positive integers such that xk 	 x as k 	� with all k � S� For each k � S we

have an associated extreme point of K� zk� which is an optimum solution of ������	�

Since there are only a �nite number of extreme points of K� there must exist at least

one extreme point of K� say z� which is equal to zk for k � S an in�nite number of

times� Let S� � S such that for each k � S�� z
k � z� So �r��xk		T �z � xk	 � � for

each k � S�� xk 	 x as k 	 � through k � S�� so taking the limit in the above

inequality as k 	� through k � S�� we get

�r��x		�z � x	 �� �� ������	

By our hypothesis� the line searches are carried out exactly in each step� Let S� � frt �
t � � to �g� with the elements in S� arranged in increasing order� So limit xrt � x as

t	�� In step k � �� rt� the optimal step length is 	�rt � and so we must have� for

� �� 	 �
� ��

��xrt � 	�z � xrt		 �� ��x�rt	 �� ��xrt��	� ������	

This follows because x�rt is the point on the line segment fxrt�	�z�xrt	 � � �� 	 �
� �g

which minimizes ��x	 on this line segment� Also� since rt is an increasing sequence�

we have rt� �
� � � rt� and since f��x�	� ��x�	� � � �g is a descent sequence we have

��x�rt	 �� ��xrt��	� In ������	 let t	�� This leads to

��x� 	�z � x		� ��x	 �� � �����	

for all � �� 	 �
� �� When 	 is su�ciently small and positive� by the mean value theorem

of calculus� �����	 implies that 	�r��x		�z � x	 �� �� that is� �r��x		�z � x	 �� ��

Combining this with ������	 we have

r��x	�z � x	 � �� ������	

Since z is an optimum solution of ������	 whenever k � S�� and since xk 	 x as

k 	� with all k � S�� by ������	 we conclude that x is a feasible solution for ������	

satisfying the property that x � x is an optimum solution of the LP

minimize �r��x		x
subject to Ai�x � bi� i � � to m

�
� bi� i � m� � to m� p�

������	
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Let 
 � �
�� � � � � 
mp	 be an optimum dual solution associated with ������	� then

by the duality and complementary slackness theorems of linear programming� x� 


together satisfy ������	� and hence x is a KKT point for ������	�

If ��x	 is convex� and xk is a point obtained during the Frank�Wolfe method�

and satis�es �r��xk		�xk � zk	 �� �� where zk is an optimum solution of ������	� then

��xk	 �� �� minimum value of ��x	 in ������	� To see this� since ��x	 is convex� we

have for x � K� ��x	� ��xk	 �� �r��xk		�x� xk	 �� �r��xk		�zk � xk	 �� ��� and so

��x	 �� ��xk	� � for all x � K� So if ��x	 is convex and xk satis�es �r��xk		�xk � zk	

� �� where � is small� we can conclude that xk is near optimum and terminate�

In each step of this method� an LP and a line search problem have to be solved�

Even though the system of constraints in the LP to be solved in all the steps is the

same� the objective function changes from step to step� The line search problem in

each step has to be solved either optimally or at least to guarantee a su�cient decrease

in the objective value� Since there is a considerable amount of work to be done in

each step� the method tends to be slow� It is practical to use the method only on

such problems for which the structure of the problem allows the solution of the LP in

each step by an e�cient special algorithm� One such application arises in the study of

tra�c !ow along a city�s street network using a tra�c assignment model� We discuss

this application brie!y here�

The Tra�c Assignment Problem

Let G � �N �A	 be a city�s street network� N is a set of points which are the various

centers in the city or street intersections� A is a set of arcs or street segments� each

arc joining a pair of points� The prupose of the study is to determine how the tra�c

will be distributed over alternate routes� Each driver makes his own choice of the

route to take� but tra�c !ow on road network exhibits certain patterns� One broad

principle for the analysis of tra�c movement enunciates that tra�c distributes itself

over alternative routes so that the average journey time is a minimum�

The cost associated with an arc �i� j	 in the network is a measure of the journey

time from node i to node j along that arc� Journey time is in!uenced by tra�c

congestion� and tends to increase with tra�c !ow� Let fij denote the tra�c !ow on

this arc �i� e�� the number of cars entering this arc at node i per unit time	 and let

cij�fij	 denote the journey time as a function of the !ow fij � This function has the

shape given in Figure ������ and so is a monotone increasing convex function�
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f i jtraffic flow

(      )f i jc i j

journey

time

Figure �����

Tra�c modelers construct these functions cij�fij	 by actually collecting data� They

also have data on the volumes of tra�c �i� e�� how many people travel and from where�

to where	 for di
erent periods of the day� For example� during a particular peak

period� suppose we know that V u vehicles will be travelling from node su �origin	 to

node tu �destination	 in the network� u � � to g� Let fuij be the number of these

vehicles �with origin su and destination tu	 travelling along arc �i� j	 in the network�

For u � � to g let fu � �fuij	 be the vector of arc !ows of the su to tu vehicle !ows�

The problem is to determine these vectors fu� The tra�c assignment model states

that the �fu � u � � to g	 form an optimum solution to the following nonlinear �!ow

dependent cost	 multicommodity !ow problem

minimize
X

	i�j
�A

cij�fij	

subject to fij� !ow on arc �i� j	 �

gX
u��

fuijP
�fuij � j such that �i� j	 � A	�

X
�fuji � j such that �j� i	 � A	

� �� if i �� su or tu
� V u� if i � su
� �V u� if i � tu

fuij �� �� u � � to g� �i� j	 � A�

������	
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In this model it is quite reasonable to make the simplifying assumption that the !ow

variables are continuous variables rather than discrete integer variables� Also� since the

cost function cij�fij	 is constructed to re!ect the journey time as a function of the !ow

fij � there is no need to include a constraint in the model corresponding to the capacity

for !ow of this arc� So� ������	 is an uncapacitated� convex� multicommodity !ow

problem� and this can be solved e�ciently using the Frank�Wolfe method� It begins

with a feasible !ow ��fu	� � u � � to g	� which can be generated by standard network

!ow methods� and generates a sequence of feasible !ow vectors ��fu	r � u � � to g �

r � �� �� � � �	 converging to the optimum solution of ������	� In the �k��	th step of this

method� the initial !ow vectors are ��fu	k� u � � to g	� Let �fij	
k �

Pg
u���f

u
ij	

k� the

total !ow on arc �i� j	 in these !ow vectors� Let cij �
�dcij	fij


dfij
� evaluated at fij �

�fij	
k
�
� Then the LP to be solved in this step is

minimize

gX
u��

X
	i�j
�A

cijf
u
ij

subject to
X

�fuij� j such that �i� j	 � A	�
X

�fuji � j such that �j� i	 � A	

� �� if i �� su or tu
� V u� if i � su
� �V u� if i � tu

fuij �� �� u � � to g� �i� j	 � A�

������	

Clearly� ������	 can be broken up into g separate network !ow problems one for each

u � � to g� Also� the uth problem becomes the shortest chain problem from su to tu
in the network G � �N �A	 with �cij	 as the vector of arc lengths� for which there are

very e�cient special algorithms�

Let Pu be the shortest chain from su to tu in G with �cij	 as the vector of arc

costs� De�ne the !ow vector zu � �zij	
u where

zuij � V u if �i� j	 is on Pu
� � otherwise�

Then the !ow vectors �zu � u � � to g	 are an optimum solution of the LP ������	� to

be solved in this step�

Since the objective function in ������	 is separable in the arcs� even the line search

problem to be solved in this step� which is that of minimizing
P

	i�j
�A cij�f
�
ij�� � ��f

g
ij	

over the line segment ffu � 	�fu	k � �� � 		zu� u � � to g� � �
� 	 �

� �g� can be

simpli�ed�

Thus the Frank�Wolfe method provides a reasonable approach for solving the

tra�c assignment problem ������	� The main reason for this is the fact that the LP

to be solved in each step of the method breaks down into g separate shortest chain

problems� for which very e�cient special algorithms are available�
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������� Reduced Gradient Methods

The name reduced gradient method refers to a method which uses the equality con�

straints to eliminate some variables �the dependent or basic variables	 from the prob�

lem� and treats the remaining problem in the space of the independent �or nonbasic	

variables only� either explicitly or implicitly� The gradient of the objective function in

the space of independent variables is the reduced gradient de�ned in Section ����� the

search direction is usually the steepest descent vector in the space of the independent

variables �the negative reduced gradient vector	� or the Newton search direction in

the space of the independent variables� determined using the reduced Hessian or an

approximation for it�

We will consider the problem in the following form

minimize ��x	

subject to Ax � b

l �� x �� u
������	

where A is a matrix of order m � n and rank m� As discussed in Chapter �� the

problem ������	 can be put in this form� Here l� u are the lower and upper bound

vectors for x in ������	� Let B be a basis for A �i� e�� a square nonsingular submatrix

of A of order m	 and partition A as �B�D	� and let x � �xB� xD	 be the corresponding

partition of the vector x� xD is the vector of independent �nonbasic	 variables and xB
is the vector of dependent �basic	 variables� Let x � �xB � xD	 be a feasible solution

for ������	� So xB � B���b�DxD	� The problem can be transformed into one in the

space of independent variables xD only� by eliminating the dependent variables xB �

The reduced gradient at x is cD � �rxD��x		� �rxB��x		B
��D� De�ne yD � �yj	 by

yj � �cj if xj is a nonbasic variable in xD and either cj � � and

xj � uj or cj � � and xj � lj

� � if xj is a nonbasic variable in xD�

and the above conditions not met�

If yD � �� x satis�es the �rst order necessary optimality condition for being a local

minimum for ������	� and the method terminates� Otherwise verify that cDyD � �� so

yD is a descent direction in the space of independent variables xD� It is the steepest

descent �negative reduced gradient	 direction� De�ne yB � �B��DyD and let y �

�yB � yD	� Then y is the search direction at x� Since Ay � �� the equality constraints

in ������	 continue to be satis�ed when we move in this direction� De�ne

�� � minimum f�xj � lj	���yj	 � j such that yj � �g�
�� � minimum f�uj � xj	��yj	 � j such that yj � �g�
� � minimum f��� ��g�

Do a line search for minimizing ��x��y	 over � �� � �� �� and repeat the whole process

with the optimum point in this line segment�
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Let lB � uB denote the bound vectors for the dependent variables xB � If lB � xB �

uB � from the de�nition of the search direction y� it can be veri�ed that � � �� If

however� ������	 is degenerate� given a feasible solution x for it� it may not be possible

to �nd a basis B for ������	 for which lB � xB � uB holds� In this degenerate case�

it may so happen that � � �� In this case y is not a feasible direction at x� and the

line search problem does not make any sense� since any move of positive length in

the direction y results in infeasibility� In this case the method can be continued by

identifying the active constraints at x� and moving from x in the direction of yp� the

orthogonal projection of y in the subspace of active constraints at x �this will be a

gradient projection step� see the next section� Section �������	� This is equivalent to

carrying out the line search problem exactly as above after replacing y by yp�

For convergence and rate of convergence results in this method see ����� ������

������ ������ ������

This method has been generalized very directly into the Generalized Reduced

Gradient method �GRG	 for solving NLPs involving nonlinear constraints� See �����

������ ������ ������ ����� ������

������	 The Gradient Projection Method

When applied to solve the NLP ������	� this method generates a descent sequence

fxr � r � �� �� � � �g beginning with a feasible point x�� all the points in which are

feasible� Step � begins with x�� and in general for k �
� � step k � � begins with the

point xk at the end of step k�

For any feasible solution x of ������	 de�ne I�x	 � fi � Ai�x � big� Clearly�

f�� � � � �mg � I�x	 for all feasible solutions x�

In step k � �� if there are no equality constraints in the problem and if I�xk	 �

�� choose the search direction at xk to be yk � ��r��xk		T � If I�xk	 �� �� the

search direction in this step is determined by projecting the negative gradient of the

objective function at xk� onto the subspace parallel to the a�ne space of currently

active constraints treated as equations� Let Ak denote the matrix whose rows are Ai�
for i � I�xk	� So Ak is of order jI�xk	j � n� Assume that the set of rows of Ak is

linearly independent� otherwise delete some dependent row vectors of Ak from it until

this property holds� The projection matrix corresponding to the active subspace is

Pk � I � AT
k �AkA

T
k 	
��Ak� The projection of ��r��xk		T onto the active subspace is

�Pk�r��xk		T � It can be veri�ed that this vector �Pk�r��xk		T is a positive multiple

of the vector which minimizes �r��xk		y subject to Aky � � and yT y �� ��

If �Pk�r��xk		T � �� de�ne �k � �AkA
T
k 	
��Ak�r��xk		T � Then r��xk	 �

��k	TAk � �� ��k	T is a row vector of dimension jI�xk	j� Augment ��k	T into a vector

of dimension m � p� by inserting ��s for all i �� I�xk	� and let the vector obtained be

called 
k� Then r��xk	 � 
kA where A is the �m�p	�n coe�cient matrix in ������	�

So if 
ki �� � for all i � m�� to m� p� xk� 
k together satisfy the �rst order necessary

optimality conditions ������	 and the method terminates with xk as the KKT point
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for ������	� On the other hand if 
ki � � for some i between m� � to m � p� identify

the i for which 
ki is the most negative� say r� delete the rth constraint from the active

set �that is� eliminate Ar� from the matrix Ak	 update the projection matrix� and the

projection of ��r��xk		T on the new active subspace� and repeat the whole process�

If �Pk�r��xk		T �� �� de�ne yk � �Pk�r��xk		T � yk is the search direction at

xk� It can be veri�ed that Pk is symmetric and PT
k Pk � Pk� so Pk is PSD� Also

r��xk	yk � �kykk� � �� So yk is a descent direction� Now �nd � from

� � minimum
nAi�x

k � bi
�Ai�yk

� i such that i �� I�xk	 and Ai�y
k � �

o
� �� if Ai�y

k �
� � for all i �� I�xk	�

Do a line search to minimize ��xk� �yk	� � �� � �� �� If �k is the optimum step length

in this line search problem� xk� � xk � �ky
k is the new point� go to the next step�

Methods for Updating the Projection Matrices

The periodic updating of the projection matrix is a considerable computational prob�

lem� However� the matrix Ak usually changes by one row� say Ar�� which is either

dropped from the set of active constraint rows� or is added to it� Here we discuss how

to e�ciently update �AkA
T
k 	
�� when a change like this takes place�

To Delete a Row From Ak

Let Ar� be the sth row in Ak at the moment and suppose we want to delete it from

Ak� After deletion suppose Ak becomes �A� of order �q � �	� n�

Interchange the last row and the sth row in �AkA
T
k 	
��� In the resulting matrix

interchange the sth column and the last column� After these interchanges suppose this

matrix �AkA
T
k 	
�� is written down in partitioned form as�	
 E u

uT �

�	�
where E is of order �q� �	� �q� �	� Then it can be shown that � �A �AT 	�� � E� uuT

� �

To Add a Row to Ak

Suppose the row Ar� has to be added to Ak� We will make Ar� as the last row of the

resulting matrix� which is  A �

�	
 Ak

Ar�

�	�� Let P be the projection matrix corresponding

to Ak� which is I � AT
k �AkA

T
k 	
��Ak� Compute c � kP �Ar�	

Tk� � Ar�P �Ar�	
T � w �

�AkA
T
k 	
��Ak�Ar�	

T � u � ��w�c	� F � �AkA
T
k 	
�� � wwT

c � Then

�  A  AT 	�� �

�	
 F u
uT ��c

�	� �
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In the process of this updating� if c turns out to be zero� i� e�� PAr� � �� then the

new active constraint row� Ar�� is linearly dependent on the previous active constraint

rows� and the updating cannot be carried out� In this case the new active constraint

row is ignored and the method can be continued with the same set of active constraint

rows as before�

The updating procedure can also be used recursively to obtain the inverse �AkA
T
k 	
��

in the �rst step of the algorithm� from the set of active constraints at that stage� by

introducing them one at a time� An advantage of this recursion is that it selects the

largest set of linearly independent active constraint rows among the set of all active

constraint rows at this stage�

������
 The Active Set Methods

We consider the NLP ������	� These methods begin with a feasible solution x� and

obtain a descent sequence fxr � r � �� �� � � �g� where each point in the sequence is

feasible�

If x is an optimum solution for ������	� and I�x	 � fi � Ai�x � bi� i � � to m� pg�
then x is also an optimum solution of the equality constrained NLP

minimize ��x	

subject to Ai�x � bi� i � I�x	�
������	

If we can guess the correct active set I�x	� we could solve ������	 by methods for solving

equality constrained NLPs discussed in Section �����

In these methods� a guess is built up over the steps� on the likely set of active

constraint indices at the optimum� This set is known as the working active set� The

working active set in step k � � is denoted by Ik� Clearly f�� � � � �mg � Ik for all k�

Changes are made in the set Ik using information gathered in each step� Ik always

satis�es the property� fAi� � i � Ikg is linearly independent� The initial point in step

� is x�� in initial feasible solution with which the method is initiated� For k �
� �� the

initial point in step k�� is xk� the feasible point obtained at the end of step k� Usually

we have Ik � I�xk	�

In step k � �� we carry a step for the equality constrained minimization problem

minimize ��x	

subject to Ai�x � bi� i � Ik
������	

as discussed in Section ����� The search direction at xk is the direction determined

using the projected gradient� the projected Hessian or some quasi�Newton search di�

rection at xk for ������	 as discussed in Section �����

If xk satis�es the termination criteria for ������	� let Ak denote the matrix with

rows Ai�� i � Ik� The corresponding Lagrange multiplier vector for ������	 is �k �

�AkA
T
k 	
��Ak�r��xk		T from ������	� If �ki �� � for all i � Ik � fm� �� � � � �m� pg� as
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discussed in Section ������� xk is a KKT point for ������	� terminate� If �ki � � for

some i � Ik � fm� �� � � � �m� pg� select the most negative among these� say �kr � then

delete r from the working active set� and repeat the whole process�

If xk does not satisfy the termination criteria for ������	� let yk be the search

direction generated at xk for solving ������	� Find out � from

� � minimum
nAi�x

k � bi
�Ai�yk

� i such that i �� Ik and Ai�y
k � �

o
�� if Ai�y

k �
� � for all i �� Ik�

Do a line search to minimize ��xk � �yk	 over � �
� � �

� �� Let �k be the optimum

step length for this line search problem� If �k � �� leave the working active set Ik
unchanged� and with xk� � xk � �ky

k go to the next step� If �k � �� all the i which

tie for the minimum in the de�nition of � join the active set� select one of these and

include it in Ik� Then go to the next step�

To carry out a step of the algorithm discussed in Section ���� for the equality

constrained minimization problem ������	� we need the corresponding matrix Z� which

we denote by Zk here� as discussed in Section ����� Whenever we change the working

active set Ik by dropping an element from it� or including a new element in it� it is

necessary to make the corresponding changes in Zk� Suppose Zk is computed as in

�����	 using a basis Bk for Ak� and maintained by storing Bk either explicitly or in

some factored form� Whenever Ik changes by one element� Bk changes by one row and

one column� and B��k can be updated by using the standard pivot methods of LP�

Several practical strategies have been developed to decide when to include a con�

straint in the working active set� and when to drop a constraint from it� Software pack�

ages for linearly constrained nonlinear programming based on such active set strategies

seem to give the most satisfactory performance� Many of the commercially available

packages usually include a combination of several of the strategies discussed above� in

order to satisfactorily solve the widest class of problems�

All these methods become considerably simpli�ed when applied to solve a qua�

dratic programming problem� because of the special nature of the objective function�

����� Exercises

���� Fermat�s Problem

Let A�j � �a�j� � � � � amj	
T � j � � to n be given distinct points in Rm� Let

wj be a given positive weight associated with point A�j � For any x � Rm de�ne

f�x	 �
Pn

j��wjkx�A�jk�
�i	 If no three points among fA��� � � � � A�ng are collinear� prove that f�x	 is positive

and strictly convex on Rm�
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�ii	 Assuming that no three points in the set fA�j � j � � to ng are collinear prove

that the problem of minimizing f�x	 over Rn has a unique solution� call it x� and

prove that x lies in the convex hull of fA��� � � � � A�ng�
�iii	 De�ne

g�x	 �
nX

j��

�wj�A�j � x	

kx�A�jk
�
� if x �� A�j � for each j � � to n�

For such points� g�x	 � �rf�x	� This function g�x	 given above� is not de�ned if

x � A�j for some j� By analogy� de�ne for j � � to n�

h�A�j	 �
nX
i��
i��j

�wi�A�i �A�j	

kA�i � A�jk
�

g�A�j	 � maximum fkh�A�j	k � wj � �g
� h�A�j	

kh�A�j	k
�
�

Prove that a given point x is x �whether x is one of the points in the set fA�j �

j � � to ng or not	 i
 g�x	 � �� with g�x	 de�ned as above�

�iv	 Assume that no three points in the set fA�j � j � � to ng are collinear�

De�ne�

T �x	 �
� nX
j��

wjA�j
kx�A�jk

�
�
� nX
j��

wj

kx�A�jk
�
� if x �� A�j for each j � � to n

T �A�j	 � A�j � for each j � � to n�

Prove that T �x	 � x� Also prove that if x is such that x �� A�j for each j � � to

n and T �x	 � x� then x � x�

Prove that if x � Rm satis�es x �� T �x	� then f�T �x		 � f�x	�

Consider the interative method x� � initial point in Rm choosen so that

x� �� A�j for each j � � to n

xr� � T �xr	� r � �� �� � � � �

If xr �� fA�j � j � � to ng for all r� prove that the sequence fxr � r � �� �� � � �g
converges to x�

�v	 Let A�j be the jth column vector of the following matrix for j � � to ���	
� �� �  � �
� � � � � ��

�	� �

Let wj � � for all j � � to �� In this case prove that x � ��� �	T �

Show that there is an x�� �approximately ���	 such that for x� � �x��� �	
T we have

T �x�	 � A��� which is not optimal� This shows that the iterative method discussed in

�iv	 may not always converge to x even if the initial point x� �� fA�j � j � � to ng�
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However� prove that there exists a countable set """ of points in Rm such that if x� ��
"""� then the sequence of points generated by the iterative method discussed in �iv	

converges to x�

�H� W� Kuhn ������	

���� Consider the NLP
minimize ��x	

subject to f�x	 � �

where ��x	 and f�x	 are both continuously di
erentiable real valued functions de�ned

over Rn� Using the ideas of the reduced gradient method and the results given by the

implicit function theorem� develop an e�cient algorithm for solving this problem�

���	 De�ne the diameter of a convex hexagon �convex polytope with six extreme

points in R�	 K to be maximum fkx � z � x� z � Kg� Formulate the problem of

�nding a maximum area convex hexagon of diameter �� �� as an NLP� Is this a convex

programming problem# Find a solution to this problem using some of the algorithms

discussed in this book�

���
 D � �dij	 is a square symmetric matrix of order n satisfying� dii � � for all i�

the triangle inequality �dij � djk �� dik for all i� j� k	� and dij � � for all i �� j� It is the

matrix of Euclidean distances between pairs of points among a set of n points in R��

We are given the matrix D� but not the actual points from which D was calculated�

It is required to �nd the coordinates �xi� yi	� i � � to n� of n points in R�� for which

the pairwise distance matrix is D� Formulate this as an NLP and discuss an e�cient

approach for solving it�

The rectilinear or L��distance between two points �x�� y�	� �x�� y�	 inR
� is de�ned

to be jx� � x�j � jy� � y�j� Consider the version of the above problem of �nding the

coordinates of n points in R�� for which the matrix of pairwise rectilinear distances is

a given matrix D� Formulate this problem� Is this easier or harder to solve than the

version for the Euclidean distances# Why#

�S� M� Pollock	

���� Let n � �� x � �x�� � � � � xn	
T � Sk �

Pn
j�� x

k
j � Consider the NLP

minimize S�� � S�S�
subject to � �� xj �� �� j � � to n�

Prove that the vector x � �xj	 is a strict local minimum for this problem if m of the xj
are equal to �� and p of the xj are equal to ��� where m�p � n and n � m � ����	n�

Also� prove that x is a global minimum for this problem if it is of the above form and

either m or p is b���	nc�
�P� Wolfe �������	
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��� Automatic Voltage Regulator Control Panel �AVR� Design Problem�

AVR�s are used to stabilize voltage in electrical power systems� AVR contains many

circuits� each circuit may consist of several components like resistors� transistors� ca�

pacitors� zener diodes etc� Each component is characterized by some variables �e� g� the

resistence of a resistor measured in ohms� the gain value of a transistor measured in

hFE� the capacitance of a capacitor measured in microfared �MF	 etc�	� The problem

is to �nd an optimum design �i� e�� �nd the optimal values of all the variables	 which

stabilizes the output voltage as far as possible� while the input voltage may !uctuate

uncontrollably in some speci�ed range� Here we provide a simpli�ed example relating

to the triggering circuit design in the AVR control panel for a diesel MW AC gen�

erator� to illustrate the basic principles involved in modelling and solving this class

of problems �the general problem may have many more variables� and the functions

involved are more complicated and may have many more terms� but the basic features

remain identical	� The functional form for the output voltage as a function of the input

voltage and the design variables is available from electrical engineering theory� Given

this function� and the range of !uctuation of the input voltage� the problem is to �nd

optimal values for the design variables that stabilizes the output voltage as much as

possible� In our example� the positive and negative voltages are denoted by v�� v��

each of these !uctuates between ���� to ����� and we have no way of controlling it�

There are � design variables� x�� x�� x�� x�� x�� The functional form for the output

voltage v is the following�

v� � v���� e�	�	��x�x�
	

v� � �x��x� � ���	 � ���v�	��x� � ��	

v � �v� � v�	e
�	���x�x�
�

The constraints on the variables are� � �
� x� �

� ��� � �
� x� �

� ��� �� �
� x� �

� ���

��� �� x� �� ����� � �� x� �� ����� Formulate the problem as a nonlinear program and

discuss an algorithm for solving it�

�Kirloskar Electricals Ltd�� India	

���� The variable y represents the yield in a chemical process� There are n process

variables x�� x�� � � � � xn �such as temperature� !ow rate� etc�	 which in!uence the yield

y� Data was collected to observe the yield y for various values of the process variable

vector x � �x�� � � � � xn	� This leads to k data points� t � � to k�

Process variable vector xt � �xt�� � � � � x
t
n	� corresponding yield yt�

In the vectors xt� t � � to k� each process variable takes several values spanning

its possible range of variation� and each combination of process variables takes several

values in the combined range of variation of the vector of these process variables� It is

believed that y can be approximated reasonably well by a convex quadratic function

of the form Q�x	 � cx � � �� 	x
TDx� It is required to �nd the best convex quadratic

�t Q�x	 for y� using the available data� Formulate this problem of �nding the best

convex quadratic approximation Q�x	 for y using the available data as a nonlinear

programming problem� and discuss how this problem can be solved�
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If lj � uj are known lower and upper bounds for the process variable xj for j � �

to n� and you are asked to design an experiment for collecting the necessary data

in the above problem� outline how you will determine the process variable vectors

xt � �xt�� � � � � x
t
n	 at which the yield has to be observed� in order to obtain the best �t�

���� Let ��x	 be a continuously di
erentiable real valued function de�ned on Rn� It

is required to �nd the unconstrained minimum of ��x	 over Rn� Beginning with an

initial point x� � Rn� the sequence of points fxr � r � �� �� � � � �g was obtained by

using Cauchy�s Method of steepest descent with optimal step lengths in each step �the

metric matrix for determining the steepest descent direction is always the unit matrix

I	� Prove that �xr� � xr�	T �xr� � xr	 � � for all r�

����� Let c be a given row vector in Rn� Write down explicitly� an optimum solution

for the following problem
minimize cx

subject to xTx � �

x �� ��

����� Let ��x	 be a continuously di
erentiable real valued convex function de�ned

on a bounded convex set K � Rn� that attains its minimum over K at x� � K�

fxr � r � �� � � � �g� fyr � r � �� � � � �g are sequences of points in K satisfying the

following conditions

r��xr	�yr � xr	 �� In�mum f�r �r��xr	�x� xr	 � x � Kg
r��xr	�yr � xr		 � as r 	�

where �r �
� � for all r and �r 	 � as r 	 �� Then� prove that ��xr	 	 ��x�	 as

r	��

����� We are given a set of n points in R�� say� at � �at�� a
t
�	� t � � to n� It is required

to �t a circle to these points� The objective function to be minimized is
P

��r��square

of the Euclidean distance between at and the center	� � t � � to n	� where r is the

radius of the circle� Formulate this problem as an NLP and discuss an e�cient method

for solving it�

�R� Chandrasekaran	

����� We are given row vectors c�� � � � � cr in Rn and real numbers d�� � � � � dr� De�ne

��x	 � Maximum fjctx� dtj � t � � to rg�
It is required to �nd the unconstrained minimum of ��x	 over x � Rn� Discuss an

e�cient method for computing it�
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����	 Let d�� � � � � dn be given positive integers� The partition problem with this data�

is to check whether there exists a subset S � f�� � � � � ng such that

X
i�S

di �
X
i�S

di

where S � f�� � � � � ng n S� This is a well known NP�complete problem �see �����	�

Formulate this problem as a special case of

minimize kxkp
subject to x � K � fx � Ax �� bg ������	

where kxkp � �
Pn

i�� jxijp	��p� and A� b are integer matrices of orders m�n and m��

respectively� p a positive integer �� �� and K is known to be nonempty and bounded�

kxkp is known as the p�norm of the vector x� Thereby establish that the problem of

maximizing the p�norm on a convex polytope speci�ed in terms of linear inequalities

with integer data� is an NP�hard problem�

Show that an upper bound on the optimum objective value in ������	 can be

obtained by solving a relaxed linear program�

The ��norm of the vector x � �xi	 � Rn� denoted by kxk� is de�ned to be

maximum fjxij � i � � to ng� Show that when p ��� ������	 can be solved by solving

at most n linear programs�

�O� L� Mangasarian and T��H� Shiau� �A variable�complexity norm maximization prob�

lem�� Technical Report ���� Mathematics Research Center� University of Wisconsin�

Madison� ����	

����
 Optimal Betting in a Race Track

The �market� at a race track in North America typically convenes for about � minutes�

during which participants make bets on any number of � to � horses in the following

race� To keep the discussion simple� we consider a race in which participants can bet

on each horse either to win or place� All participants who have bet on a horse to

win� realize a positive return on that bet only if that horse comes �rst� while a place

bet realizes a positive return if that horse comes �rst or second� Consider a race with

the following data declared at the time we are ready to bet�

n � number of horses running in the race�

Wi � total amount bet by public �all participants so far	 on horse i to win�

W �
Pn

i��Wi � win pool�

Q � track payback proportion �typically ���� it is the proportion of pool given

away� the remaining proportion ��� is kept by the race track company	�

Pj � total amount bet by public �all participants so far	 on horse j to place�

P �
Pn

j�� Pj � place pool�
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qi � probability that horse i �nishes �rst in the race�

qij � qiqj
��qi

� probability that horse i �nishes �rst and horse j �nishes second in

the race�

payo
 per dollar bet

on horse i to win
�

�
WQ
Wi

� i
 horse i comes in �rst place
� otherwise�

payo
 per dollar bet

on horse j to place
�

�			
			


� �
PQ�Pi�Pj

�Pj
� if horses i� j are �rst

two winners in any order

�� if horse j did not �nish in the �rst
two places in the race�

Thus the payo
 on horse j to place is independent of whether j �nishes �rst or second�

but dependent on which horse �nishes with it in �rst two places�

We assume that qi � Wi�W � that is that the crowd is good at picking a winner�

or that the relative amount bet on a horse to win corresponds closely to its actual

chances of winning�

The Wi� Pi are the public�s bets in the race� are known� Consider the problem

of determining the place bets to make optimally� given all the above data and the

assumptions� subject to a budget of b � The Kelly criterion determines the optimal

bets to maximize the expected logarithm of �nal wealth� The decision vector in this

problem is x � �x�� � � � � xn	
T � where xi is the place bet on the ith horse� i � � to n�

De�ne

fij�x	 �
�Q�P �

Pn
l�� xl

�� xi � xj � Pi � Pj



�� xi
xi � Pi

�
xj

xj � Pj

�
�

Then the problem for determining the optimal x is

minimize

nX
i��

nX
j��
j ��i

qij log
�
fij�x	 � b�

nX
l��
l��i�j

xl

�

subject to
nX
l��

xl �� b

xl �� �� for all l � � to n�

Discuss an e�cient approach for solving this problem� Solve the numerical problem

using this approach� when the data is

n � �� Q � ����� b � ����

i �  � � � � � �

Wi ��� ��� ��� ��� �� ��� ��� ��� �� ��� ��� ��� ��� ��� �� ���

Pi �� ��� �� ��� �� ��� �� ��� �� ��� �� ��� ��� ��� �� ���
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�See the delightful book� W� T� Ziemba and D� B� Hausch ������ for a complete

treatment of this problem�	

����� Consider the following LP

minimize cx

subject to x � K � fx � Ax �� bg
where A� b are given matrices of orders m�n� m�� respectively� Assume that K �� ��
For � �

� �� let x��	 denote the nearest point in K to �c in terms of the usual Euclidean

distance�

If the above LP has an optimum solution� prove that there exists a � � � such that

x��	 is constant for all � �
� � and that x��	 is the least �Euclidean	 norm optimum

solution for the LP�

If the objective value is unbounded below on K in the above LP� prove that

kx��	k 	 � as �	��

�O� L� Mangasarian	

���� Consider the following NLP

minimize ��x	

subject to Ax �� b

where ��x	 is a strictly convex function de�ned over Rn with a unique unconstrained

minimum� x� in Rn� and A is a matrix of order m� n� Suppose x satis�es

Ai�x� bi

�
� �� i � � to r
�
� �� for i � r � � to m�

Let xi denote the point which minimizes ��x	 subject to one constraint only �Ai�x �
�

bi�� for i � � to r� Suppose there is a unique k � f�� � � � � rg such that xk is feasible to

the original NLP� Then prove that xk is an optimum solution for the original NLP�

����� A Curve Fitting Application in High Voltage Coil Insulation Testing� The

life of the insulation system on high voltage coils used in rotating electrical machines�

depends on it�s DLA �dielectric loss analyzer	 value� The DLA value for a coil is

expected to depend on it�s � tan � �increase in tan � or dissipation factor expressed

as a percentage� with increase in test voltage	 and �C �inrease in capacitance with

increase in test voltage	 values� The DLA value is hard to measure� but the � tan �

and �C values can be measured easily� Given below are the DLA� � tan � and �C

values for a sample of �� test coils� Use this data to determine if the DLA value of

a coil can be estimated reliably from it�s � tan � and �C values� and if so� determine

the appropriate functional form� Using this analysis� design a scheme for checking the

acceptability of coils �acceptable if DLA value is �� ��� units	 using measurements of

their � tan � and �C values as far as possible�



	
� Chapter ��� Survey of Descent Based Methods

�C and � tan � with their corresponding DLA values for �� test coils�

� tan �� � tan ��

Sample ��� KV � C� ��� DLA at Sample ��� KV � C� ��� DLA at

coil No� to �� KV to �� KV coil No� to �� KV to �� KV

KV �� KV KV �� KV

� ����� ��� ��� � ����� �� ��

 ����� ��� ��� � ���� �� ���

� ����� ��� ��� � ����� �� �

� ����� �� ��� � ����� �� ��

� ���� ��� �� �� ���� �� ���

� ���� ��� ��� �� ����� �� ���

� ���� ��� �� � ����� �� ���

� ���� ��� ��� �� ����� �� ��

� ���� ��� ��� �� ����� �� ��

�� ���� ��� ��� �� ����� �� ���

�� ���� ��� ��� �� ���� ��� ��

� ���� ��� ��� �� ����� ��� ��

�� ���� ��� �� �� ����� ��� ��

�� ���� ��� ��� �� ����� ��� ��

�� ���� �� ��� �� ����� ��� ��

�� ���� �� �� �� ����� ��� ���

�� ����� �� �� � ����� ��� ��

�� ����� �� ��� �� ����� ��� ���

�� ����� �� ��� �� ����� ��� ��

� ���� �� �� �� ����� ��� ��

� ����� �� �� �� ����� ��� ���

 ���� � ��� �� ����� ��� ���

� ����� � ��� �� ����� ��� ���

� ���� � ��� �� ����� ��� ���

� ���� �� ��� �� ����� ��� ���
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�tan �� � tan ��

Sample ��� KV � C� ��� DLA at Sample ��� KV � C� ��� DLA at

coil No� to �� KV to �� KV coil No� to �� KV to �� KV

KV �� KV KV �� KV

�� ����� ��� ��� �� ����� �� ���

� ����� ��� �� � ����� �� ��
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Chapter ��

NEW LINEAR PROGRAMMING

ALGORITHMS� AND

SOME OPEN PROBLEMS IN

LINEAR COMPLEMENTARITY

Some open research problems in linear complementarity have already been posed

among the exercises in previous chapters� Here we discuss some more research problems

brie�y�

���� Classi�cation of a Given Square Matrix M

Let M be a given square matrix of order n� In Section ����� we discussed algorithms to

check whetherM is PD os PSD� requiring a computational e�ort of at most n Gaussian

pivot steps� or O�n�� e�ort in terms of multiplications and additions� Such e�cient

algorithms are not known to check whether M belongs to other classes of matrices

discussed in Chapters 	� ��

As an example� consider the problem of checking whether M is a non
degenerate

�i� e�� principally non
degenerate to be speci�c� matrix� The question is� given M � to

�nd whether there exists a subset of f�� � � � � ng such that the principal subdeterminant

of M corresponding to that subset is zero� Since this question involves the existence

of a subset of f�� � � � � ng satisfying a speci�ed property which is easily checked �given

a subset J � f�� � � � � ng� we can check whether J satis�es this property by computing

the subdeterminant of M corresponding to J� which takes at most O�r�� e�ort� r 

jJj�� this problem is in NP� the class of decision problems which can be solved by a

polynomially bounded non
deterministic algorithm �see M� Garey and D� Johnson�s

book ����	� for precise de�nitions of these terms�� We will now show that this problem

is in fact NP
complete� Given positive integers d�� d�� � � � � dn� the problem of checking
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whether there exists a subset of fd�� � � � � dng whose sum is equal to d�� known as the

subset sum problem� is the �
� problem of checking whether the following system

has a solution
nP

j��

djxj  d�

xj  � or � for all j �
������

This problem is a well
known NP
complete problem� De�ne M to be the matrix

M 

��������������������

d� d� d� d� � � � dn
� � � � � � � �
� � � � � � � �
� � � � � � � �
���

���
���

���
� � �

���
� � � � � � � �

��������������������


��� d� d
e In

���

where d  �d�� � � � � dn�� e is the column vector of all ��s in Rn� and In is the unit

matrix of order n� A principal submatrix of M corresponding to a non
empty subset

of f�� � � � � n � �g not containing � is a unit matrix of appropriate order� and hence

has determinant �� The principal subdeterminant of M corresponding to a subset of

f�� � � � � n � �g of the form f�� i�� � � � � irg can be veri�ed to be d� � �di� � � � � � dir ��

Thus the matrix M given above has a zero principal subdeterminant i� the system

������ has a solution� Since the NP
complete problem ������ is a special case of the

problem of checking whether a given square matrix has zero principal subdetermi


nant� this later problem is also an NP
complete problem� This result is from ������ of

R� Chandrasekaran� S� N� Kabadi and K� G� Murty�

The computational complexity of checking whether a given square matrix M is a

P 
matrix� P�
matrix� Q
matrix� or Q�
matrix is not known� For all these problems�

�nite algorithms are known� P 
 and P�
properties can be checked by computing all

the principal subdeterminants �requiring the evaluation of 	n determinantes when M

is of order n�� Finite algorithms for checking the Q
 and Q�
properties are provided

in Exercises ����� ���� �when applied on a matrix of order n� these methods require

the solution of at most n�
n

systems of linear inequalities� hence these methods though

�nite� are utterly impractical even for n  ��� No polynomially bounded algorithms

for any of these problems are known so far� and it is also not known whether any of

these problems is NP
complete�

���� Worst Case Computational Complexity

of Algorithms

In Chapter � we established that several of the pivotal algorithms for LCP are expo


nential growth algorithms in the worst case� However� the worst case computational

complexity of the algorithm for solving the LCP �q�M� when M is PD symmetric

matrix �or the corresponding nearest point problem� based on orthogonal projections

discussed in Chapter � is still an open question�
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������ Computational Complexity of the LCP

Associated with a P �Matrix

In Chapter � we discussed polynomially bounded algorithms for the LCP �q�M� when

M is either a Z
matrix� or a principally triangular P 
matrix� or a PSD
matrix� The

polynomially bounded ellipsoid methods work only when M is PSD� since they depend

on the fact that the set fz � zT �Mz � q� � �g is convex� which may not hold when

M is not PSD� None of the methods discussed in Chapter � are guaranteed to process

the LCP �q�M� when M is a P 
matrix which is not PSD� In this case the set fz �

zT �Mz � q� �
 �g may not be convex� When M is a P 
matrix� by the results in

Chapter �� the LCP �q�M� has the nice property of having a unique solution� but

as yet no polynomially bounded algorithm is known for computing it� Establishing

whether the LCP �q�M�� where M is a P 
matrix� can be solved by a polynomially

bounded algorithm� remains an important mathematical problem in LCP theory�

������ A Principal Pivoting Descent Algorithm

For the LCP Associated with a P �Matrix

In the LCP there is of course no objective function� In this algorithm from K� G� Murty

����	� an extraneous distance function is computed and this distance decreases strictly

in each step� The distance provides a measure of progress in the algorithm� it becomes

zero i� we obtain a complementary feasible basis� The algorithm is a principal pivoting

algorithm employing only single principal pivot steps� it can be used to solve the LCP

�q�M� when M is a P 
matrix� The algorithm can be initiated with any complementary

basis� We now describe the algorithm�

Let A be the current complementary basis and y the corresponding complementary

basic vector�

Find the nearest point in Pos�A� to q in terms of the usual Euclidean distance

�this can be found in polynomial time by the ellipsoid algorithm discussed in Section

���� or by the practically e�cient algorithm discussed in Chapter ��� Let �x be this

nearest point and d  jj�x� qjj� the Euclidean distance between �x and q�

We will have d  � and �x  q i� q � Pos�A�� In this case y is a complementary

feasible basic vector� and the solution of the LCP �q�M� is �y  A��q� t  ��� where

t  �tj� and tj is the complement of yj for all j�

If d � �� let B�q� d�  fx � jjx� qjj � dg� B�q� d� is the closed ball with q as center

and d as radius� Let T�q� �x�  fx � �q � �x�T �x� �x�  �g� it is the tangent hyperplane

to B�q� d� at its boundary point �x� Since �x is the nearest point in Pos�A� to q� by the

results in Chapter �� �xT �q � �x�  �� T�q� �x�  fx � xT �q � �x�  �g� it is a hyperplane

containing the origin� �� Since �x � Pos�A�� we have �x 
Pn

j�� �jA�j where �j � �

for all j� Let J  fj � �j � �g� �J  f�� � � � � ng n J� In this case since q �� Pos�A�� by

the results in Chapter �� �x must be a boundary point of Pos�A�� so �J � �� For each
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j let D�j be the complement of A�j � By the results in Chapter �� �x is the orthogonal

projection of q in the linear hull of fA�j � j � Jg� so the tangent hyperplane T�q� �x�

contains the linear hull of fA�j � j � Jg� By Theorem ��	� of Section ���� T�q� �x� must

separate strictly� at least one of the pair of column vectors fA�j � D�jg for some j � �J�

Let ���  fj � j � �J� A�j and its complement are strictly separated by T�q� �x�g� So

��� � �� select a p � ��� arbitrarily� Then in the notation of Chapter �� D�p is on the

near side of T�q� �x�� and Posf�x�D�pg contains points which are strictly closer to q than

�x� Thus if we make a single principal pivot step in position p in the complementary

basis A� we get a new complementary basis whose pos cone contains points strictly

nearer than �x to q�

With �y�� � � � � yp��� tp� yp��� � � � � yn� as the new complementary basic vector� we

repeat the whole process�

After each principal pivot step� the distance d strictly decreases� so a comple


mentary basic vector can never reappear in the algorithm� Since there are only 	n

complementary basic vectors� the method must terminate after a �nite number of

principal pivot steps with the complementary solution for the problem�

Since the problem of �nding the nearest point in a complementary cone which has a

non
empty interior� to q� is equivalent to another LCP associated with a PD symmetric

matrix� the method can be viewed as one for solving the LCP �q�M� associated with

a P 
matrix M by solving a �nite number of LCP�s associated with PD symmetric

matrices�

The worst case computational complexity of this algorithm is still an open ques


tion�

One can get di�erent variants of the algorithm by choosing p from ��� according

to di�erent rules� One can consider the least index rule in which the p chosen from

��� is always the least� or a cyclical rule like the least recently considered rule popular

in implementations of the simplex algorithm� We can also consider a block principal

pivoting method in which the new complementary basic vector at the end of the step is

obtained by replacing each yp in the present complementary basic vector� by its com


plement for each p � ���� in a block principal pivot step� The worst case computational

complexity of each of these variants is currently under investigation�

Exercise

���� The rectilinear or L�
distance between two points x  �xj�� y  �yj� in Rn is

de�ned to be
Pn

j���jxj � yj j�� Consider the LCP �q�M� with M being a P 
matrix�

Let y  �yj� be a complementary basic vector for this problem associated with the

complementary basis A� The nearest point in the complementary cone Pos�A� to q in

terms of the L�
distance can be obtained by solving the LP

minimize
nP

j��
�ui � vi�

subject to Ay � u� v  q

y� u� v � � �
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If ��y� �u� �v� is an optimum solution to this LP� �x  A�y is a nearest point in Pos�A�

to q in terms of the L�
distance�

If M is a P 
matrix and q �� Pos�A�� does there always exist a p such that the

cone Pos fA��� � � � � A�p��� D�p� A�p��� � � � � A�ng� where D�p is the complement of A�p�

contains points which are strictly closer to q in terms of the L�
distance� than �x� If

so� discuss an e�cient method for identifying such a p�

Develop a method for solving the LCP �q�M� when M is a P 
matrix� that moves

from one complementary cone to another� decreasing the L�
distance to q in each step�

Study the worst case computational complexity of this method�

���� Alternate Solutions of the LCP �q�M�

There are very nice conditions to check the uniqueness of a given solution for a lin


ear programming problem� and to characterize and enumerate alternative optimum

solutions when they exist� See �	�	���

For LCP� such characterizations or methods do not exist yet� A su�cient condition

for the uniqueness of the solution for the LCP �q�M� is that M be a P 
matrix� When

M is not a P 
matrix� alternate solutions may exist for the LCP �q�M�� but in this case

the algorithms discussed for the LCP �nd only one solution for the problem if they are

able to process it� and then terminate�

Consider the LCP �q�M�� Let y  �yj� be a complementary vector of variables for

it� that is� for each j� yj � fwj � zjg� Let A be the complementary matrix corresponding

to y� Let t  �tj� where tj is the complement of yj for each j� The complementary

vector y leads to a solution of the LCP �q�M� i� the system

Ay  q

y � �

has a feasible solution� If �y is a feasible solution of this system� �y  �y� t  �� is

a solution of the LCP �q�M�� If A is nonsingular� the above system has a feasible

solution i� A��q � �� and in this case if it does have a solution� it is unique� If A is

singular� the above system may have many feasible solutions� Whether it has a feasible

solution or not can be determined by using Phase I of the simplex method for linear

programming� If the above system is feasible� all alternate feasible solutions of it can

be enumerated and the set of alternate feasible solutions compactly represented using

standard results in linear programming �	�	��� each such feasible solution leads to a

solution of the LCP �q�M�� as discussed above�

By solving the system of the type discussed above� for each of the complementary

vectors of variables y� we can check whether the LCP �q�M� has a solution� and in fact
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obtain all its solutions� This is a total enumeration method� requiring the solution of

	n separate systems of linear equations in non
negative variables�

Since 	n grows rapidly� the above total enumeration method for checking whether

alternate solutions exist for a given LCP� or to obtain all solutions of it� is impractical

unless n is very small� It would be nice if some e�cient partial enumeration methods

can be developed for doing the same job� These partial enumeration methods should

identify subsets of complementary vectors of variables which do not lead to a solution

of the LCP� and prune them� thereby saving some of the e�ort needed to carry out the

enumeration� These methods would be similar to branch and bounds for �
� integer

programming problems �see ���	��� which are also partial enumeration methods�

We will now describe brie�y one partial enumeration method for generating all the

solutions of the LCP �q�M� discussed in K� G� Murty ������� To keep the discussion

simple� we make the assumption that q is nondegenerate� In this case� every com


plementary solution is a complementary BFS and it is adequate to enumerate among

complementary basic vectors for all complementary solutions of the LCP �q�M��

The set of all variables in the LCP �q�M� is fw�� � � � � wn� z�� � � � � zng� Given any

subset ��� of these variables� we will represent ��� by a �
� incidence vector a  �ap� �

R�n� a row vector� where

for j  � to n� aj 

�
�� if wj � ���
�� if wj �� ���

an�j 

�
�� if zj � ���
�� if zj �� ��� �

As an example� for n  �� the incidence vector of the subcomplementary set fz�� w�� z�g

is ��� �� �� �� �� �� �� ��� So a complementary feasible basic vector for the LCP �q�M�

corresponds to an incidence vector x  �xp� � R�n satisfying
P�n

p�� xp  n and

xj�xn�j � �� for each j  � to n� and the vector is a feasible basic vector� xp  � or �

for all p  � to 	n� The second constraint that the vector be a feasible basic vector is

not available explicitly in the form of a system of linear constraints� at the beginning�

but we develop linear constraints in the xp
variables corresponding to it during the

course of the algorithm� In each step� more constraints of this type in the xp
variables

are generated and augmented to the system�

A set covering problem is a �
� integer programming problem of the following

form�

minimize
�nP
p��

xp

subject to Ex � er
xp  � or � for all p

where E is a �
� matrix of order r � 	n and er in the column vector of all ��s in Rr�

In each step� we solve a set covering problem of this form� and generate additional

constraints for the set covering problem in the next step�

The set covering problem itself is anNP
hard combinatorial optimization problem�

but practically e�cient branch and bound algorithms are available for it� The branch
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and bound algorithm discussed in ���	�� for the set covering problem using the lower

bounding strategy based on Lagrangian Relaxation may be particularly suitable� since

we have to solve the problem repeatedly� with the only change between the problem in

one step and the next being a few additional constraints�

A solution stack is maintained� Any solution to the LCP �q�M� found out during

the algorithm is stored in the solution stack� At termination of the algorithm� this

stack contains all the solutions of the LCP �q�M��

The initial set covering problem is

minimize
�nP
p��

xp

subject to xj � xn�j � �� for each j  � to n

xp  � or �� for p  � to 	n

The initial complementary basic vector is w� We will now describe a general step in

the algorithm�

General Step

Let y  �yj� be the current complementary vector of variables with yj � fwj � zjg for

each j  � to n� and let A be the corresponding complementary matrix� Let t  �tj�

where tj is the complement of yj for each j  � to n�

If A is singular� every complementary basic vector must include one of the variables

from ft�� � � � � tng� Let a � R�n be the incidence vector of ft�� � � � � tng� Add the

additional constraint �ax � �� to the set covering problem�

If A is nonsingular� y is a complementary basic vector� obtain the canonical tableau

of the LCP �q�M� with respect to it� Suppose it is

y t

I �D �q

If �q � �� y is a complementary feasible basic vector� and �y  �q� t  �� is the corre


sponding complementary solution� include it in the stack� Every complementary basic

vector di�erent from y must include one of the variables from ft�� � � � � tng� Let a �

R�n be the incident vector of ft�� � � � � tng� Include the additional constraint �ax � ��

in the set covering problem�

If �q �� �� y is not a feasible basic vector� For each i such that �qi � �� let Si  ftj � j

such that �dij � �g� where dij is the �i� j�th entry in the matrix D in the canonical

tableau� Clearly� any feasible basic vector must include one of the variables from Si�

Let ai be the incidence vector of Si� include the additional constraint �aix �
 �� for

each i satisfying �qi � �� in the set covering problem�

Solve the set covering problem together with the additional constraints added in

this step�
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If the optimum objective value in the set covering problem is � n� �� terminate�

The solution stack at this stage contains all the complementary solutions of the LCP

�q�M��

If the optimum objective value in the set covering problem is n� let �x be an

optimum solution for it� Let �y be the complementary vector of variables corresponding

to the incidence vector �x� Make �y the new complementary vector of variables� Go to

the next step with it and the current set covering problem�

This algorithm has not been computationally tested and it is not known how it

may work in practice�

Developing practically e�cient partial enumeration methods for the general LCP

remains a problem worth investigating�

���� New Approaches for Linear Programming

The well known primal simplex algorithm for linear programming starts at an extreme

point of the set of feasible solutions� moves along an edge direction to an adjacent

extreme point� and repeats the whole process until an optimal extreme point or an

unbounded edge along which the objective value is unbounded below �for minimization

problems� is reached� Thus all the direction used in the primal simplex algorithm are

edge directions� Recently K� G� Murty and Y� Fathi ������ discussed versions of the

simplex algorithm based on pro�table directions of movement through the interior or

relative interior of the set of feasible solutions or faces of it of dimension greater than

�� They showed that with simple modi�cations these methods can be proved to be

�nite� and can be implemented using basis inverses just as the usual versions of the

simplex algorithm� Computational testes indicate that these modi�cations leads to

improvements in the running time for solving linear programs�

N� Karmarkar ����	� has developed an entirely new polynomially bounded algo


rithm for solving linear programs based on pro�table search directions through the

interior of the set of feasible solutions� This method closes in on an optimum by cre


ating a sequence of spheres inside the feasible region for the LP� It is claimed that

preliminary computational testing has shown this method to be much faster than the

simplex algorithm for large scale linear programs� A statement of this algorithm with

an intuitive justi�cation is given in the Notation section in front of this book� Here we

provide a detailed treatment of the algorithm and its polynomial boundedness�

Throughout this section the symbol e denotes the column vector of all �s of ap


propriate dimension� and eT denotes its transpose�
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������ Karmarkar�s Algorithm for Linear Programming

The Barrier Function Approach to Handle Inequality

Constraints in Nonlinear Programming

Consider the following optimization problem �P��

minimize ��x�

subject to Ax  b

gi�x� � �� i  � to m�
�P�

A feasible solution x for this problem is said to be strictly feasible if gi�x� � �

for all i  � to m� The barrier function approach for solving this problem needs an

initial strictly feasible point x�� It generates a sequence of points fxr � r  �� �� � � �g�

each xr being a strictly feasible solution of the problem�

Barrier methods work by establishing a barrier on the boundary of the feasible

region that prevents the search procedure from leaving the strictly feasible part of

the feasible region� A barrier function for this problem is a continuous function B�x�

de�ned on ���  fx � gi�x� � �� for all i  � to mg that tends to �� as the point x

approaches the boundary of ���� One commonly used barrier function is the logarithmic

barrier function �suggested by K� R� Frisch in �����

B�x�  �
mX
i��

log�gi�x���

Here log represents the natural logarithm� The barrier function method for �P� looks

at the problem
minimize F �x�  ��x�� �

Pm
i�� log�gi�x��

subject to Ax  b
�B�

where � is a positive parameter known as the barrier parameter� Giving � some

positive value and �xing it� the barrier method tries to solve �B�� by some feasible

direction descent method beginning with the initial strictly feasible point x�� Consider

the line search problem of minimizing F �x� along the half
line fx��y � � �
 �g� where

x is a strictly feasible point� If �� � � is such that gi�x� ��y�  � for some i between

� to m� then the step length choosen in this line search problem will be � ��� since

�loggi�x � �y� � �� as � � �� from below� Thus any line searches carried out for

solving �B� beginning with a strictly feasible point will always lead to another strictly

feasible point�

The barrier function method for solving �P� proceeds as follows� It selects a

monotonic decreasing sequence of positive values f�r � r  �� 	� � � �g converging to ��

Fixing �  ��� it solves �B� by a feasible direction descent method� beginning with

the initial strictly feasible point x�� Suppose this terminates with the strictly feasible

point x�� Now � is changed to ��� and the new �B� solved again beginning with the
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initial strictly feasible solution x�� The process is repeated in the same way� generating

the sequence of strictly feasible points fxr � r  �� �� � � �g� Under mild conditions it

can be shown that this sequence converges to a solution of �P�� Karmarkar�s algorithm

for linear programming� closely resembles this nonlinear interior point barrier method�

In his algorithm� Karmarkar uses a potential function which closely resembles the

logarithmic barrier function�

We will now provide a theoretical description of Karmarkar�s algorithm and proofs

of its polynomial boundedness� A brief discussion on issues in implementing Kar


markar�s algorithm will then follow� We divide this section into various numbered

subsections� for ease of cross referencing�

� Transforming Any LP Into Another

With an Optimum Objective Value of Zero

We show that any LP can be transformed into another one with a known �minimum�

objective value of zero�

Consider the LP
minimize h�

subject to E� �
 p

� �
��

����	�

Let � denote the row vector of dual variables� It is well known �see �	�	��� that solving

����	� is equivalent to solving the following system of linear inequalities�

h�� �p � �

E� �
 p

�E �
 h

�� � �
 �

������

There is no objective function in ������� If ���� ��� is a feasible solution for ������� �� is

an optimum solution for the LP ����	� and �� is an optimum dual solution� If ������ is

infeasible� either ����	� is itself infeasible� or ����	� may be feasible but its dual may

be infeasible �in the later case� the objective value is unbounded below on the set of

feasible solutions of ����	���

The system ������ can be expressed as a system of equations in nonnegative vari


ables by introducing the appropriate slack variables� To solve the resulting system�

construct the usual Phase I problem by introducing the appropriate arti�cial variables

�see Chapter 	 in �	�	���� Let u denote the vector consisting of the variables �j � �i�

and the arti�cial variables� Let the Phase I problem corresponding to ������ be

minimize gu

subject to Fu  d

u �
 � �

������
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The optimum objective value in ������ is � � �since it is a Phase I problem correspond


ing to ������� and ������ is feasible i� it is zero� Let v denote the row vector of dual

variables for ������� Consider the LP

minimize gu� vd

subject to Fu  d

vF �
 g

u �
 �

������

The LP ������ consists of the constraints in ������ and its dual� From the duality

theory of linear programming� the optimum objective value in ������ is zero �since

������ has a �nite optimum solution�� The LP ������ can be put in standard form for

LPs by the usual transformations of introducing slack variables etc�� see Chapter 	 in

�	�	��� If ��u� �v� is optimal to ������� then �u is optimal to ������� If g�u  �� then the

�
portion of �u is an optimum solution for ����	�� If g�u � �� ������ is infeasible and

hence ����	� is either infeasible or has no �nite optimum solution�

� Transforming an LP Into Another

With a Known Strictly Positive Feasible Solution

An LP in standard form with an optimum objective value of zero� can be transformed

into another with the same property� but with a known strictly positive feasible solu


tion� Consider the LP
minimize gy

subject to Gy  d

y � �
������

where G is a matrix of orderm�n� and suppose all the data is integer and the optimum

objective value in ������ is zero� Let y� � � by any integer vector in Rn� Consider the

new LP
minimize gy � gn��yn��
subject to Gy � yn���d�Gy��  d

y � �� yn�� � �
������

clearly �y  y�� yn��  �� � � is a feasible solution of ������� Since the optimum objec


tive value in ������ is zero� the same property holds in ������ if gn�� is su�ciently large

�mathematically� it is su�cient to take gn�� � 	s� where s is the size of

���G G�n��
g �

����

G�n��  d�Gy���

� Transforming the Feasible Set into

the Intersection of a Subspace with a Simplex

Given an LP in standard form with integer or rational data� with the optimum objective

value of zero� and a strictly positive feasible solution� we can transform it into another�
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for which the set of feasible solutions is H � S� where H is a subspace and S is the

standard simplex� Consider the LP

minimize �gy

subject to Gy  �d

y � �
������

where G is of order m � n� and all the data is assumed to be integer� Let L be the

size of this LP �i� e�� L is the total number of digits in all the data in the LP ������ in

binary encoding� see Sections ��� to ��� and Chapters ��� �� in �	�	����

Since ������ has an optimum solution� it has an optimum solution satisfying the

additional constraint
nX

j��

yj � M

where M is an upper bound depending on the size L� By the results in Chapter � �see

also Chapter �� in �	�	��� taking M  	L will do� Hence ������ is equivalent to

minimize �gy

subject to Gy  �d

eT y � M

y � �

where eT  ��� �� � � � � �� � Rn� By introducing the slack variable yn��� this LP is the

same as
minimize �gy

subject to Gy � �
M

�d

�
n��P
j��

yj

�
 �

n��P
j��

yj  �

yj � �� j  � to n� �

������

The system Gy� �
M

�d
�Pn��

j�� yj
	
 � is a homogeneous system of equations� and hence

its set of feasible solutions is a subspace H in Rn��� The system
Pn��

j�� yj  �� yj � �

for j  � to n � � de�nes the standard simplex S in Rn��� So the set of feasible

solutions of ������ is H � S� as desired�

� Minimization of a Linear Function

Over a Spherical Ball or an Ellipsoid

Consider the problem

minimize cx

subject to �x� x��T �x� x�� � 	�
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If c  �� every point in the sphere is optimal to this problem� If c � �� the optimal

solution of this problem is x�� cT	� it is the point obtained by taking a step of length

	 �radius of the sphere� from the center x� in the direction of �cT �

Hyperplane

cx

x

= constant

0

Figure ���� To minimize cx on the sphere� walk from the center x� in the

direction �cT � a step of length 	 radius� The direction �cT is the steepest

descent direction for the linear function cx�

Now consider the problem

minimize cx

subject to Ax  b

and x � B  fx � jjx� x�jj � 	g �

Let H  fx � Ax  bg� H is an a�ne space� If H � B � �� it is a lower dimensional

sphere inside the a�ne space H� Again if c  �� every point in H�B is optimal to this

problem� If c � �� let �c be the orthogonal projection of c onto H� �c  � if c is a linear

combination of the rows of A� in this case the objective function is a constant onH�B�

and every point in it is optimal� If �c � �� the optimal solution of this problem is the

point obtained by taking a step of length equal to the radius of the lower dimensional

sphere H �B from its center in the direction of ��cT �

Consider the following problem

minimize cx

subject to Ax  b

and x � E  fx � �x� x��T��x� x�� � �g

where � is a symmetric PD matrix of order n� So E is an ellipsoid� Let H  fx �

Ax  bg� Let F be the Cholesky factor of � �i� e�� it is the lower triangular matrix
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satisfying FFT  ��� To solve this problem� apply the linear transformation that

transforms the ellipsoid into a sphere B� this is

y  FT �x� x�� or

x  x� � �FT ���y �

This transform the a�ne space H into another a�ne space bH  fy � A�FT ���y 

�b� Ax��g� the ellipsoid E into the unit sphere B  fy � jjyjj � �g� and the objective

function cx into c�FT ���y � cx�� So the transformed problem is �

minimize c�FT ���y

subject to y � bH �B

which can be solved as discussed above� From the optimum solution y of this problem�

we compute the optimum solution x� of the original problem using the equation x 

x� � �FT ���y�

� Converting a Near Optimum Feasible Solution

into an Optimum Feasible Solution

Consider the LP
minimize z�x�  cx

subject to Ax  b

x �
 �

�������

Let �x be a feasible solution for it� A well known result in LP says that if �x is not a

BFS for this problem� then a BFS  x for it satisfying c x �
 c�x can be obtained� or it can

be established that cx is unbounded below in this problem� See �	�	��� We describe

the procedure for doing it here�

Let J  fj � �xj � �g� If fA�j � j � Jg is linearly independent� �x is itself a BFS�

If �x is not BFS� fA�j � j � Jg is linearly dependent� Let a linear dependence relation

among these vectors be X
j�J

�jA�j  �

where ��j � j � J� � �� Such a vector ��j � j � J� can be computed by pivotal methods

for checking linear independence of the set fA�j � j � Jg� see �	�	���

Since �x is feasible� and from the de�nition of J� we also haveX
j�J

�xjA�j  b

!� �
X
j�J

��xj � ��j�A�j  b



����� New Approaches for Linear Programming ���

for all real values of �� De�ne the vector x��� by

xj��� 

�
�xj � ��j for j � J

� for j �� J �

Now de�ne

�� 



��� if �j � � for all j � J�

maxf� �xj
�j

� j � J and such that �j � �g� otherwise

�� 



��� if �j � � for all j � J�

minf� �xj
�j

� j � J and such that �j � �g� otherwise �

Clearly �� � �� �� � �� and x��� � � and hence feasible to the LP for all �� �
 � �


��� Since ��j � j � J� � �� at least one among �� or �� is �nite� If

P
j�J cj�j  �� let


  �� or �� whichever is �nite� break ties arbitrarily�

If
P

j�J cj�j � �� and ��  �� then fx��� � � � ��g is a feasible half
line along

which cx diverges to ��� Likewise if
P

j�J cj�j � �� and ��  ��� then fx��� �

� �
 ��g is a feasible half
line along which cx diverges to ��� If neither of these

unboundedness conditions are satis�ed� select 
  �� if
P

j�J cj�j � �� or 
  �� ifP
j�J cj�j � ��

Then x�
� is a feasible solution satisfying cx�
� � c�x� and the number of positive

components in x�
� is at least one less than that in �x�

Repeat the same process now with the feasible solution x�
�� After at most jJj of

these steps� we will either obtain a BFS  x satisfying c x �
 c�x� or establish that cx is

unbounded below in this LP�

Example ����

Consider the following LP

x� x� x� x� x� x	 x
 b

� � � � � � �� �

� � � � �� 	 �� �

� � � �� � � �	 �

��� � � 	 � � ��  z�x� minimize

xj � � for all j

Let x�  ��� � ��
��
� �

�
� � �� �� ��

T be the feasible solution with an objective value z�x�� 

��� Denote the coe�cient of xj in z�x� by cj � and the column vector of xj in the

constraint matrix by A�j � J  the set of subscripts of positive variables in x� is

f�� 	� �� �� �g� The set of columns fA�j � j  � to �g is linearly dependent� and a linear

dependence relation among them is

�A�� � A�� � A��  �
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So the vector �� leading to this linear dependence relation is ���� �� �� �� �� �� ��T and

z����  �� � �� The feasible solution x���� constructed in the procedure is

x���� 
��
	
� �� ��

��

	
� ��

�

	
� �� �� �� �

	T
and so ��  ��

� � ��  �
� � Since z���� � �� we choose 
  ��  ��

� � The next feasible

solution in x�����  x� is

x�  ��� �� �� �� �� �� ��T

It can be veri�ed that z�x��  �� and that x� has only � positive components� Contin


uing the procedure with x�� the set of columns to examine is fA��� A��� A��� A��g which

again is linearly dependent� with the linear dependence relation

A�� � A�� � A��  � �

The vector �� corresponding to this linear dependence relation is ��� ����� �� �� �� ��T

and z����  	 � �� The feasible solution x���� constructed in the procedure is

x����  ��� � � �� �� �� �� � � �� �� ��T

and so ��  ��� ��  �� and since z���� � �� we choose �  ��  ��� The next

feasible solution is x�����  x�� x�  ��� �� �� �� �� �� ��T � z�x��  �	� Now x� is a BFS

and it satis�es z�x�� � z�x���

Consider the LP ������� again� Suppose the data is integer� and L is the size of

this LP� Let z� be the unknown optimum objective value in this LP� If �x is a feasible

solution for this LP whose objective value is su�ciently close to the optimum objective

value� e�g� if c�x is within 	�L of z�� then the BFS obtained by applying the above

procedure beginning with �x� will be an optimum solution for the LP� by the results

proved in the ellipsoid algorithm� see Chapter � and �	�	�� and Figure ���	� This

follows because when L is the size of the LP� any BFS x satisfying� objective value

at x� z�x� � z� � 	�L� has to be an optimum BFS� by the results proved under the

ellipsoid algorithm�

x xObjective
decreasing
direction

Optimum
solution optima

Face of alternate

Figure ���� If �x is near optimal� a BFS obtained by above procedure will be

optimal� whether problem has unique optimum solution or has alternate optima�
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Thus if a near optimal feasible solution with objective value su�ciently close to

the optimum can be found� the procedure discussed in this subsection can be used to

convert it into an exact optimum solution for the LP� This result is used in Karmarkar�s

algorithm� Karmarkar�s algorithm computes a near optimal solution for an LP and

then converts it into an exact optimum solution of the problem using the procedure

discussed here�

� Karmarkar�s Algorithm

Consider the LP in the form

minimize cx

subject to x � " � S
�������

where
"  fx � Ax  �g

S 
n
x � x � ��

nX
j��

xj  �
o

A is of order m � n� Without any loss of generality we assume that the rank of A is

m� We make the Following assumptions�

�i� x�  �
n
e� where e is the column vector of all ��s in Rn is feasible to this LP�

�ii� The optimum objective value in ������� is zero�

Karmarkar�s algorithm generates a �nite sequence of feasible points x�� x�� � � �� all

of them � �� such that cxr is strictly decreasing� L denotes the size of ��������

These assumptions also imply that the rank of

��� A
eT

��� is m��� If cx�  �� by the

assumptions� x� is optimal to �������� we terminate� So we assume that cx� � �� The

method terminates when a feasible solution xr satisfying cxr �
 	�O�L� is obtained�

and then converts this approximate optimal solution xr into an exact optimal solution

as in Subsection ��

If c is a linear combination of the rows of A� cx  � at all feasible solutions x� and

so our assumptions imply that c is not a linear combination of the rows of A�

Now we shall describe the general step of the algorithm�

Step r � � � Assume we are given xr � �� xr � " � S� Let xr  a  �a�� � � � � an�
T �

Let D  diagfa�� � � � � ang  �dij� with dii  ai� i  � to n� and dij  � for i � j� So

D is a positive diagonal matrix of order n� n�

We now construct a projective transformation T � S � S� which depends on the

vector a� For x � S�

T �x� 
D��x

eTD��x
�
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It can be veri�ed that T �x� � S for all x � S� Also� if x � S satis�es x � �� so is

T �x�� So� the transformation T �x� maps every point in the relative interior of S �i� e��

a point in S which is � �� into another point in the relative interior of S� It can be

veri�ed that

T �a�  a� 
�

n
e �

If T �x�  x�� the inverse transformation yielding T���x��  x is

T���x�� 
Dx�

eTDx�
�

Associate the objective function cx with the potential function f�x� de�ned over the

intersection of " with the relative interior of S� given by

f�x� 
nX

j��

log

�
cx

xj

�

where log denotes the natural logarithm� Since all the points obtained in the algorithm

will be strictly positive� they are in the relative interior of S� and f�x� is well de�ned

at them� For x from the relative interior of S �i� e�� x � S and x � �� with T �x�  x��

de�ne the transformed potential function f ��x�� so that it satis�es f�x�  f ��T �x�� 

f ��x��� Then it can be veri�ed that

f ��y� 
nX

j��

log

�
 cy

yj

�
�

nX
j��

log�aj�

where  c  cD�

Let "� denote the tranformation of the subspace " under T � Thus

"�  fx� � ADx�  �g �

Now de�ne

"�� 



y � ADy  �

eT y  �



B 

���AD
eT

��� �

As discussed earlier� B is of full row rank� Since a � "� we have ADe  �� so a� � "���

Let �	� 	 be respectively the radii of the largest sphere with center a� contained in

the simplex S� smallest shpere with center a� containing S� See Figure �����
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S

a0

Figure ���� Inscribed sphere and circumscribing sphere

Then

	 
�p

n�n� ��
� �	 

r
n� �

n
 �n� ��	 �

For � � � � �� de�ne

B�a�� �	�  fx � jjx� a�jj � �	g �

Since � � � � �� the sphere fx �
Pn

j�� xj  �g � B�a�� �	� � S� The projective

transformation T �x�� transforms the set of feasible solutions of ������� into "�� � S�

However� T �x� does not transform cx into a linear function� But the potential function

f�x�� which depends on ratios of linear functions is transformed into another function

of the same form� f ��x��� We will show later on that a reduction in f�x� leads to a

reduction in cx� The problem of minimizing f�x� gets transformed into that of mini


mizing f ��x��� We show later on that minimizing f ��x�� can be achieved approximately

by optimizing a linear approximation�  cx��

Instead of optimizing over "�� � S in the transformed problem� we optimize over

the simpler subset "�� �B�a�� �	�� The reasons for this are explained below�

Our original problem is transformed into that of optimizing f ��x�� over "� � S�

Since n
x �

nX
j��

xj  �
o
�B�a�� 	� � S � B�a�� �	� �

n
x �

nX
j��

xj  �
o

min value of f ��x��

over "�� �B�a�� 	�
�


min value of f ��x��

over "�� � S
�


min value of f ��x��

over "�� �B�a�� �	�

Since "�� � B�a�� 	� for any 	 is a sphere� optimizing over it is much easier than

optimizing over "�� � S� To optimize f ��x�� over "�� �B�a�� 	�� we approximate f ��x��

by a linear function�  cx�� and the minimization of this linear function over "���B�a�� 	�

can be carried out very easily by the simple techniques discussed in Subsection ��
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If 
�� 
�� 
� denote the minimum value of this linear function  cx� over "���B�a�� 	��

"� � S� "�� �B�a�� �	� respectively� we have 
� � 
� � 
�� and so

 ca� � 
� �  ca� � 
� �  ca� � 
� 
� �	
	

	
� ca� � 
��

the last equation follows from the results in Subsection �� So

 ca� � 
�
 ca� � 
�

�


�

n� �

� � 
�
 ca� � 
�

�
 ��

�

n� �

So by going from the point a� to the point that minimizes  cx� over x� � "�� �B�a�� 	��

we come closer to the minimum value of the objective function by a factor of
�
�� �

n��

	
�

In practice� we optimize over a smaller subset "�� � B�a�� �	� for � � � � � for

the following reasons�

a� it allows for optimization of f ��x�� to be approximated closely by optimization of

a linear function�

b� Under �nite precision or other approximate arithmetic� it provides us a margin to

absorb errors without going outside the simplex�

See Figure ����� The choice of �  �
� works �this leads to the factor � discussed

later on in Theorem ���� to be � �
�� �� In practical implementation� one may want to

choose a value of � much closer to � for rapid convergence�

0a

αρ

Figure ���� The simplex S� and the inscribed sphere B�a�� �	� � fx �Pn
j�� xj  �g inside it� for � � � � ��

Since B�a�� �	� is a sphere with center a�� and "�� is an a�ne space containing the

point a�� the intersection "�� �B�a�� �	� is a lower dimensional sphere� As discussed

in Subsection � above� minimizing a linear function over the lower dimensional sphere

"���B�a�� �	� requires taking a step from the center a�� in the direction of the negative

gradient� with step length equal to the radius of the sphere� in the a�ne space "��� We

provide the details of this algorithm�
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Subroutine to minimize  cx� Over x� � "�� �B�a�� �	�

First project  c orthogonally onto the subspace fy � By  �g� This yields

 cp   c
�
I � BT �BBT ���B

�
If  cp  �� the objective function will have the same value at all feasible solutions�

contradicting our assumptions� So  cp � �� Let

#cp 
 cp
jj cpjj

g�  a� � �	#cp

Then g� is the point which minimizes  cx� over x� � "�� �B�a�� �	�� We will prove this

in Theorem ���� given below�

Now de�ne

xr��  T���g�� 
Dg�

eTDg�
�

If cxr��  �� xr�� is optimal to �������� terminate� If cxr�� � � but su�ciently

small �i� e�� cxr�� � 	�O�L�� terminate with the conclusion that xr�� is near optimal

to ������� and convert it into an exact optimal solution as in Subsection �� If these

conditions are not satis�ed� go to the next step�

Proof of the Algorithm and its Polynomial Boundedness

Theorem ���� The vector g� minimizes  cx� over x� � "�� �B�a�� �	��

Proof� Let z � "�� � B�a�� �	�� Since "�� is an a�ne space and both g�� z � "��� we

have B�g� � z�  �� So� BT �BBT ���B�g� � z�  �� Therefore � c �  cp��g
� � z�  ��

Thus  c�g� � z�   cp�g
� � z�  jj cpjj#cp�a� � �	#cTp � z�  jj cpjj

�
#cp�a

� � z� � �	
�
�since

#cp#c
T
p  jj#cpjj  ��� But� #cp�a

� � z� � jj#cpjj jja� � zjj �by Cauchy
Schwartz inequality�

 jja�� zjj �since jj#cpjj  �� � �	� since z � B�a�� �	�� Therefore #cp�a
�� z���	 � ��

and therefore by the above  c�g� � z� � �� Hence�  cg� �  cz for all z � "�� �B�a�� �	��

that is� g� minimizes  cx� over x� � "�� �B�a�� �	��

Theorem ���� There exists a point �x � "�� �B�a�� �	� such that

either �i�  c�x  �

or �ii� f ���x� � f ��a��� �

where � is a positive constant depending on ��

Proof� Let x� minimize cx over " � S� By hypothesis cx�  �� De�ne �  D��x�

eTD��x�
�
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Case � � � � B�a�� �	�� In this case let �x  �� Then �x � "�� �B�a�� �	� and  c�x  ��

so �i� is satis�ed�

Case � � � �� B�a�� �	�� In this case� let �x be the point at which the line segment

joining a� with � intersects the boundary of the sphere B�a�� �	�� Then �x  �����a��

�� for some � � � � �� Since a� and � are in "��� so is �x� So �x � "�� �B�a�� �	�� and

 c�x  ��� �� ca� � � c�  ��� �� ca� �since  c�  cD�  � because cx�  ��� So

 ca�

 c�x


�

�� �
�����	�

Now

f ��a��� f ���x� 
nX

j��

log

�
 ca�

a�j

�
�

nX
j��

log

�
 c�x

�xj

�


nX

j��

log

��  ca�
 c�x

	� �xj
a�j

	�


nX

j��

log

�
�xj

��� ��a�j

�
by �����	�


nX

j��

log

�
��� ��a�j � ��j

��� ��a�j

�


nX

j��

log

�
� �

� �

�� �

	� �j
a�j

	�
It can easily be veri�ed that if 
i � � for all i� then the product

Q
i�� � 
i� � � �P

i 
i� Taking logs on both sides we have
P

i log�� � 
i� � log�� �
P

i 
i�� Applying

this to the above� we have

f ��a��� f ���x� � log

�
� �

�
�

���

	Pn

j��
�j

���n�

�
� since a�j  �n for all j

�
 log

�
� � n�

���

	
� since

Pn
j�� �j  �

Now� �x  �� � ��a� � ��� So �x � a�  ��� � a��� Since �x is on the boundary of

the sphere B�a�� �	�� we have jj�x � a�jj  �	� so from the above �	  jj�x � a�jj 

�jj� � a�jj � ��	� So � �


����

��  �
n�� � So

� �
n�

�� �
�
 � �

n
�

�
n��

�
��

�

n� �

 � �
n�

n� �� �
�
 � � �

Therefore� from the above

f ��a��� f ���x� � log�� � ��

Thus taking �  log�� � �� establishes �ii��
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Lemma ���� Let 
 be a real number� If j
j � � � � then jlog���
��
j �
��

������� �

Proof� Let ��
�  log�� � 
�� Then

d

d

��
� 

�

� � 

� and

d�

d
�
��
� 

��

�� � 
��
�

By the mean value theorem of calculus applied to the function log�� � 
�� we have

log�� � 
�  log��� � 

� d
d


��
�
	
���

�

�

	

� d�
d
�

���
�
	

for some �
 satisfying j�
j � j
j� So

log�� � 
�  
 �

�

	

� �

�� � �
��

	
jlog�� � 
�� 
j 


�

	

� �

�� � �
��

	
�



�

	��� ���

Lemma ���� Let �  �
q

n
n�� � Then������

nX
j��

log
�xj
aoj

	������ � ��

	��� ���
for all x � B�a�� �	� � S �

Proof� Let x � B�a�� �	� � S� Then jjx� a�jj� � ��	�� So �since a�j 
�
n for all j�

nX
j��

�xj � a�j
a�j

	�
�


��	�

��n��
 ��	�n� 

��n�

n�n� ��
 ��

So�
���xj�a�ja�

j

��� � � for all j� Therefore� by Lemma ���������log�� � xj � a�j
a�j

	
�
�xj � a�j

a�j

	����� � �xj � a�j
a�j

	�� �

	��� ���

	

!� �

������
nX

j��

log
�xj
a�j

	
�

nX
j��

�xj � a�j
a�j

	������
�


� �

	��� ���

	�� nX
j��

�xj � a�j
a�j

	��A
�


��

	��� ���

This implies that

����� nP
j��

log
�xj
a�
j

������ � ��

������� � since
nP

j��

�
xj�a

�

j

a�
j

	
 �

n

�
nP

j��

�xj � a�j�

�
 �

�as x and a� � S��
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Theorem ���� The point g� which minimimizes  cx� over x� � "���B�a�� �	� satis�es

either �i�  cg�  �

or �ii� f ��g�� � f ��a��� �

where � is a constant depending on �� If �  �
� � � �

�
�� �

Proof� De�ne
#f�x�  n log

�  cx

 ca�

	
�

Let h be the point where f ��x�� achieves its minimum value over x� � "�� �B�a�� �	��

Then�

f ��a��� f ��g�� f ��a��� f ��h� � f ��h�� f ��g��

�f ��a��� f ��h�� �
�
f ��h��

�
f ��a�� � #f�h�

��
�
�
f ��g���

�
f ��a�� � #f�g��

��
�
�
#f�h�� #f�g��

� �������

Now if the minimum value of  cx� over x� � "�� �B�a�� �	� is zero� condition �i� of the

theorem holds trivially� Let us assume that this is not the case� Then by Theorem

���	

f ��a��� f ��h� � log�� � �� � �������

For x� � B�a�� �	� � "��� we have

f ��x���
�
f ��a�� � #f�x��

�


nX
j��

log
� cx�
x�j

	
�

nX
j��

log
� ca�
a�j

	
� n log

�  cx�
 ca�

	
 �

nX
j��

log
�x�j
a�j

	
So ��f ��x��� �f ��a�� � #f�x��

���  ���� nX
j��

log
�x�j
a�j

	����
�


��

	��� ���
by Lemma ���	

�������

But #f�x�� depends on  cx� in a monotonically increasing manner� So #f�x�� and  cx�

attain their minimum value over x� � "�� �B�a�� �	� at the same point� that is g�� So

#f�h� �
#f�g�� � �������

Now from ������� we have� for x� � "�� �B�a�� �	��

f ��x���
�
f ��a�� � #f�x��

�
�
 �

��

	��� ���
� �������
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Also "�� � "�� So both h and g� � "�� From �������� �������� �������� �������� ��������

we have

f ��a��� f ��g�� � log�� � ���
��

��� ���
�

We know that log�� � �� � �� ��

�
� for � � � � �� Also

��

��� ���


��n

�n� ��
�
�� �

�
n

n��

� �
�

	�
So from the above� we have

f ��a��� f ��g�� � ��n�  ��
��

	
�

��n

�n� ��
�
�� �

�
n

n��

� �
�

	�
As n��� ��n�� �� ��

� � ��

������ � If n �
 �� �  �

� � we have ��n� �
�
�� �

Theorem ���� Either cxr��  �� or f�xr��� � f�xr� � �� where � is a constant

depending only on �� as in Theorem �����

Proof� We have proved in Theorem ���� that either  cg�  �� or f ��g�� � f ��a�� � ��

Now
xr  T���a��

xr��  T���g��

f ��T �x��  f�x� for all x � S �

So� by applying T��� we have from the above� that either cxr��  �� or f�xr��� �
f�xr�� ��

Theorem ���� In O
�
n�l� log n�

�
steps� the algorithm �nds a feasible point x � �

such that
either cx  �

or cx
ca�

�
 	�l

Proof� Suppose cxr  � did not occur in the �rst N steps� Then� by Theorem ����

f�xr� � f�xr���� �� for r  � to N

!� � f�xr� � f�x��� r�

!� �
nP

j��

log
�
cxr

xr
j

	
�


nP
j��

log
�
ca�

a�
j

	
� r�

i� e�� n log
�
cxr

ca�

	
�


nP
j��

log�xrj��
nP

j��

log�a�j�� r�

�
 n log�n�� r�� since xrj � � and a�j 

�
n for all j

!� � log
�
cxr

ca�

	
�
 log n� r�

n �



��� Chapter ��� New LP Algorithms and Some Open Problems

So if r 
�
n
� �l � log n�

�
� we have

log
�cxr
ca�

	
�
 �l

i� e��
�cxr
ca�

	
�
 	�l

The computation in each step involves O�n�� arithmetic operations on the data in the

worst case� By Theorem ���� and the termination conditions used in the algorithm

it has to run for at most O�nL� steps� to come within 	�O�L� of the optimum� at

which point we round the solution to get an exact optimum solution as discussed in

Subsection �� So� the algorithm needs at most O�n�L� arithmetical operations on the

data in the worst case� it is clearly polynomially bounded�

The �nal operation of converting the near optimal solution obtained at the ter


mination of the algorithm into an exact optimal solution as discussed in Subsection

� could be computationally expensive �it may need up to O�n� pivot steps�� In most

practical applications the data usually consists of unknown error terms and it makes

sense to take the near optimal solution as it is� without the expensive �nal conversion�

In practical LP applications� because of unknown errors in the data� a near optimal

and aproximately feasible solution to the model is the usual goal� and Karmarkar�s

algorithm is well suited to achieve this goal�

	 E
cient Implementation of the Karmarkar Algorithm

The major piece of computation in each step of the algorithm is the computation of the

projection  cp   c�I � BT �BBT ���B�� For this we have to �nd the inverse� �BBT ����

Since B 

���AD
e

���� we have

BBT 

���AD�AT ADe
�ADe�T eTDe

��� 

���AD�AT �
� �

���
since the point a used in de�ning the diagonal matrix D is in S� and a�  e

n
� "���

�BBT ��� can be found e�ciently if �AD�AT ��� can be� The only thing that changes

in AD�AT from step to step is the diagonal matrix D� Let Dr  diag�dr��� � � � � d
r
nn�

denote the diagonal matrix D in step r� We do not compute �AD�AT ��� in each step

from scratch� Instead we update it to the extent necessary as we move from one step

to the next�

If Dr and Dr�� di�er in only one entry� the inverse of AD�
r��A

T can be computed

in O�n�� arithmetic operations from AD�
rA

T � For this� consider a nonsingular square

matrix M of order n� u  �u�� � � � � un�
T � v  �v�� � � � � vn�

T � Then the Sherman


Morrison formula states that

�M � uvT ���  M�� �
�M��u��M��v�T

� � uTM��v
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uvT is a rank
one modi�cation of M � and the formula shows that computation of

�M � uvT ��� can be done with O�n�� arithmetical operations given M��� If Dr and

Dr�� di�er in only the ith diagonal entry� then

ADr��A
T  AD�

rA
T �

��
dr��ii

��
�
�
drii
��	

A�i�A�i�
T �

So� in this case AD�
r��A

T is obtained from a rank
one modi�cation of AD�
rA

T � and

the above formula can be used to get �AD�
r��A

T ��� from �AD�
rA

T ��� with O�n��

arithmetical operations� If Dr and Dr�� di�er in t diagonal entries� we can perform

t successive rank
one updates as above and obtain �AD�
r��A

T ��� from �AD�
rA

T ���

with O�n�t� arithmetical operations�

We now show that with a simple modi�cation of the algorithm� we get a version

in which �AD�
rA

T ��� can be used in place of �AD�
r��A

T ��� as long as Dr and Dr��

are close in some sense�

We de�ne the diagonal matrix D  diag�d��� � � � � dnn� as an approximation to

Dr��  diag �dr���� � � � � � dr��nn � if

�

	
�


� �dii

dr��ii

	�
�
 	 for all i �

We will now analyse the e�ect of replacing Dr�� by such a D� Consider the following

modi�cation of the optimization problem over the inscribed sphere in the transformed

space�
minimize  cx�

subject to x� � "��

and h�x��  �x� � a��TQ�x� � ao� � ��	
�������

where Q is some positive diagonal matrix� Taking Q  I and ��  � corresponds to

the original problem used in Subsection ��

Letting the row vector �� and scalar � to be the Lagrange multipliers for ��������

the KKT conditions for ������� imply

 c� �B � 	��x� � a��TQ  �

!� �  cQ��BT  �BQ��BT � 	��x� � a��TBT

 �BQ��BT

since both x�� a� � "�� implies that B�x��a��  �� Using this we conclude that the op


timum solution of �������� x�� satis�es �x��a��T  
 c
�
I�Q��BT �BQ��BT ���B

�
Q��

where 
 is a positive scalar to be determined so that x� satis�es �x��a��TQ�x��a�� 

��	� Computation of this requires �BQ��BT ���� Substituting B 

���ADr��

eT

��� we get

BQ��BT 

���ADr��Q
��Dr��A

T ADr��Q
��e

ADr��Q
��eT eTQ��e

��� �
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If the inverse of ADr��Q
��Dr��A

T is known� �BQ��BT ��� can be computed with

O�n�� arithmetical operations using the formula���M p
pT q

��� 
�

q � pTM��p

���� �q � pTM��p�M�� � �M��p��M��p�T �� �M��p

��M��p�T �� �

����
Suppose D  Dr��E where E is a diagonal error matrix such that E  �eij� with
�
�
�
 e�ii � 	 for all i� and we know �ADAT ���� Then setting Q  E��� we have

ADr��Q
��Dr��A

T  ADAT � So using the known �ADAT ���� we can compute the

optimum solution of the modi�ed problem ������� using the above formulae�

Now we relate the solution of ������� to the main optimization problem� Since

Qii  e��ii �
�
�
� � 	
�
� we have

�

	
�x� � a��T �x� � a�� � �x� � a��TQ�x� � a�� � 	�x� � a��T �x� � a��

B
�
a��
� ��
	

�
	
	
	 fx� � �x� � a��TQ�x� � a�� � ��	g

	 B�a�� 	��	� �

Take ��  �
� where � is the quantity used in Subsection � �there� we used typically

�  �
� �� So

B
�
a��
��
�

�
	
	
� "�� 	 fx� � x� � "�� and �x� � a��TQ�x� � a�� � ��	g

	 B�a�� �	� � "�� �

From the �rst inclusion we have

minimum value of f ��x��

subject to x� � "��

and �x� � a��TQ�x� � a�� � ��	

�


minimum value of f ��x��

subject to x� � "�� �B
�
a��
�
�
�

�
	
	

and by Theorem ���	 we have

minimum value of f ��x��

subject to x� � "�� �B
�
a��
�
�
�

�
	
	 �

 f ��a��� log
�
� �

�

�

�
�

So� for �g�� the optimum solution corresponding to the modi�ed problem �������� we

can claim

f ���g�� � f ��a��� log
�
� �

�

�

�
and if we de�ne �xr��  T����g��� we can as in Theorem ����� claim

f��xr��� � f�xr�� ��

where �� is rede�ned as

��  log
�
� �

�

�

�
�

��

	��� ���
�
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This a�ects the number of steps by only a constant factor and the algorithm still works�

So� this is what we do� to implement the modi�ed algorithm in an e�cient manner�

We maintain �AD�AT ���� We do not change all diagonal elements of D in each step�

Let y  �y�� � � � � yn�
T be the new solution at the end of a step� It is time to update

�AD�AT ���� Before� we de�ned the new D to be diag �y�� � � � � yn�� Instead� we modify

D in two stages�

Compute �  �
n

Pn
j��

yj
djj

where djj are the diagonal entries in the current D�

First multiply D by �� this needs dividing �AD�AT ��� by �� to update it accordingly�

This completes stage ��

Then� for each j  � to n� if in the matrix D at the end of stage ��
�djj
yj

��
��
�
�
� � 	
�
�

reset djj  yj and update �AD�AT ��� corresponding to this change by a rank
one

modi�cation as discussed above�

In essence� we carry out fewer updating operations by optimizing �after the pro


jective transformation� over an inscribed ellipsoid �dashed in Figure ����� and not the

inscribed sphere� �Of course we do not optimize over this sphere or ellipsoid exactly�

but scale it by � or �� before the optimization�� We make enough updating operations

to make sure that the current D matrix and current solution y always satisfy
�djj
yj

��
��

�
� � 	
�
� this insures that the ellipsoid is close to the inscribed sphere

Figure ����

We still need only O�nL� steps to shrink the objective value by the required factor

of 	�O�L�� With this modi�cation� N � Karmarkar has shown in ����	� that we need to

do only O�n
�

�L� updating operations� Since each updating operation requires O�n��

arithmetic operations on the data� the overall algorithm needs O�n���L� arithmetic

operations on the data in the worst case� with this modi�cation�
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� The Sliding Objective Function Method

From Subsection �� it is clear that Karmarkar�s algorithm solves LPs for which the

optimum objective value is known to be zero� As shown in Subsection �� any LP can be

transformed into one with this property� but this transformation increases the number

of constraints and blows up the order of the problem� and hence may be undesirable in

practical applications� In this subsection� we discuss a sliding objective value approach

that can be used to solve the original problem by itself using Karmarkar�s algorithm�

when the optimum objective value is unknown�

For a given LP� the �rst problem is to determine whether it is feasible or not� Let

the system of constraints be
Ax  b

x � �

where A is of order m� n� As shown in Subsection 	� to check whether this system is

feasible� we solve the following LP with the arti�cial variable xn��� Let x
� � � be any

vector�
minimize xn��
subject to Ax� xn���Ax

� � b�  b

x � �� xn�� � �
�������

�x�� �� � � is a feasible solution to this problem� The original problem is feasible i�

the optimum objective value in this problem is zero� Even though the exact optimum

objective value in this problem is unknown� we know that it lies between � and �� Using

it� this problem could be solved by Karmarkar�s algorithm with the sliding objective

value approach discussed below�

Now consider the general LP

minimize cx

subject to Ax  b

x � �
����	��

This problem can be solved in two stages� First we check whether it is feasible� as

discussed above� If a feasible solution �x is obtained� c�x is an upper bound on the

optimum objective value in ����	��� We could then check whether the dual problem

is feasible� If the dual is infeasible� from the duality theory of linear programming we

know that cx is unbounded below in ����	�� �since ����	�� has already been veri�ed to

be feasible�� If the dual is feasible� the dual objective value at the dual feasible solution

obtained is lower bound on the optimum objective value in ����	���

Now� consider the LP in the form discussed in �������

minimize dx

subject to x � " � S

where "  fx � Ax  �g

S  fx � x �
 ��

Pn
j�� xj  �g

����	��
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where A is a matrix of order m�n and rank m� We assusme that an optimum solution

exists and that the optimum objective value is known to be between the given lower

and upper bound l�� u� �if the original problem is transformed directly into this form

using the techniques discussed in Subsections 	� �� we could take l�  �	L and u�  	L�

where L is the size of the problem� under the assumption that an optimum solution

exists�� The di�erence between the current lower and upper bounds on the objective

value is called the range� The sliding objective value approach is divided into several

phases� At the end of each phase the range reduces to at least �
�
of its length at the

beginning of the phase and takes no more than n�k�log�n�� steps where k is a constant

satisfying �
��

�

n

	kn
�


�

	
�

Let z� denote the unknown optimum objective value in ����	��� We run the algorithm

pretending that a selected value� �z is the minimum objective value �the value of �z

is updated at the beginning of each phase�� that is� we try to minimize dx � �z 

�d� �zeT �x� This leads to the problem

minimize cx

subject to x � " � S

with c  d� �zeT � We need to modify the computation of the vector g� in each step of

the algorithm as follows� Compute g� as in the subroutine discussed in Subsection ��

Check if  cg� � �� If so� choose the point g�� on the line segment joining a� and g� which

satis�es  cg��  �� and make the point g�� the output of the subroutine instead of g��

If z� � �z� let xm be the point where  cx achieves its minimum over "���B�a�� �	��

If  cxm � �� then de�ne x� to be the point on the line segment joining a� and xm

satisfying  cx�  �� Then all the proofs go through� and each step of the algorithm

leads to a reduction of � in the potential function or �nds a point where the original

objective function is �z�

Now a phase in the sliding objective value approach consists of the following� Let

l� u be the current lower and upper bounds for the objective value dx at the beginning

of the phase� Let

�l  l�
�

�
�u� l�

�u  l�
	

�
�u� l�

l ul u

Figure ����

Run the algorithm as described above with �z  pretended minimum objective

value  �l�
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If we obtain a feasible solution x which satis�es dx � �u� then terminate the phase�

make dx the new upper bound u� and go to the next phase with the new bounds for

the objective value�

Suppose after n�k � log�n�� steps we have not reached a solution x with dx � �u�

If z� �
�l� we must have achieved a reduction � in the associated potential function in

each step� forcing the objective value dx to be � �u� So� if after n�k� log�n�� steps we

have not reached a solution x with dx � �u� we must have z� �
�l� So make �l the new

lower bound l� and go to the next phase with the new bounds for the objective value�

Thus the length of the range gets multiplied by a factor �
� or less during each

phase� So after O�L� phases �i� e�� after O�nL log n� steps� we narrow the range to

within 	�O�L� of the optimum objective value� and then obtain the exact optimum

solution from the solution at that stage�

� Implementation Di
culties

Consider the LP in standard form� �nd y � Rn to

minimize gy

subject to Gy  d

y � � �
����		�

The primal simplex algorithm for solving this problem processes the problem as it is

in ����		�� It performs a sequence of operations on the data G� d� g until the problem

is solved�

To solve ����		� by Karmarkar�s algorithm in the form discussed in Subsection ��

we have to �rst convert the problem into the form �������� As pointed out in Subsection

�� we add the additional constraint

nX
j��

yj � yn��  M �

Mathematically� takingM to be 	L where L is the size of the LP ����		�� would su�ce�

but in practical implementations M could be any practically reasonable upper bound

for
Pn

j�� yj in the problem� Using this additional constraint� ����		� is transformed

into the form
minimize gy

subject to Gy �
�

�
M

	
d

�
n��P
j��

yj

�
 �

n��P
j��

yj  �

y � �� j  � to n� �

����	��

which is in Karmarkar�s form�
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LP models arising in practical applications lead to problems of the form ����		� in

which the coe�cient matrix G is very sparse� that is� most of the entries in it are zero�

Commercial implementations of the primal simplex algorithm exploit this sparsity and

are able to take tremendous advantage of it� When the problem is transformed into

the form ����	�� as discussed above� the resulting coe�cient matrix A is usually totally

dense� that is� almost all the entries in it are nonzero� This makes it very di�cult to

produce a practically viable implementation of Karmarkar�s algorithm� at least for the

algorithm in the form that is stated above� One may be able to overcome this problem

by not computing A explicitly� but storing it as G�
�
�
M

�
deT �

Now� consider the LP in the following form

minimize cx

subject to Ax  �

eTx  �

x �
 �

����	��

The primal simplex algorithm would solve ����	�� by performing operations on

the constraint matrix A directly� Karmarkar�s algorithm operates on AAT or AD�AT

where D is a positive diagonal matrix� The computation of this matrix product is an

additional burden in Karmarkar�s algorithm� In fact an implementation of Karmarkar�s

algorithm which maintains �AD�AT ��� in any form and updates it exactly from step

to step in the algorithm� is not likely to be competitive with e�cient implementations

of the primal simplex algorithm�

Let Dr denote the diagonal matrix in step r�� of Karmarkar�s algorithm applied

to ����	��� The computations �as discussed in Subsections �� �� in this step of the

algorithm can be carried out by doing the following�

First solve the following system of equations for the row vector of variables u 

�u�� � � � � um�

u�AD�

rA
T �  cD�

rA
T � ����	��

Let ur denote the exact solution of this system� Then compute the � � n row vector

 crp from

 crp  cDr � urADr � cDree
T �

This � crp�
T is the direction for moving from a� to the boundary of the sphere B�a�� �	�

in this step� It provides the steepest descent direction for minimizing the linear function

 cx� over "�� � B�a�� �	� in this step� See Figure ����� In reality� we dot not need  crp
exactly� Any approximate vector #crp that makes a strict acute angle will be adequate

�the closer this angle is to � the better�� it produces a decrease in objective function

which may su�ce in practice�
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Figure ���� Steepest descent direction  crp for linear objective funtion  cx in

step r� Approximate descent direction #crp�

The key point is to get an approximate solution �ur for ����	�� e�ciently� so that if

#crp  cDr � �urADr � �cDree
T �

that would satisfy #crp c
r
p � � �acute angle condition�� We also need ADr#c

r
p  � and

eT #crp  �� so that moving from a� in the direction #crp keeps the point within "��� Also

given the approximate �ur� how to update it into �ur�� that works for the �r��� in step

the same way� when Dr changes to Dr��� Some iterative methods for solving linear

equations that produce approximate solutions e�ciently may provide the key to this

computation� and these are being investigated�

Also� once the direction of movement #crp is obtained� in practical implementations

one may want to move all the way closer to the boundary of the simplex� rather than to

the boundary of the insphere B�a�� �	� as indicated in Figure ����� Since the simplex

is determined by linear constraints� this can be done e�ciently through a minimum

ratio computation to determine how far you can move in this direction while retaining

feasibility� and you can stop just a little bit short of it�

These and various other ideas are being explored for producing a practically useful

implementation of Karmarkar�s algorithm�

� Solving Quadratic and Convex Programs

by Karmarkar�s Approach

It should be possible to extend Karmarkar�s algorithm to solve convex quadratic pro


grams and LCPs associated with PSD matrices� and possibly even smooth nonlinear

convex programming problems� These extensions� and the best implementations of

them� are now active research topics�
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������ Tardos� New Strongly Polynomial Minimum Cost

Circulation Algorithm

Consider a directed single commodity �ow capacitated network with n nodes and m

arcs� In ������ E� Tardos developed an algorithm for �nding a minimum cost cir


culation in this network� with worst case computational complexity of O�m
�

�n�� or

O�m�n� log m� with some improvements� She has applied the idea of this algorithm

and developed an algorithm to solve the general linear programming problem

minimize cx

subject to Ax  b

x � �

in time polynomial in the size of A�

It remains to be investigated whether this approach can be extended to solve LCPs

�q�M� when M is PSD� in time polynomial in the size of M �

������ The Ellipsoid Method for Linear Programming

A version of the ellipsoid method for solving linear programming problems is presented

in Chapter �� of �	�	��� The approach outlined there� uses a scheme suggested by

P� Gacs and L� Lov$asz in a terminal step in order to obtain an optimum solution of

the LP� Here we show how that terminal step can be replaced by a much more e�cient

scheme similar to the one discussed in Subsection � of Section ������� This has been

suggested by R� Chandrasekaran and K� Truemper�

Consider an LP with rational data� By the techniques discussed in Section ��	

and by scaling� this LP can be transformed into the problem

min cu� Fu � g� u � � ����	��

where F � g� c are integer matrices� Let v denote the column vector of dual variables�

By the duality theorem of linear programming �also see Subsection � of Section �������

solving this LP is equivalent to solving the system of linear inequalities ����	���

�Fu �
 �g

FT v �
 cT

cu �gT v �
 �

�u �
 �

�v �
 �

����	��

Let x 

���u
v

���� The system ����	�� is a system of linear inequalities in which all

the coe�cients are integer� Let D� b denote the coe�cient matrix and right hand
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side constants vector in ����	��� including the sign restrictions on the variables� Then

����	�� can be written as

Dx �
 b � ����	��

Let D be of order m�n� and L be the size of ����	�� �that is� L is the total number of

binary digits in all the data in ����	��� see Section ����� Let L�  �
�
�m����n�����

�
L�

As in Section ���� of �	�	��� consider the perturbed system

	L��Di�x� � 	L�bi � �� i  � to m ����	��

����	�� is now an open system of linear inequalities with integer data� and hence it can

be solved by the ellipsoid method discussed in Section ���	 of �	�	�� in polynomial time�

The method begins with an arbitrary point x� � Rn� and the matrix A�  	����L��I�

where I is the unit matrix of order n� and generates the sequence �xr� Ar�� r  �� 	� � � �

using the iterative scheme ����� discussed in Section ���� For some r� if xr satis�es

����	��� de�ne #x to be that feasible xr and go to the terminal step discussed below�

If xr violates ����	��� �nd a constraint in ����	�� violated by xr� suppose it is the pth

constraint in ����	��� Then de�ne a  	L�Dp� and d  � � 	L�bp� and compute 
r��
as in ����� using this a� d� xr and Ar� If 
r�� � ��� ����	�� is infeasible� terminate the

ellipsoid algorithm� If 
r�� � ��� compute xr��� Ar�� as in ������ and continue�

If the ellipsoid algorithm continues for r  � to ��n�����m����n����L�L�� steps

and all the points xr obtained in the algorithm are infeasible to ����	��� terminate with

the conclusion that ����	�� has no feasible solution� The proofs of this and the other

infeasibility conclusion stated earlier� are given in Chapter �� of �	�	��� Under this

infeasibility termination� ����	��� that is� ����	��� has no feasible solution� this implies

that either the LP ����	�� is infeasible� or it is feasible and the objective function is

unbounded below on its set of feasible solutions� we terminate�

Otherwise� let #x be the feasible solution for ����	�� obtained by the ellipsoid

algorithm discussed above� If #x 

��� #u
#v

��� is feasible to ����	��� then #u is an optimal

solution of ����	�� and #v is an optimal dual solution� terminate� If not� consider the

following system�

Dx� �Dx� � It  b� e	�L� �������

where x�  �x�� � � � � � x
�
n �� x

�  �x�� � � � � � x
�
n �� t  �ti� � Rm and e is the column

vector in Rm of all ��s� De�ne for j  � to n

#x�j 

�
� if #xj � �
#xj if #xj � �

#x�j 

�
j#xjj if #xj � �
� if #xj � �

#ti  �Di� #x� bi � 	�L�

#x�  �#x�j �� #x�  �#x�j �� #t  �#ti�

Then �#x�� #x�� #t� is feasible to �������� Using the method discussed in Subsection � of

Section ������� or Section ����� of �	�	�� �here there is no objective function involved� so



����� New Approaches for Linear Programming �	�

we just apply this method without worrying about the objective value�� obtain a BFS

� x��  x��  t� � R�n�m to �������� Denote the vector �x�� x�� t� � R�n�m by y and let

 y  � x��  x��  t�� Since  y is a BFS of �������� there exists a basis B� a square submatrix

of �D
����D

��� I� of order m� so that  y  � yB�  yE� is given by

 yE  �

 yB  B���b� e	�L�� �
�������

Here E is the submatrix of �D
����D

��� I� consisting of all the columns other than those

in B� and yB� yE are the basic� nonbasic vectors of variables yj corresponding to the

basic� nonbasic partition �B
��� E� of �D

����D
��� I�� Now de�ne the vector y�  �y�B� y

�
E�

by
y�E  �

y�B  B��b
�����	�

and let y�  �x��� x��� t�� in terms of the original variables� Let

x�  x�� � x�� �

The vector y� is the basic solution of the system

Dx� �Dx� � It  b �������

corresponding to the basis B� By Theorem ���� of �	�	��� jdeterminant of Bj � 	L�

and hence using an argument similar to that in Theorem ���	 of �	�	�� we have� for

i  � to m

either t�i  � or jt�i j � 	�L � �������

Let J  fi � � � i � m� and i such that ti is a basic variable corresponding to the basis

Bg� So� from the de�nition of  y� and from �������� �����	�� we have

 ti 

�
�� for all i �� J

t�i � �B��e	�L��i� for i � J �
�������

From well known results in the theory of determinants� B�� is the adjoint of B mul


tiplied by a scalar� which is the inverse of the determinant of B� The determinant

of the basis B is a nonzero integer and hence has absolute value � �� Each entry in

the adjoint of B is the determinant of a square submatrix of B� by Theorem ���� of

�	�	�� its absolute value is �
�L

n � So j�B��e	�L��ij �
m�L

n�L�
�


�L

�L�
�
 	�nL� But  y is

a BFS of �������� so  ti � � for all i� Using this and ������� in ������� we conclude

that t�i must be �
 � for all i � J� We already know that t�i  � for all i �� J� So

t� � �� This clearly implies that x� is feasible to ����	��� Therefore if x� 

���u�

v�

����

u� is an optimum solution of ����	�� and v� is an optimum dual solution� From u�� a
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basic feasible optimum solution of ����	�� can be obtained by the method described in

Subsection � of Section �������

The ellipsoid method is the �rst mathematical device used to prove that linear

programming is in the class P of problems solvable in polynomial time� The modi�ed

terminal step given above is not adequate to make the ellipsoid method practically

useful� However� the ellipsoid method remains a very important mathematical tool in

the study of computational complexity of optimization problems�

������ The Gravitational Method for Linear Programming

Here we brie�y describe an interior point variant of the gradient projection method for

linear programming proposed by K� G� Murty ������ ������ We consider the LP in the

following form
minimize z�x�  cx

subject to Ax �
 b

�������

where A is a matrix of order m � n� Sign restrictions on the variables and any other

lower or upper bound conditions on the variables� if any� are all included in the above

system of constraints� Clearly every LP can be put in this form by well known simple

transformations discussed in most LP textbooks �for example� see �	�	����

Note� In practical applications� it usually turns out that the LP model for a practical

problem is in standard form
min p�

subject to B�  d

� �
 ��

�������

The dual of this model is directly in form ������� and the gravitational method can

be applied to solve the dual of ������� directly� As it will be shown later on� when the

gravitational method is applied on the dual of �������� at termination� it will produce

an optimum solution for �������� if one exists�

Assumptions

Let K denote the set of feasible solutions of �������� We assume that K � �� and that

K has a nonempty interior in Rn� and that an initial interior feasible solution x� �this

is a point x� satisfying Ax� � b� of ������� is available�

If these assumptions are not satis�ed� introduce an arti�cial variable xn�� and

modify the problem as follows

minimize cx� vxn��
subject to Ax� exn�� � b� xn�� � �

�������
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where e  ��� � � � � ��T � Rm and v is a large positive number� For any  x � Rn� let

 xn�� � maxfjminf�� Ai� x� bigj � i  � to mg� then � x�  xn��� satis�es the constraints

in ������� as strict inequalities� Thus the modi�ed problem ������� satis�es all the

assumptions made in the above paragraph�

We also assume that c � �� as otherwise x� is optimal to �������� and we can

terminate�

The Gravitational Method

The Euclidean distance of x� from the hyperplane fx � Ai�x  big is �Ai�x
��bi�kAi�k�

The gravitational approach for solving ������� is the following� Assume that the

boundary of K is an impermeable layer separating the inside of K from the outside�

Introduce a powerful gravitational force inside K pulling everything down in the di


rection �cT � Choose � � � � minf�Ai�x
� � bi�kAi�k � i  � to mg� Release a small

spherical n
dimensional drop of mercury of diameter 	� with its center at the initial

interior feasible solution x� � K� The drop will fall under the in�uence of gravity� Dur


ing its fall� the drop may touch the boundary� but the center of the drop will always

be in the interior of K at a distance � � from the nearest point to it on the boundary�

Whenever the drop touches a face of K� it will change direction and will continue to

move� if possible� in the gravitational direction that keeps it within K� If the objective

function is unbounded below in �������� after changing direction a �nite number of

times� the drop will continue to fall forever along a half
line in K along which the

objective function diverges to ��� If z�x� is bounded below on K� after changing

direction a �nite number of times� the drop will come to a halt� The algorithm tracks

the path of the center of the drop as it falls in free fall under the in�uence of gravity�

Let P denote this path of the center of this drop in its fall�

The Gravitational Direction at an Interior Point x � K

Suppose a drop of radius �� with its center at x is inside K� So

�Ai�x� bi�kAi�k � �� i  � to m� �������

At every point x on the locus P of the center of the drop in the gravitational method�

������� will always be satis�ed� Given a point x on P� de�ne

J�x�  fi � �Ai�x� bi�kAi�k  �g� �������

The hyperplane fx � Ai�x  big is touching the drop of radius � when its center is at

the interior point x � K only if i � J�x�� Now� de�ne

y�  �cT kck� �������
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If J�x�  � �i� e�� if �Ai�x � bi�kAi�k � � for all i  � to m�� when the drop is in

a position with its center at x� it will move in the gravitational direction y�� The

distance that it will move in this direction is

�  minimum
� �Ai�x� bi�� �kAi�k

�Ai�y�
� � � i � m and i such that Ai�y

� � �
�

�����	�

where we adopt the convention that the minimum in the empty set is ��� If �  ��

in �����	�� then the drop continues to move inde�nitely along the half
line fx� �y� �

� �
 �g� and z�x� is unbounded below on this feasible half
line� terminate� If � is �nite

in �����	�� at the end of this move� the drop will be in a position with its center at

x � �y�� touching the boundary of K� and it will either halt �see the conditions for

this� discussed later on� or change direction into the gravitational direction at x� �y�

and move in that direction�

When x is such that J�x� � �� that is�

minf�Ai�x� bi�kAi�k � i  � to mg  � �������

the direction that the drop will move next� called the gravitational direction at x�

can be de�ned using many di�erent principles� One principle to de�ne the gravitational

direction at x� where x is an interior point of K satisfying ������� is by the following

procedure� which may take several steps�

Step � � If the drop moves in the direction y� from x� the position of its center

will be x � �y� for some � � �� Since ������� holds� the ith constraint will block the

movement of the drop in the direction y�� only if i � J�x� and Ai�y
� � �� De�ne

J�  fi � i � J�x�� and Ai�y
� � �g�

Case � � J�  �� If J�  �� y� is the gravitational direction at x� and the distance

it can move in this direction is determined as in �����	��

Case � � J� � �� If J� � �� each of the constraints Ai�x �
 bi for i � J�� is currently

blocking the movement of the drop in the direction y��

De�ne T�  J�� and let D� be the matrix of order jT�j�n whose rows are Ai� for

i � T�� Let E� be the submatrix of D� of order �rank of D�� � n� whose set of rows is

a maximal linearly independent subset of row vectors of D�� Let I�  fi � Ai� is a row

vector of E�g� So I� � T�� Let F� be the subspace fx � D�x  �g  fx � E�x  �g�

F� is the subspace corresponding to the set of all constraints which are blocking the

movement of the drop in the direction y�� Let �� be the orthogonal projection of y� in

the subspace F�� that is

��  �I � ET
� �E�E

T
� �

��E��y
�� �������

Subcase ��� � �� � �� If �� � �� let y�  ��k��k� go to Step 	�
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Subcase ��� � ��  �� If ��  �� let the row vector �  ��i � i � I�� 

�kck��E�E
T
� �

��E�y
��T � Then �E  c�

Subcase ����� � ��  � and � �
 �� If � �

 �� de�ne the row vector �  ��i� by

�i  �� if i �� I�

 �i� if i � I��

Then � is a basic feasible solution to the dual of �������� In this case� as will be shown

later on� the drop halts in the current position� it cannot roll any further� under the

gravitational force�

Subcase ����� � ��  �� � �� �� If ��  � and � �� �� delete the i corresponding to

the most negative �i from the set I� �any other commonly used rule for deleting one or

more of the i associated with negative �i from I� can be applied in this case�� Rede�ne

the matrix E� to be the one whose rows are Ai� for i in the new set I�� compute the

new orthogonal projection �� as in ������� using the new E� and repeat Subcase 	��

or 	�	 as appropriate with the new ���

General Step r � Let yr�� be the direction determined in the previous step� De�ne

Jr  fi � i � J�x� and Ai�y
r�� � �g�

Case � � Jr  �� If Jr  �� yr�� is the gravitational direction at x� and the distance

the drop can move in this direction is determined as in �����	� with yr�� replacing y��

Case � � Jr � �� De�ne Tr 
Sr
s�� Js and let Dr be the matrix of order jTrj � n

whose rows are Ai� for i � Tr� Let Er be the submatrix of Dr of order �rank of Dr�

�n� whose set of rows is a maximal linearly independent subset of row vectors of Dr�

Let Ir  fi � Ai� is a row vector of Erg� Let Fr be the subspace fx � Drx  �g  fx �

Erx  �g� Let �r be the orthogonal projection of y� in the subspace Fr� that is

�r  �I � ET
r �ErE

T
r �

��Er�y
��

Subcase ��� � �r � �� Let yr  �rk�rk� go to Step r � ��

Subcase ��� � �r  �� Let �  ��i � i � Ir�  �kck��ErE
T
r �

��Ery
��T �

Subcase ����� � �r  �� and � �
 �� De�ne �  ��i� by

�i  �� for i �� Ir

 �i� for i � Ir�

� is a basic feasible solution to the dual of �������� In this case the drop halts� it

cannot roll any further under the gravitational force�

Subcase ����� � �r  �� and � �� �� If �r  � and � �� �� proceed exactly as under

Subcase 	�	�	 described under Step �� with Ir replacing P��
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It can be shown that this procedure does produce the gravitational direction at x�

�nitely� if the drop can move at all� Currently work is being carried out on developing

e�cient methods for choosing the index set Ir of maximal linearly independent subset

of row vectors of Dr� in Case 	� and on the best strategies for deleting a subset of

constraints associated with negative �i in Subcase 	�	�	� Other principles for de�ning

the gravitational direction at the interior point x of K� are also being investigated�

Conditions for the Halting of the Drop

Let � be the radius of the drop and x � K satisfy �������� We have the following

theorem�

Theorem ���� When the center of the drop is at x� it halts i� J�x� de�ned in

�����	� is � �� and there exists a dual feasible solution �  ��i� for the dual of �����
�

satisfying

�i  �� for all i �� J�x�� �������

Proof� The drop will halt when its center is at x� i� there exists no direction at x

along which the drop could move within the interior of K� that will slide its center on

a line of decreasing objective value for some positive length� That is� i� there exists

no y satisfying
cy � �

�Ai��x� �y�� bi�kAi�k � �� i  � to m

for � � � � �� for some � � �� Since x satis�es �������� and from the de�nition of J�x�

in �������� this implies that the drop will halt when its center is at x i� the system

Ai�y � �� for all i � J�x�

cy � �

has no solution y� By the well known Farkas� lemma� Theorem � in Appendix �� this

holds i� there exists a �  ��i � i  � to m� feasible to the dual of ������� satisfying

��������

What to Do When the Drop Halts�

Theorem ���� Suppose the drop of radius � halts with its center at x � K� Then

the LP �����
� has a �nite optimum solution� Let z� be the optimum objective value

in �����
�� Let �  ��i� be the dual feasible solution satisfying ������� guaranteed to

exist by Theorem ���
� Then

cx  �b� �
X

i�J�x�

�i �������

and



����� New Approaches for Linear Programming �
�

cx �
 z� � �

X
i�J�x�

�i� �������

Proof� If the drop halts� by Theorem ����� the dual of ������� is feasible� So� the

LP ������� has a �nite optimum solution by the duality theory of LP� Consider the

perturbed LP
minimize z�x�  cx

subject to Ai�x �


�
bi� for i �� J�x�
bi � �� for i � J�x��

�������

The hypothesis in the theorem implies that x� �� together satisfy the primal� dual

feasibility and the complementary slackness optimality conditions for ������� and its

dual� Hence� by the duality theorem of LP� ������� holds� Also� by the weak duality

theorem of LP� ������� holds�

Hence� if the drop halts with its center at position x� and a � satisfying ������� is

found� and �
P

i�J�x� �i is small� then x can be taken as a near optimum solution to

������� and the algorithm terminated� Also� in this case � is an optimum solution for

the dual of �������� and the true optimum solution of ������� can be obtained by well

known pivotal methods that move from x to an extreme point without increasing the

objective value �see Subsection � in Section ��������

Theorem ���� Suppose the drop of radius � halts with its center at x � K� If the

system of equations

Ai�x  bi� i � J�x� �������

has a solution #x which is feasible to �����
�� then #x is an optimum feasible solution of

�����
��

Proof� Let � be the dual feasible solution satisfying ������� guaranteed by Theorem

����� It can be veri�ed that #x� � together satisfy the complementary slackness opti


mality conditions for ������� and its dual� so #x is an optimum solution for �������� In

this case � is optimum to the dual of ��������

If the drop of radius � halts with its center at x � K� and there exists no solution

to the system of equations ������� which is feasible to �������� then this drop is unable

to move any further down in K under the gravitational force� even though it is not

close to an optimum solution for �������� See Figure �����
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2

x

1

K

Figure ���� The set K is on the side of the arrow marked on each constraint�

The gravitational force is pulling the drop straight down� but it cannot move

any further� because it is squeezed between hyperplanes � and 	�

Suppose the drop of radius � halts with its center at x� If the system

Ai�x  bi� i � J�x� �������

has no feasible solution� the gravitational method reduces the radius of the drop� see

below� keeping the center at x� and continues�

On the other hand� suppose the drop of radius � halts with its center at x� and the

system ������� is feasible� Let E be the matrix whose rows form a maximal linearly

independent subset of rows of fAi� � i � J�x�g� Then the nearest point to x in the �at

fx � Ai�x  bi� i � J�x�g is  x  x�ET �EET ����d�Ex� where d is the column vector

of bi for i such that Ai� is a row of E� If  x is feasible to �������� then by Theorem �����

 x is an optimum feasible solution for ������� and the method terminates� Otherwise�

at this stage the gravitational method reduces the radius of the drop �for example�

replace � by �	�� keeping the center at x� and traces the locus of the center of the new
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drop as it now begins to fall under the in�uence of gravity again� The same process is

repeated when the new drop halts�

See Figure ���� for an illustration of the path of the drop in a convex polyhedron

in R��

cT-      - direction

Figure ���	 Path of the drop in the gravitational method in a convex poly


hedron in R��

The theoretical worst case computational complexity of this algorithm is currently

under investigation� Initial computational trials with the method are very encouraging�

The practical e�cienty of this algorithm is also being studied via a computational

project�
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Appendix

PRELIMINARIES

�� THEOREMS OF ALTERNATIVES FOR

SYSTEMS OF LINEAR CONSTRAINTS

Here we consider systems of linear constraints� consisting of equations or inequalities

or both� A feasible solution of a system is a vector which satis�es all the constraints in

the system� If a feasible solution exists� the system is said to be feasible� The system

is said to be infeasible if there exists no feasible solution for it� A typical theorem

of alternatives shows that corresponding to any given system of linear constraints�

system I� there is another associated system of linear constraints� system II� based on

the same data� satisfying the property that one of the systems among I� II is feasible

i� the other is infeasible� These theorems of alternatives are very useful for deriving

optimality conditions for many optimization problems�

First consider systems consisting of linear equations only� The fundamental

inconsistent equation is

� � � ���

consider the following system of equations

x� 	 x� 	 x� � 


�x� � x� � x� � ���
�
�

When we add the two equations in �
�� the coe�cients of all the variables on the

left hand side of the sum are zero� and the right hand side constant is �� Thus the
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fundamental inconsistent equation ��� can be obtained as a linear combination of the

two equations in �
�� This clearly implies that there exists no feasible solution for �
��

Now consider the general system of linear equations Ax � b� written out in full as

nX
j��

aijxj � bi� i � � to m� ���

A linear combination of system ��� with coe�cients � � ���� � � � � �m� is

nX
j��

� mX
i��

�iaij

�
xj �

� mX
i��

�ibi

�
��

�� is the same as ��A�x � ��b�� �� becomes the fundamental inconsistent equation

��� if
mX
i��

�iaij � �� j � � to n

mX
i��

�ibi � �

���

and in this case� ��� is clearly infeasible� The system of linear equations ��� is said

to be inconsistent i� the fundamental inconsistent equation ��� can be obtained as

a linear combination of the equations in ���� that is� i� there exists � � ���� � � � � �m�

satisfying ���� Clearly an inconsistent system of equations is infeasible� The converse

of this statement is also true� So a system of linear equations is infeasible i� it is

inconsistent� This is implied by the following theorem of alternatives for systems of

linear equations�

Theorem � Let A � �aij�� b � �bi� be given matrices of orders m � n and m � ��

Let x � �x�� � � � � xn�
T and � � ���� � � � � �m�� Exactly one of the two following systems

�I� and �II� has a solution and the other has no solution�

�I�

Ax � b

�II�

�A � �

�b � �

Proof� If �I� has a solution x and �II� has a solution �� then Ax � b� and so �Ax � �b�

but ��A�x � �� �b � �� so this is impossible� So it is impossible for both �I� and �II�

to have solutions�

Put �I� in detached coe�cient tabular form and introduce the unit matrix of order

m on the left hand side of this tableau� The tableau at this stage is

x

I A b
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Perform Gauss�Jordan pivot steps in this tableau to put A into row echelon normal

form� For this� perform Gauss�Jordan pivot steps in rows � to m� in that order�

Consider the step in which the rth row is the pivot row� Let the entries in the current

tableau in the rth row at this stage be

�r� � � � �rm ar� � � � arn br

Let �r� � ��r�� � � � � �rm�� Then� �ar�� � � � � arn� � �r�A and br � �r�b� If �ar�� � � � � arn�

� � and br � �� this row at this stage represents a redundant constraint� erase it from

the tableau and continue� If �ar�� � � � � arn� � � and br �� �� de�ne � � �r��br� Then we

have �A � �� �b � �� so � is a feasible solution of system �II� and �I� has no feasible

solution� terminate� If �ar�� � � � � arn� �� �� select a j such that arj �� �� and perform a

pivot step with row r as the pivot row and column j as the pivot column� make xj the

basic variable in the rth row� and continue� If the conclusion that �I� is infeasible is

not made at any stage in this process� make the basic variable in each row equal to the

�nal updated right hand side constant in that row� and set all the nonbasic variables

equal to zero� this is a solution for system �I�� Since �II� cannot have a solution when

�I� does� �II� has no solution in this case�

Example �

Let

A �

�������
� �
 
 �� �

�� �  �� �
� �
 � �� �

������� � b �

�������
� �
��
�

������� �

So� system �I� in Theorem � corresponding to this data is

x� x� x� x� x� b

� �
 
 �� � � �

�� �  �� � ��

� �
 � �� � �

We introduce the unit matrix of order � on the left hand side and apply the Gauss�

Jordan method on the resulting tableau� This leads to the following work� Pivot

elements are inside a box�



��� Appendix �

x� x� x� x� x�

� � � � �
 
 �� � � �

� � � �� �  �� � ��

� � � � �
 � �� � �

� � � � �
 
 �� � � �

� � � � �
 � �� � �

� � � � �
 � �� � �

� �� � � � � � �� ���

��
�
��

�
� � � ��  � � 

�� �� � � � � � � � 


From the last row in the last tableau� we conclude that this system is inconsistent�

De�ning � � ������� �����
� � ���
� ��
����
�� we verify that � is a solution for

system �II� in Theorem � with data given above�

Now consider a system of linear inequalities� The fundamental inconsistent

inequality is

� �� � ���

Consider the following system of inequalities�

x� 	 x� 	 x� �� 


�x� � x� � x� �� ���
���

Adding the two inequalities in ��� yields the fundamental inconsistent inequality ����

this clearly implies that no feasible solution exists for ����

Given the system of linear inequalities

nX
j��

aijxj �� bi� i � � to m ���

a valid linear combination of ��� is a linear combination of the constraints in ���

with nonnegative coe�cients� that is

nX
j��

� mX
i��

�iaij
�
xj ��

mX
i��

�ibi ���
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where � � ���� � � � � �m� �� �� ��� is the fundamental inconsistent equation ��� i�

nX
j��

�iaij � �� j � � to m

mX
i��

�ibi � �

����

and if ���� has a solution � �
� �� ��� is clearly infeasible� The system of linear inequal�

ities ��� is said to be inconsistent i� the fundamental inconsistent inequality ��� can

be obtained as a valid linear combination of it� We will prove below� that a system of

linear inequalities is infeasible i� it is inconsistent� In fact� given any system of linear

constraints �consisting of equations and�or inequalities� we will prove that it has no

feasible solution i� the fundamental inconsistent inequality ��� can be obtained as a

valid linear combination of it� This leads to a theorem of alternatives for that system�

These theorems of alternatives can be proven in several ways� One way is by using

the duality theorem of linear programming �see �
�
���� Another way is to prove them

directly using a lemma proved by A� W� Tucker� We �rst discuss this Tucker�s lemma

�see A ����

Theorem � �Tucker�s Lemma�� If A is a given m� n real matrix� the systems

Ax �
� � ����

�A � �� � �
� � ��
�

where x � �x�� � � � � xn�
T and � � ���� � � � � �m�� have feasible solutions x� � respectively�

satisfying

���T 	Ax � �� ����

Proof� We will �rst prove that there exist feasible solutions x�� �� � ����� � � � � �
�
m� to

����� ��
� respectively� satisfying

A��x
� 	 ��� � �� ���

The proof is by induction on m� the number of rows in the matrix A� If m � � let

�� � ����� � ���� x� � �� if A�� � �

�� � �� x� � �A���
T � if A�� �� �

and verify that these solutions satisfy ���� So the theorem is true if m � �� We now

set up an induction hypothesis�

Induction Hypothesis� If D is any real matrix of order �m � �� � n� there exist

vectors x � �xj� � Rn� u � �u�� � � � � um��� satisfying� Dx �
� �� uD � �� u �

� ��

u� 	D��x � ��
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Under the induction hypothesis we will now prove that this result also holds for

the matrix A of order m�n� Let A� be the �m����n matrix obtained by deleting the

last row Am� from A� Applying the induction hypothesis on A�� we know that there

exist x� � Rn� u� � �u��� � � � � u
�

m��� satisfying

A�x� �� �� u�A� � �� u� �� �� u�� 	 A��x
� � �� ����

If Am�x
� �
� �� de�ne x� � x�� �� � �u�� ��� and verify that x�� �� are respectively

feasible to ����� ��
� and satisfy ���� by ����� On the other hand� suppose Am�x
� � ��

We now attempt to �nd a vector �x � Rn and real number � such that

x� � �x	 �x� and vector ��

together satisfy ���� We have to determine �x� �� �� so that this will be true� For this

we require
Am�x

� � Am��x	 �Am�x
� �
� � that is

� �
� �Am��x����Am�x

���

So it su�ces if we de�ne � � �Am��x����Am�x
��� We still have to determine �x and ��

appropriately� The vector x� should also satisfy for i � � to m� �

Ai�x
� � Ai��x	 �Ai�x

� � �Ai� 	 �iAm���x �� �

where �i � �Ai�x
�����Am�x

��� Now de�ne Bi� � Ai� 	 �iAm�� for i � � to m � � and

let B be the �m� ��� n matrix whose rows are Bi�� i � � to m� �� By applying the

induction hypothesis on B� we know that there exists x�� � Rn� u�� � �u��� � � � � � u
��

m���

satisfying

Bx�� �� �� u��B � �� u�� �� �� u��� 	B��x
�� � �� ����

We take this vector x�� to be the �x we are looking for� and therefore de�ne

x� � x�� � x��Am�x
�����Am�x

��

�� �
�
u���

mX
i��

�iu
��

i

�
�

Using ����� ���� and the fact that Am�x
� � � in this case� verify that x�� �� are respec�

tively feasible to ���� and ��
� and satisfy ���� So under the induction hypothesis�

the result in the induction hypothesis also holds for the matrix A of order m�n� The

result in the induction hypothesis has already been veri�ed to be true for matrices with

� row only� So� by induction� we conclude that there exist feasible solutions x�� �� to

����� ��
� respectively� satisfying ����

For any i � � to m� the above argument can be used to show that there exist

feasible solutions xi� �i � ��i�� � � � � �
i
m� to ���� and ��
� respectively satisfying

�ii 	 Ai�x
i � �� ����

De�ne x �
Pm

i�� x
i� � �

Pm
i�� �

i� and verify that x� � together satisfy ���� and ��
�

and �����
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Corollary �� Let A� D be matrices of orders m� � n and m� � n respectively with

m� �
� �� Then there exist x � �x�� � � � � xn�

T � � � ���� � � � � �m�
�� 	 � �	�� � � � � 	m�

�

satisfying
����

Ax �
� �

Dx � �

����

�A	 	D � �

� �
� �

�
��

�T 	 Ax � � �

Proof� Applying Tucker�s lemma to the systems

�
��

Ax �
� �

Dx �
� �

�Dx �
� �

�

�

�A	 
D � �D � �

�� 
� � �
� �

we know that there exist x� �� 
� � feasible to them� satisfying �T 	 Ax � �� Verify

that x� �� 	 � 
 � � satisfy ����� ���� and �
���

We will now discuss some of the most useful theorems of alternatives for linear

systems of constraints�

Theorem � �Farkas� Theorem�� Let A� b be given matrices of orders m�n and m��

respectively� Let x � �x�� � � � � xn�
T � � � ���� � � � � �m�� Exactly one of the following

two systems �I�� �II� is feasible�

�I�

Ax � b

x �
� �

�II�

�A �
� �

�b � ��

Proof� Suppose both systems are feasible� Let x be feasible to �I� and � be feasible

to �II�� Then ��A�x �
� � since �A �

� � and x �
� �� Also ��Ax� � �b � �� So there is a

contradiction� So it is impossible for both systems �I� and �II� to be feasible�

Suppose �II� is infeasible� Let y � �T � So this implies that in every solution of��� bT

�AT

��� y �� � �
��

the �rst constraint always holds as an equation� By Tucker�s lemma �Theorem 
� there

exists a y feasible to �
�� and ��� 	�� � � � � 	n� �� � feasible to

��� 	�� � � � � 	n�

��� bT

�AT

��� � � �
�

which together satisfy bT y	� � �� But since y is feasible to �
�� we must have bT y � �

as discussed above �since �II� is infeasible� and so � � �� De�ne xj � 	j�� for j � �

to n and let x � �x�� � � � � xn�
T � From �
� we verify that x is feasible to �I�� So if �II�

is infeasible� �I� is feasible� Thus exactly one of the two systems �I�� �II� is feasible�
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Note �� Given A� b� the feasibility of system �I� in Farkas� theorem can be deter�

mined using Phase I of the Simplex Method for linear programming problems� If �I� is

feasible� Phase I terminates with a feasible solution of �I�� in this case system �II� has

no feasible solution� If Phase I terminates with the conclusion that �I� is infeasible� the

Phase I dual solution at termination provides a vector � which is feasible to system

�II��

Note �� Theorem �� Farkas� theorem� is often called Farkas� lemma in the literature�

An Application of Farkas� Theorem to Derive

Optimality Conditions for LP

To illustrate an application of Farkas� theorem� we will now show how to derive the

necessary optimality conditions for a linear program using it� Consider the LP

minimize f�x� � cx

subject to Ax �
� b

�
��

where A is a matrix of orderm�n� The constraints in �
�� include all the conditions in

the problem� including any bound restrictions� lower or upper� on individual variables�

If there are any equality constraints in the problem� each of them can be represented

by the corresponding pair of opposing inequality constraints and expressed in the form

given in �
�� �for example� the equality constraint x� 	 x� � x� � � is equivalent to

the pair of inequality constraints x� 	 x� � x� �� �� �x� � x� 	 x� �� ���� Thus every

linear program can be expressed in this form� We now state the necessary optimality

conditions for a feasible solution x to be optimal to this LP� and prove it using Farkas�

theorem�

Theorem �� If x is a feasible solution for ����� and x is optimal to ����� there must

exist a vector � � ���� � � � ��m� which together with x satis�es

c� �A � �

� �
� �

�i�Ai�x� bi� � �� i � � to m�

�
��

Proof� Consider the case c � � �rst� In this case the objective value is a constant�

zero� and hence every feasible solution of �
�� is optimal to it� It can be veri�ed that

� � � satis�es �
�� together with any feasible solution x for �
���

Now consider the case c �� �� We claim that the fact that x is optimal to �
��

implies that Ax �� b in this case� To prove this claim� suppose Ax � b� For any y � Rn�

A�x	 �y� � Ax	 �Ay �� b as long as � is su�ciently small� since Ax � b�

Take y � �cT � Then� for � � �� c�x	 �y� � cx and x	 �y is feasible to �
�� as

long as � is positive and su�ciently small� contradicting the optimality of x to �
���

So� if x is optimal to �
�� in this case �c �� �� at least one of the constraints in �
��

must hold as an equation at x�
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Rearrange the rows of A� and let A� be the matrix of order m� � n consisting of

all the rows in A corresponding to constraints in �
�� which hold as equations in �
��

when x � x� and let A�� of order m��n� be the matrix consisting of all the other rows

of A�

By the above argument A� is nonempty� that is� m� �
� �� Let b�� b� be the

corresponding partition of b� So

A �

���A�

A�

��� � b �

��� b�

b�

��� �
��

and
A�x � b�

A�x � b��
�
��

We now show that if x is optimal to �
��� the system

A�y �� �

cy � �
�
��

cannot have a solution y� Suppose not� Let y be a solution for �
��� Then for � � ��

A��x 	 �y� � A�x 	 �A�y �
� b�� and A��x 	 �y� � A�x 	 �A�y �

� b� as long as

� is su�ciently small� since A�x � b�� So when � is positive but su�ciently small�

x	 �y is feasible to �
�� and since c�x	 �y� � cx	 �cy � cx� since cy � �� we have

a contradiction to the optimality of x for �
���

So� �
�� has no solution y� By taking transposes� we can put �
�� in the form of

system �II� under Theorem � �Farkas� theorem�� Writing the corresponding system �I�

and taking transposes again� we conclude that since �
�� has no solution� there exists

a row vector �� satisfying
��A� � c

�� �
� �

����

De�ne �� � � and let � � �������� From the fact that A�� A� is a partition of A as

in �
��� and using ����� �
��� we verify that � � ������� satis�es �
�� together with

x�

Example �

Consider the LP

minimize f�x� � ��x�	 x�	�x� 	�x�
subject to x�	 x�� x�	
x� � x� �� �

�
x� 	
x�� x� 	�x� �� ��

x� �
� �

��x� 	�x� �
� ��

�x�� x� 	�x� �� ��

Let x � ��� ����� �� 
�T � Verify that x satis�es constraints ��
 and � in the problem as

equations and the remaining as strict inequalities� We have
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A� �

�������
� � �� 
 ��

�
 � 
 �� �
� � � � �

������� �

b� �

�������
�

��
�

�������
A� �

��� � �� � � �
� � � �� �

��� �

b� �

�����
�

���
c � ���� �� �� �� ��� f�x� � cx

and A�x � b�� A�x � b�� If we take �� � ��� 
� �� then ��A� � c� �� �
� �� Let

�� � ��� ��� and � � ������� � ��� 
� �� �� ��� These facts imply that �� x together

satisfy the necessary optimality conditions �
�� for this LP�

We leave it to the reader to verify that if x is feasible to �
��� and there exists a

vector � such that x� � together satisfy �
��� then x is in fact optimal to �
��� from �rst

principles� Thus the conditions �
�� and feasibility are together necessary and su�cient

optimality conditions for the LP �
��� It can also be veri�ed that any � satisfying �
��

is an optimum dual solution associated with the LP �
��� and that �
�� are in fact the

dual feasibility and complementary slackness optimality conditions for the LP �
���

See �
�
�� A���� Thus Farkas� theorem leads directly to the optimality conditions for

the LP �
��� Later on� in Appendix � we will see that Theorems of alternatives like

Farkas� theorem and others discussed below are very useful for deriving optimality

conditions in nonlinear programming too� We will now discuss some more theorems of

alternatives�

Some Other Theorems of Alternatives

Theorem � �Motzkin�s Theorem of the Alternatives�� Let m �
� �� and let A� B� C be

given matrices of ordersm�n�m��n�m��n� Let x � �x�� � � � � xn�
T � � � ���� � � � � �m��

	 � �	�� � � � � 	m�
�� 
 � �
�� � � � � 
m�

�� Then exactly one of the following two systems

�I�� �II� is feasible�
�I�

Ax � �

Bx �
� �

Cx � �

�II�

�A	 	B 	 
C � �

� � �� 	 �
� �

Proof� As in the proof of Theorem �� it can be veri�ed that if both �I�� �II� are

feasible� there is a contradiction� Suppose system �I� is infeasible� This implies that
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every feasible solution of
Ax �� �

Bx �� �

Cx � �

����

satis�es Ai�x � � for at least one i � � to m� By Corollary �� there exists x feasible to

���� and �� 	� 
 feasible to
�A	 	B 	 
C � �

� �
� �� 	 �

� �
��
�

satisfying ���T 	 Ax � �� But since x is feasible to ����� Ai�x � � for at least one i

as discussed above� This implies that for that i� �i � �� that is� � � �� So ��� 	� 
�

satis�es �II�� So if �I� is infeasible� �II� is feasible� Thus exactly one of the two systems

�I�� �II� is feasible�

Theorem 	 �Gordan�s Theorem of the Alternatives�� Give a matrix A of orderm�n�

exactly one of the following systems �I� and �II� is feasible�

�I�

Ax � �

�II�

�A � �

� � �

Proof� Follows from Theorem � by selecting B� C � � there�

Theorem 
 �Tucker�s Theorem of the Alternatives�� Let m �
� �� and let A� B� C be

given matrices of orders m � n� m� � n� m� � n respectively� Let x � �x�� � � � � xn�
T �

� � ���� � � � � �m�� 	 � �	�� � � � � 	m�
�� 
 � �
�� � � � � 
m�

�� Exactly one of the following

systems �I�� �II� is feasible�

�I�

Ax � �

Bx �
� �

Cx � �

�II�

�A	 	B 	 
C � �

� � �� 	 �
� �

Proof� As in the proof of Theorem �� it can be veri�ed that if both �I�� �II� are feasible�

there is a contradiction� Suppose that �I� is infeasible� This implies that every feasible

solution of
Ax �� �

Bx �� �

Cx � �

����
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must satisfy Ax � �� By Corollary �� there exists x feasible to ���� and �� 	� 
 feasible

to
�A	 	B 	 
C � �

� �
� �� 	 �

� �
���

satisfying ���T 	Ax � �� But since x is feasible to ����� Ax � � as discussed above� so

���T � �� So ��� 	� 
� satis�es �II�� So if �I� is infeasible� �II� is feasible� Thus exactly

one of the two systems �I�� �II� is feasible�

Theorem � �Gale�s Theorem of Alternatives�� Let A� b be given matrices of orders

m � n� m � � respectively� Let x � �x�� � � � � xn�
T � � � ���� � � � � �m�� Exactly one of

the following systems �I�� �II� is feasible�

�I�

Ax �
� b

�II�

�A � �

�b � �

� �
� �

Proof� System �I� is equivalent to

�A �b �

��� x
xn��

��� �
� �

d

��� x
xn��

��� � �

����

where d � ��� �� � � � � �� �� � Rn��� �I� is equivalent to ���� in the sense that if a solution

of one of these systems is given� then a solution of the other system in the pair can be

constructed from it� For example if x is a feasible solution of �I�� then �x� xn�� � �� is

a feasible solution of ����� Conversely� if ��x� �xn��� is a feasible solution of ����� then

�xn�� � � and ����xn����x is a feasible solution of �I��

This theorem follows from Theorem � applied to �����

For a complete discussion of several other Theorems of alternatives for linear

systems and their geometric interpretation� see O� L� Mangasarian�s book �A����

Exercises

�� Let K be the set of feasible solutions of

nX
j��

aijxj �� bi� i � � to m� ����



�� Convex Sets ���

Assume that K �� �� Prove that all x � K satisfy

nX
j��

cjxj �� d ����

i�� for some � �
� d� the inequality

Pn
j�� cjxj �

� � is a valid linear combination of

the constraints in ����� that is� i� there exists � � ���� � � � � �m� �� �� satisfying cj �Pm
i�� �iaij � j � � to n� and � �

Pm
i�� �ibi�

�� Let M be a square matrix of order n� Prove that for each q � Rn� the system

�Mx 	 q �
� �� x �

� �� has a solution x � Rn i� the system �My � �� y �
� �� has a

solution y� �O� L� Mangasarian ���
��

�� Let M be a square matrix of order n and q � Rn� Prove that the following are

equivalent

i� the system Mx	 q � �� x �
� � has a solution x � Rn�

ii� the system Mx	 q � �� x � � has a solution x � Rn�

iii� the system MTu �� �� qTu �
� �� � � u has no solution u � Rn�

�O� L� Mangasarian ���
��

�� Prove that ���� is infeasible i� it is inconsistent �that is� the fundamental inconsis�

tent inequality ��� can be obtained as a valid linear combination of it� as a corollary

of the result in Exercise ��

�� Let A be an m � n matrix� and suppose the system� Ax � b� has at least one

solution� and the equation cx � d holds at all solutions of the system Ax � b� Then

prove that the equation cx � d can be obtained as a linear combination of equations

from the system Ax � b� That is� there exists � � ���� � � � � �m�� such that c � �A and

d � �b�

�� CONVEX SETS

A subset K � Rn is said to be convex if x�� x� � K implies that �x� 	 ��� ��x� � K

for all � �� � �
� �� Thus� a subset of Rn is convex i� given any pair of points in it� the

entire line segment connecting these two points is in the set� See Figures �� 
�
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(a) (b)

Figure � Convex sets� �a� All points inside or on the circle� �b� All points

inside or on the polygon�

(a) (b) (c)

Figure � Non�convex sets� �a� All points inside or on the cashew nut� �b�

All points on or between two circles� �c� All points on at least one of the two

polygons�

��� Convex Combinations� Convex Hull

Let �x�� � � � � xrg be any �nite set of points in Rn� A convex combination of this set is

a point of the form

��x
� 	 � � �	 �rx

r� where �� 	 � � �	 �r � � and ��� � � � � �r �� ��

The set of all convex combinations of fx�� � � � � xrg is known as the convex hull of

fx�� � � � � xrg�

Given��� � Rn� the convex hull of ��� is the set consisting of all convex combinations

of all �nite sets of points from ����
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Figure � Convex hull of fx�� � � � � x�g in R��

The following results can be veri�ed to be true�

�� K � Rn is convex i� for any �nite number r� given x�� � � � � xr � K� ��x� 	 � � �	

�rx
r � K for all ��� � � � � �r satisfying �� 	 � � �	 �r � �� �� �� �� � � � � �r �� ��


� The intersection of any family of convex subsets of Rn is convex� The union of

two convex sets may not be convex�

�� The set of feasible solutions of a system of linear constraints

Ai�x � bi� i � � to m

�
� bi� i � m	 � to m	 p

is convex� A convex set like this is known as a convex polyhedron� A bounded

convex polyhedron is called a convex polytope�

� The set of feasible solutions of a homogeneous system of linear inequalities in

x � Rn�

Ax �� � ����

is known as a convex polyhedral cone� Given a convex polyhedral cone� there

exists a �nite number of points x�� � � � � xs such that the cone is fx � x � ��x
� 	

� � � 	 �sx
s� �� �

� �� � � � � �s �
� �g � Posfx�� � � � � xsg� The polyhedral cone which

is the set of feasible solutions of ���� is said to be a simplicial cone if A is a

nonsingular square matrix� Every simplicial cone of dimension n is of the form

PosfB��� � � � � B�ng where fB��� � � � � B�ng is a basis for R
n�

�� Given two convex subsets ofRn�K��K�� their sum� denoted byK�	K� � fx	y �

x � K�� y � K�g is also convex�
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Separating Hyperplane Theorems

Given two nonempty subsets K�� K� of R
n� the hyperplane H � fx � cx � �g is said

to separate K� and K� if cx � � has the same sign for all x � K�� say �
� �� and the

opposite sign for all x � K�� that is� if

cx �
� � for all x � K�

�
� � for all x � K��

Here we will prove that if two convex subsets ofRn are disjoint� there exists a separating

hyperplane for them� See Figures � ��

H

K2

K1

Figure � The hyperplane H separates the two disjoint convex sets K� and

K��
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Figure � Even though the two cashew nuts �both nonconvex� are disjoint�

they cannot be separated by a hyperplane�

Theorem �� Let K be a nonempty closed convex subset of Rn and � �� K� Then

there exists a hyperplane containing the origin separating it from K�

Proof� Take any point �x � K� and let E � fx � kxk �� k�xkg� Since � �� K� �x �� �� and

hence E is a nonempty ball� Let    � E�K�    is a bounded closed convex subset ofRn�

not containing the origin� The problem� minimize kxk over x �    � has an optimum

solution� since a continuous function attains its minimum on a compact set� We will

show that this problem has a unique optimum solution� Suppose not� Let x�� x� �    �

x� �� x�� minimize kxk over x �    � Let x� � �x� 	 x���
� By Cauchy�Schwartz

inequality j�x��Tx�j �� kx�k 	 kx�k with equality holding i� x� � �x� for some real

number �� So kx�k� � �kx�k�	kx�k�	
j�x��Tx�j�� �� �kx�k�	kx�k�	
kx�k	kx�k��

by Cauchy�Schwartz inequality� Let kx�k � 
� So kx�k � 
 also� since both x�� x�

minimize kxk over x �    � So� from the above� we have kx�k� �
� 
�� Since x� �    

and 
� is the minimum of kxk� over x �    � kx�k� �� 
� implies that kx�k� � 
�� By

Cauchy�Schwartz inequality� this equality holds i� x� � �x� for some scalar �� But

since kx�k � kx�k� we must have � � 	� or ��� If � � ��� x� � �� and this contradicts

the fact that � ��    � So � � 	�� that is� x� � x�� So the problem of minimizing kxk

over x �    � has a unique optimum solution� say x� We will now prove that

�x� x�Tx �
� � for all x � K� ����

xminimizes kxk over x �    � and from the de�nition of    � it is clear that x also minimizes

kxk over x � K� Let x � K� By convexity of K� x	 ��x� x� � K for all � �� � �
� ��

So kx	 ��x� x�k� �� kxk� for all � �� � �
� �� That is� ��kx� xk� 	 
��x� x�Tx �� �

for all � �� � �
� �� So for � � � �

� �� we have �kx� xk� 	 
�x� x�Tx �
� �� Making �

approach zero through positive values� this implies �����
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Conversely� if x � K satis�es ����� then for any x � K� kxk� � k�x� x� 	 xk� �

kx � xk� 	 kxk� 	 
�x � x�Tx �
� kxk� �by ������ and this implies that x minimizes

kxk over x � K� Thus ���� is a necessary and su�cient optimality condition for the

problem of minimizing kxk over x � K�

Since � �� K� x �� �� From ���� we have �x�Tx �
� kxk� � � for all x � K� So the

hyperplane fx � �x�Tx � �g through the origin separates K from ��

Theorem ��� Let K be a nonempty convex subset of Rn� b �� K� Then K can be

separated from b by a hyperplane�

Proof� IfK is a closed convex subset� by translating the origin to b and using Theorem

� we conclude that K and b can be separated by a hyperplane�

If K is not closed� let K be the closure of K� If b �� K� then again by the previous

result b and K can be separated by a hyperplane� which also separates b and K�

So assume that b � K� Since b � K but �� K� b must be a boundary point of K�

So every open neighborhood of b contains a point not in K� So we can get a sequence

of points fbr � r � � to 
g such that br �� K for all r� and br converges to b as r tends

to 
� Since br �� K� by the previous result� there exists cr such that cr�x � br� �� �

for all x � K� with kcrk � �� The sequence of row vectors fcr � r � �� � � �g all lying on

the unit sphere in Rn �which is a closed bounded set� must have a limit point� Let c

be a limit point of fcr � r � �� 
� � � �g� So kck � �� Let S be a monotonic increasing

sequence of positive integers such that cr converges to c as r tends to
 through r � S�

But cr�x � br� �� � for all x � K� Taking the limit in this inequality� as r tends to


 through r � S we conclude that c�x � b� �� � for all x � K� So the hyperplane

fx � cx � cbg separates K from b�

Corollary �� Let K be a convex subset of Rn� and let b be a boundary point of

K� Then there exists a row vector c �� �� c � Rn such that cx �� cb for all x � K�

Proof� Follows from the arguments in the proof of Theorem ���

The hyperplane fx � cx � cbg in Corollary 
 is known as a supporting hyper

plane for the convex set K at its boundary point b�

Theorem ��� If K�� K� are two mutually disjoint convex subsets of Rn� there

exists a hyperplane separating K� from K��

Proof� Let    � K� �K� � fx� y � x � K�� y � K�g� Since K�� K� are convex�    is

a convex subset of Rn� Since K� �K� � �� � ��    � So by Theorem ��� there exists a

row vector c �� �� c � Rn� satisfying

cz �� � for all z �    � ���

Let � � In�mum fcx � x � K�g� � � Supremum fcx � x � K�g� By ���� we must
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have � �
� �� So if 
 � ��	 ���
� we have

cx �� 
 for all x � K�

�
� 
 for all x � K��

So x � fcx � 
g is a hyperplane that separates K� from K��

The theorems of alternatives discussed in Appendix �� can be interpreted as sep�

arating hyperlane theorems about separating a point from a convex polyhedral cone

not containing the point�

Exercises

	� Let K be a closed convex subset of Rn and x � Rn and let y be the nearest point

�in terms of the usual Euclidean distance� in K to x� Prove that �x� y�T �y � z� �� �

for all z � K� Also prove that ky � zk �� kx� zk for all z � K�


� Given sets    � ��� de�ne �   � f�x � x �    g and    	��� � fx	 y � x �    � y � ���g� Is

   	   � 
   ! Also� when    � f�x�� x��T � �x� � ��� 	 �x� � ��� �� �g� ��� � f�x�� x��T �

�x� 	 �� 	 �x� 	 �� �� g� �nd    	���� 
   �    	   and draw a �gure in R� illustrating

each of these sets�

�� Prove that a convex cone in Rn is either equal to Rn or is contained in a half�space

generated by a hyperplane through the origin�

�� Let ���� � fx�� � � � � xrg � Rn� If y�� y� � Rn� y� �� y� are such that

y� � convex hull of fy�g �����

y� � convex hull of fy�g �����

prove that both y� and y� must be in the convex hull of ����� Using this and an induction

argument� prove that if fy�� � � � � ymg is a set of distinct points in Rn and for each j � �

to m

yj � convex hull of ���� � fy
�� � � � � yj��� yj��� � � � � ymg

then each yj � convex hull of �����
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On Computing a Separating Hyperplane

Given a nonempty convex subset K � Rn� and a point b � Rn� b �� K� Theorem ��

guarantees that there exists a hyperplane H � fx � cx � �� c �� �g which separates b

from K� It is a fundamental result� in mathematics such results are called existence

theorems� This result can be proved in many di�erent ways� and most books on

convexity or optimization would have a proof for it� However� no other book seems to

discuss how such a separating hyperplane can be computed� given b and K in some

form �this essentially boils down to determining the vector c in the de�nition of the

separating hyperplane H�� or how di�cult the problem of computing it may be� For

this reason� the following is very important� In preparing this� I bene�tted a lot from

discussions with R� Chandrasekaran�

However elegant the proof may be� an existence theorem cannot be put to practical

use unless an e�cient algorithm is known for computing the thing whose existence the

theorem establishes� In order to use Theorem �� in practical applications� we should be

able to compute the separating hyperplane H given b andK� Procedures to be used for

constructing an algorithm to compute H depend very critically on the form in which

the set K is made available to us� In practice� K may be speci�ed either as the set of

feasible solutions of a given system of constraints� or as the set of points satisfying a

well speci�ed set of properties� or as the convex hull of a set of points satisfying certain

speci�ed properties or constraints or those that can be obtained by a well de�ned

constructive procedure� The di�culty of computing a separating hyperplane depends

on the form in which K is speci�ed�

K Represented by a System of Linear Inequalities

Consider the case� K � fx � Ai�x �
� di� i � � to mg� where Ai�� di are given for all

i � � to m� If b �� K� there must exist an i between � to m satisfying Ai�b � di� Find

such an i� suppose it is r� Then the hyperplane fx � Ar�x � drg separates K from b in

this case�

K Represented by a System of Linear Equations and Inequalities

Consider the case� K � fx � Ai�x � di� i � � to m� and Ai�x �� di� i � m	� to m	 pg

where Ai�� di are given for all i � � to m	 p� Suppose b �� K� If one of the inequality

constraints Ai�x �
� di� i � m 	 � to m 	 p� is violated by b� a hyperplane separating

K from b� can be obtained from it as discussed above� If b satis�es all the inequality

constraints in the de�nition of K� it must violate one of the equality constraints� In

this case� �nd an i� � �� i �� m� satisfying Ai�b �� di� suppose it is r� then the hyperplane

fx � Ar�x � drg separates K from b�
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K Represented as a Nonnegative Hull of a Speci�ed Set of Points

Consider the case� K � nonnegative hull of fA�j � j � � to tg � Rn� t �nite� Let A

be the n � t matrix consisting of column vectors A�j � j � � to t� Then K � Pos�A��

a convex polyhedral cone� expressed as the nonnegative hull of a given �nite set of

points from Rn� In this special case� the separating hyperplane theorem becomes

exactly Farkas� theorem �Theorem ��� See Section ���� of �
�
�� or ���
��� Since

b �� Pos�A�� system �I� of Farkas� theorem� Theorem �� has no feasible solution� and

hence system �II� has a solution �� Then the hyperplane fx � �x � �g separates b from

Pos�A�� The solution � for system �II� can be computed e�ciently using Phase I of

the simplex method� as discussed in Note � of Appendix �� Given any point b � Rn�

this provides an e�cient method to check whether b � Pos�A� �which happens when

system �I� of Farkas� theorem� Theorem �� with this data� has a feasible solution�� and

if not� to compute a hyperplane separating b from Pos�A�� as long as the number of

points in the set fA�j � j � � to tg� t is not too large� If t is very large� the method

discussed here for computing a separating hyperplane� may not be practically useful�

this is discussed below using some actual examples�

K Represented as the Convex Hull of a Speci�ed Set of Points

Consider the case where K is speci�ed as the convex hull of a given set of points

fA�j � j � � to tg � Rn� So� in this case� b �� K� i� the system

tX
j��

A�jxj � b

tX
j��

xj � �

xj �� �� j � � to t

has no feasible solution x � �xj�� This system is exactly in the same form as system

�I� of Farkas� theorem� Theorem �� and a separating hyperplane in this case can be

computed using this theorem� as discussed above� as long as t is not too large�

K Represented by a System of ���� Inequalities

Involving Convex Functions

Now consider the case whereK is represented as the set of feasible solutions of a system

of inequalities

fi�x� �� �� i � � to m
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where each fi�x� is a di�erentiable convex function de�ned on Rn� See the following

section� Appendix �� for de�nitions of convex functions and their properties� In this

case� b �� K� i� there exists an i satisfying fi�b� � �� If b �� K� �nd such an i� say

r� Then the hyperplane H � fx � fr�b� 	 rfr�b��x� b� � �g separates b from K� by

Theorem �� of Appendix � �see Exercise �� in Appendix ���

K Represented by a System of ���� Inequalities

Involving General Functions

Now consider the case in which the convex set K is represented by a system of con�

straints

gi�x� �� �� i � � to m

where the functions gi�x� are not all convex functions� It is possible for the set of

feasible solutions of such a system to be convex set� As an example let n � 
� x �

�x�� x��
T � and consider the system

�x� �x�	
 �� �

x� � � �� �

x�� � �� �

�x�� �x��	
 �� ��

This system has the unique solution x � ��� ��T � and yet� not all the functions in the

system are convex functions� As another example� letM be a P �matrix of order n which

is not a PSD matrix� and q � Rn� Consider the system in variables z � �z�� � � � � zn�
T

�z �� �

�q �Mz �� �

zT �q 	Mz� �� ��

This system has the unique solution z �z is the point which leads to the unique solution

of the LCP �q�M��� so the set of feasible solutions of this system is convex� being a

singleton set� and yet the constraint function zT �q	Mz� is not convex� since M is not

PSD�

In general� when the functions gi�x�� i � � to m are not all convex� even though

the set K � fx � gi�x� �� �� i � � to mg may be convex� and b �� K� there is no e�cient

method known for computing a hyperplane separating b from K� See Exercise ��

Now we consider some cases in which K is the convex hull of a set of points

speci�ed by some properties�

K Is the Convex Hull of the Tours of a Traveling Salesman Problem

Consider the famous traveling salesman problem in cities �� 
� � � � � n� See ���
��� In this

problem� a salesman has to start in some city� say city �� visit each of the other cities
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exactly once in some order� and in the end return to the starting city� city �� If he

travels to cities in the order i to i 	 �� i � � to n � � and then from city n to city

�� this route can be represented by the order ��� 
� � � � � n� ��� Such an order is known

as a tour� So� a tour is a circuit spanning all the cities� that leaves each city exactly

once� From the starting city� city �� he can go to any of the other �n � �� cities� So

there are �n� �� di�erent ways in which he can pick the city that he travels from the

starting city� city �� From that city he can travel to any of the remaining �n�
� cities�

etc� Thus the total number of possible tours in an n city traveling salesman problem

is �n� ���n� 
� � � �� � �n� ��" Given a tour� de�ne a �� � matrix x � �xij� by

xij �
n
� if the salesman goes from city i to city j in the tour
� otherwise�

Such a matrix x � �xij� is called the tour assignment corresponding to the tour� An

assignment �of order n� is any �� � square matrix x � �xij� of order n satisfying

nX
j��

xij � �� i � � to n

nX
i��

xij � �� j � � to n

xij � � or � for all i� j�

Every tour assignment is an assignment� however not all assignments may be tour

assignments� For example� if n � �

x� �

��������������

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

��������������
is a tour assignment representing the tour �� � 
� �� �� � covering all the cities � to ��

But the assignment

x� �

��������������

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

��������������
is not a tour assignment� since it consists of two subtours �� 
� �� � and � ��  each

spanning only a proper subset of the original set of cities�

Let KT be the convex hull of all the �n � ��" tour assignments of order n� KT

is well de�ned� it is the convex hull of a �nite set of points in Rn�n� However� if n

is large �even n �
� ���� the number of tour assignments� �n� ��" is very large� KT is

of course a convex polytope� It can be represented as the set of feasible solutions of a

system of linear constraints� but that system is known to contain a very large number
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of constraints� Deriving a linear constraint representation of KT remains an unsolved

problem� In this case� if b � �bij� is a given square matrix of order n satisfying the

conditions
bii � �� i � � to n

nX
j��

bij � �� i � � to n

nX
i��

bij � �� i � � to n

� �� bij �� �� for all i� j � � to n

even to check whether b � KT is a hard problem for which no e�cient algorithm is

known� Ideally� given such a b� we would like an algorithm which

either determines that b � KT

or determines that b �� KT and produces in this case a hyperplane separating

b from KT

and for which the computational e�ort in the worst case is bounded above by a poly�

nomial in n� No such algorithm is known� and the problem of constructing such an

algorithm� or even establishing whether such an algorithm exists� seems to be a very

hard problem� If such an algorithm exists� using it we can construct e�cient algorithms

for solving the traveling salesman problem� which is the problem of �nding a minimum

cost tour assignment that minimizes
Pn

i��

Pn
j�� cijxij for given cost matrix c � �cij��

K Is the Convex Hull of Feasible Solutions

of an Integer Linear System

Let A� d be given integer matrices of orders m � n and m � � respectively� Consider

the following systems� x � �xj� � R
n

Ax � d

x �
� �

x an integer vector

or the system
Ax � d

x �� �

� �� xj �� �� j � � to n

xj integer for all j�

Let KI denote the convex hull of all feasible solutions of such a system� Again� KI is a

well de�ned set� it is the convex hull of integer feasible solutions to a speci�ed system

of linear constraints� Given a point b � Rn� ideally we would like an algorithm which
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either determines that b � KI

or determines that b �� KI and produces in this case a hyperplane separating

b from KI

and for which the computational e�ort in the worst case is bounded above by a poly�

nomial in the size of �A� b�� No such algorithm is known�

K Is the Convex Hull of Extreme Points

of an Unbounded Convex Polyhedron

Let A� d be given integer matrices of orders m � n and m � � respectively� with

rank �A� � m� Let    be the set of feasible solutions of the system

Ax � d

x �� ��

Suppose it is known that    is an unbounded convex polyhedron�    has a �nite set of

extreme points� each of these is a BFS of the above system� Let K be the convex hull

of all these extreme points    � Here again K is a well de�ned convex polytope� but

it is the convex hull of extreme points of    � and the number of these extreme points

may be very large� See Section ��� of �
�
��� In general� given a point b �    � the

problem of determining whether b � K� and the problem of determining a separating

hyperplane separating b and K when b �� K� are very hard problems for which no

e�cient algorithms are known �the special case when n � m 	 
 or m 	 � are easy�

because in this case the dimension of    is at most two��

Summary

This discussion clearly illustrates the fact that even though we have proved the ex�

istence of separating planes� at the moment algorithms for computing one of them

e�ciently are only known when K can be represented in very special forms�

�� CONVEX� CONCAVE FUNCTIONS�

THEIR PROPERTIES

Let    be a convex subset of Rn and let f�x� be a real valued function de�ned on    �

f�x� is said to be a convex function i� for any x�� x� �    � and � �� � �
� �� we have

f��x� 	 ��� ��x�� �� �f�x�� 	 ��� ��f�x��� ���
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This inequality is called Jensen�s inequality after the Danish mathematician who

�rst discussed it� The important property of convex functions is that when you join

two points on the surface of the function by a chord� the function itself lies underneath

the chord on the interval joining these points� see Figure ��

Similarly� if g�x� is a real valued function de�ned on the convex set    � Rn� it is

said to be a concave function i� for any x�� x� �    and � �� � �
� �� we have

g��x� 	 ��� ��x�� �� �g�x�� 	 ��� ��g�x��� �
�

(1-   )α (    )

+ )α (1-   )α(f

(    )

α (    )+

α + (1-   )α

(    )

(   )

xf 2

x 1 x 2

f x 1

f x 1

x 1 x 2

x 2x 1

x 2f

xf

x

Chord

Figure 	 A convex function de�ned on the real line�

(   )

x 1
x 2

x

Chord

xg

Figure 
 A concave function de�ned on the real line�

Clearly� a function is concave i� its negative is convex� Also� a concave function lies

above the chord on any interval� see Figure �� Convex and concave functions �gure

prominently in optimization� In mathematical programming literature� the problem of
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either minimizing a convex function� or maximizing a concave function� on a convex

set� are known as convex programming problems� For a convex programming problem�

a local optimum solution is a global optimum solution �see Theorem �
 below� and

hence any techniques for �nding a local optimum will lead to a global optimum on

these problems�

The function f�x� de�ned above is said to be strictly convex� if ��� holds as

a strict inequality for � � � � � and for all x�� x� �    � Likewise g�x� is said to be a

strictly concave function if �
� holds as a strict inequality for � � � � � and for

all x�� x� �    �

The following results can be veri�ed to be true�

�� A nonnegative combination of convex functions is convex� Likewise a nonnegative

combination of concave functions is concave�


� If f�x� is a convex function de�ned on the convex set    � Rn� fx � f�x� �� �g is a

convex set for all real numbers �� Likewise� if g�x� is a concave function de�ned

on the convex set    � Rn� fx � g�x� �� �g is a convex set for all real numbers ��

�� If f��x�� � � � � fr�x� are all convex functions de�ned on the convex set    � Rn� the

pointwise supremum function f�x� � maximum ff��x�� � � � � fr�x�g is convex�

� If g��x�� � � � � gr�x� are all concave functions de�ned on the convex set    � Rn� the

pointwise in�mum function g�x� � minimum fg��x�� � � � � gr�x�g is concave�

�� A convex or concave function de�ned on an open convex subset ofRn is continuous

�see �A��� for a proof of this��

�� Let f�x� be a real valued function de�ned on a convex subset    � Rn� In Rn���

plot the objective value of f�x� along the xn���axis� The subset of R
n��� F �

fX � �x�� � � � � xn� xn��� � x � �x�� � � � � xn� �    � xn�� �
� f�x�g is known as the

epigraph of the function f�x�� It is the set of all points in Rn�� lying above

�along the xn���axis� the surface of f�x�� See Figure � for an illustration of the

epigraph of a convex function de�ned on an interval of the real line R�� It can be

shown that f�x� is convex i� its epigraph is a convex set� from the de�nitions of

convexity of a function and of a set� See Figures �� ��

�� Let g�x� be a real valued function de�ned on a convex subset    � Rn� In Rn���

plot the objective value of f�x� along the xn���axis� The subset of R
n��� G �

fX � �x�� � � � � xn� xn��� � x � �x�� � � � � xn� �    � xn�� �
� g�x�g is known as the

hypograph of the function g�x�� It is the set of all points in Rn�� lying below

�along the xn���axis� the surface of g�x�� See Figure ��� It can be shown from

the de�nitions� that g�x� is concave� i� its hypograph is a convex set�
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Figure � The epigraph of a convex function de�ned on the interval a �
� x�

�
� b is a convex subset of R��

(    )
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f x 1

Figure � The epigraph of a nonconvex function f�x�� de�ned on the interval

a �� x� �� b� is not a convex subset of R��
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(    )
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Figure �� The hypograph of a concave function de�ned on the interval a ��
x� �� b is a convex subset of R��

Theorem ��� For the problem of minimizing a convex function f�x� on a convex

set    � Rn� every local minimum is a global minimum�

Proof� Let x� be a local minimum for this problem� Suppose there exists an x� �    

such that f�x�� � f�x��� Then� by convexity� for � � � � ��

f�x� 	 ��x� � x��� � f��x� 	 ��� ��x�� �� ��� ��f�x�� 	 �f�x�� � f�x��� ���

So when � is positive but su�ciently small� the point x�	��x��x�� contained in the

neighborhood of x� satis�es ���� contradicting the local minimum property of x�� So

we cannot have an x� �    satisfying f�x�� � f�x��� that is� x� is in fact the global

minimum for f�x� in    �

Theorem ��� Let f be a real valued convex function de�ned on the convex set

   � Rn� The set of optimum solutions for the problem of minimizing f�x� over x �    

is a convex set�

Proof� Let L denote the set of optimum solutions for the problem� minimize f�x� over

x �    � Let x�� x� � L� So f�x�� � f�x�� � � � minimum value of f�x� over x �    �

Let � �� � �
� �� By convexity of f�x�� f��x�	 �����x�� �� �f�x��	 �����f�x�� � �
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and �x�	�����x� �    � since    is convex� Since � is the minimum value of f�x� over

x �    � the above inequality must hold as an equation� that is� f��x�	�����x�� � ��

which implies that �x� 	 ��� ��x� � L also� So L is a convex set�

Theorem ��� For the problem of maximizing a concave function g�x� on a convex

set    � Rn� every local maximum is a global maximum�

Proof� Similar to Theorem �
�

A real valued function �x� de�ned on an open set    � Rn is said to be di�er�

entiable at a point x �    if the partial derivative vector r�x� exists� and for each

y � Rn� limit ���x 	 �y� � �x� � ��r�x��y���� as � tends to zero is zero� �x� is

said to be twice di�erentiable at x if the Hessian matrix H��x�� exists and for each

y � Rn� limit ���x	 �y�� �x�� ��r�x��y � ����
�yTH��x��y����� as � tends to

zero is zero�

The real valued function �x� de�ned on an open set    � Rn is said to be continu�

ously di�erentiable at a point x �    if it is di�erentiable at x and the partial derivatives
���x�
�xj

are all continuous at x� The function �x� is said to continuously di�erentiable at

a point x �    if it is twice di�erentiable at x and the second order partial derivatives
����x�
�xi�xj

are all continuous at x� The function is said to be di�erentiable� continuously

di�erentiable� etc�� over the set    � if it satis�es the corresponding property for each

point in    �

Theorem �� �Gradient Support Inequality�� Let f�x� be a real valued convex

function de�ned on an open convex set    � Rn� If f�x� is di�erentiable at x �    �

f�x�� f�x� �� �rf�x���x� x� for all x �    � ��

Conversely� if f�x� is a real valued di�erentiable function de�ned on    and ���� holds

for all x� x �    � f�x� is convex�

Proof� Suppose f�x� is convex� Let x �    � By convexity of    � �x 	 �� � ��x � x 	

��x�x� �    for all � �� � �
� �� Since f�x� is convex we have f�x	��x�x�� �� �f�x�	

��� ��f�x�� So for � � � �
� �� we have

f�x�� f�x� �� �f�x	 ��x� x��� f�x����� ���

By de�nition of di�erentiability� the right hand side of ��� tends to rf�x��x� x� as

� tends to zero through positive values� Since ��� holds for all � � � �
� �� this implies

�� as � tends to zero through positive values in ����

Conversely� suppose f�x� is a real valued di�erentiable function de�ned on    and

suppose �� holds for all� x� x �    � Given x�� x� �    � from �� we have� for � � � � ��

f�x��� f���� ��x� 	 �x�� �� ��rf��� ��x� 	 �x���x� � x��

f�x��� f���� ��x� 	 �x�� �� ���� ���rf���� ��x� 	 �x����x� � x���
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Multiply the �rst inequality by ��� �� and the second by � and add� This leads to

��� ��f�x�� 	 �f�x��� f���� ��x� 	 �x�� �� �� ���

Since ��� holds for all x�� x� �    and � � � � �� f�x� is convex�

Theorem �	� Let g�x� be a concave function de�ned on an open convex set    � Rn�

If g�x� is di�erentiable at x �    �

g�x� �� g�x� 	 �rg�x���x� x�� for all x �    � ���

Conversely� if g�x� is a di�erentiable function de�ned on    and ��	� holds for all

x� x �    � g�x� is concave�

Proof� Similar to the proof of Theorem ���

Figures ��� �
 provide illustrations of gradient support inequalities for convex and

concave functions�

(  )

(  )

function
value

f x

l x

x
x

Figure �� f�x� is a di�erentiable convex function� l�x� � f�x� 	

�rf�x���x � x�� an a�ne function �since x is a given point�� is the �rst order

Taylor series approximation for f�x� around x� It underestimates f�x� at each

point�
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(  )
function
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(  )
l x

x
x

g x

Figure �� g�x� is a di�erentiable concave function� l�x� � g�x� 	 �rg�x�

�x � x�� is the �rst order Taylor series approximation for g�x� around x� It

overestimates g�x� at each point�

Theorem �
� Let f�x� be a real valued convex function de�ned on an open convex

subset    � Rn� If f�x� is twice di�erentiable at x �    � H�f�x�� is PSD� Conversely�

if f�x� is a twice di�erentiable real valued function de�ned on    and H�f�x�� is PSD

for all x �    � f�x� is convex�

Proof� Let x �    and y � Rn� Suppose f�x� is convex� For � � � and su�ciently

small� by Theorem �� we have

�f�x	 �y�� f�x�� ��rf�x��y��� �
� �� ���

Taking the limit as � tends to zero through positive values� from ��� we have

yTH�f�x��y �� �� and since this holds for all y � Rn� H�f�x�� is PSD�
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Suppose f�x� is twice di�erentiable on    and H�f�x�� is PSD for all x �    � By

Taylor�s theorem of calculus we have� for x�� x� �    � f�x���f�x����rf�x����x��x�� �

�x� � x��TH�f�x� 	 ��x� � x�����x� � x���
 for some � � � � �� But the latter

expression is �� � since H�f�x�� is PSD for all x �    � So f�x���f�x��� �rf�x����x��

x�� �� � for all x�� x� �    � By Theorem ��� this implies that f�x� is convex�

Given a general twice continuously di�erentiable real valued function f�x� de�ned

on Rn� it may be hard to check whether it is convex� For some x � Rn� if H�f�x�� is

PD� we know that in a small convex neighborhood of x� H�f�x�� is PSD� and hence

f�x� is locally convex in this neighborhood�

Theorem ��� Let g�x� be a real valued concave function de�ned on an open convex

subset    � Rn� If g�x� is twice di�erentiable at x �    � H�g�x�� is NSD� Conversely� if

g�x� is a twice di�erentiable real valued function de�ned on    and H�g�x�� is NSD for

all x �    � g�x� is concave�

Proof� Similar to the proof of Theorem ���

Exercises

��� Let Xr � �xr�� � � � � x
r
n� x

r
n���

T r � � to m be given points in Rn��� Let xr � �xr��

� � � � xrn�
T r � � to m� It is required to check whether there exists a convex function

�x� de�ned on Rn �with the objective value plotted along the xn���axis in Rn���

satisfying the property �xr� � xrn�� for r � � to m� Formulate this as a linear

programming problem�

��� Let f�x� be a real valued continuously di�erentiable convex function de�ned on

Rn� Let � be a real number and K � fx � f�x� �
� �g� Given a point x	 �� K�

develop an e�cient method for �nding a separating hyperplane separating x	 from K�

Generalize this to the case where f�x� � �f��x�� � � � � fm�x��� each fi�x� being a real

valued continuously di�erentiable function de�ned on Rn� and � � Rm�

��� Let �x� be a di�erentiable convex function de�ned over a convex set K � Rn�

Let x be a given point in K� If x satis�es the property that it minimizes the linear

function �r�x��x over x � K� prove that x also minimizes �x� over x � K�

Convexity� Concavity of a Vector Function

Let f�x� be the vector �fi�x�� where each fi�x� is a real valued function de�ned

on the convex set    � Rn� f�x� is said to be convex or concave on    � i� each fi�x�

has the same property�
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Subgradients� and Subdi�erential Sets

Let f�x� be a real valued convex function de�ned on Rn� As de�ned in Section 
�����

the vector d � �d�� � � � � dn�
T is said to be a subgradient of f�x� at a point x	 � Rn�

if

f�x� �� f�x	� 	 dT �x� x	�� for all x � Rn�

The set of all such vectors d satisfying this condition is known as the subdi�erential

set for f�x� at x	� and denoted by the symbol �f�x	��

By Theorem ��� if f�x� is di�erentiable at x	� the gradient vector �rf�x	��T �

�f�x	�� and in fact it can be shown that in this case �f�x	� � frf�x	�Tg� Also�

as mentioned in Section 
����� if f�x� � maxff��x�� � � � � fr�x�g where each fi�x� is a

di�erentiable convex function de�ned on Rn� then for any x � Rn�

�f�x� � convex hull of frfi�x� � i such that f�x� � fi�x�g�

See Section 
���� for �gures illustrating the subgradient property� The de�nition implies

that if f�x� is convex and d � �f�x�� then the a�ne function l�x� � f�x� 	 dT �x� x�

is equal to f�x� at x � x� and is an underestimate for f�x� at all points x�

So the error f�x�� l�x� � f�x�� �f�x� 	 dT �x� x�� �� � for all x and d � �f�x��

See Section 
���� for �gures illustrating this property� The a�ne function l�x� de�ned

above is known as a linearization of f�x� at x�

If h�x� is a concave function de�ned on Rn� the vector d is said to be a subgradient

of h�x� at x if

h�x� �� h�x� 	 dT �x� x� for all x � Rn

and the set of all subgradients to h�x� at x is denoted by �h�x�� With this de�nition�

analogous results to those stated above� can be constructed for concave functions�

Let g�x� be a real valued function de�ned on Rn which is neither convex nor

concave� If g�x� is di�erentiable at a point x � Rn� the a�ne function l�x� � g�x� 	

rg�x��x � x� is known as the linearization of g�x� at x� However� since g�x� is

neither convex nor concave� it is possible for the error g�x�� l�x� to take both positive

and negative values over Rn� See Figure ���
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Figure �� The linearization at x� l�x�� of a di�erentiable function g�x� which

is neither convex nor concave may be � g�x� at some points x� and � g�x� at

other points�

For this general function g�x�� if it is di�erentiable at x� we de�ne �g�x� � frg�x�g�

If g�x� is not di�erentiable at x� we let �f�x� denote the convex hull of all limits of

sequences of the form frg�xr� � fxrg is a sequence converging to x� such that g�x�

is di�erentiable at each xr in the sequenceg� In this case� vectors in the set �g�x�

are called generalized gradients or subgradients of g�x� at x� See F� H� Clarke �A���

With this de�nition� it can be shown that if g�x� � maxfg��x�� � � � � gm�x�g� where each

gi�x� is a continuously di�erentiable function� then �g�x� � convex hull of frgi�x� � i

such that g�x� � gi�x�g� If g�x� is convex� the set �g�x� de�ned here equals the

subdi�erential set of g�x� at x as de�ned earlier� Also� it can be shown under fairly

general conditions on g�x� �for example� if g�x� is a locally Lipschitz function� that

is� if there exists an � � � such that jg�x� � g�y�j �� �kx � yk for all x� y� that the

following mean value result holds� there exists an �x on the line segment joining x and

y and a �d � �g��x�� satisfying

g�x�� g�y� � �dT �x� y��
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This de�nition of subgradients or generalized gradients for general functions is used

in Section ������ in constructing an algorithm for constrained line minimization� Also

see N� Z� Shor �A��� for a detailed treatment of various types of generalized gradients�

and their applications in subgradient algorithms for nondi�erentiable minimization�

�� OPTIMALITY CONDITIONS FOR

SMOOTH OPTIMIZATION PROBLEMS

Here we brie#y survey the known optimality conditions for NLPs in which the objective

and constraint functions are continuously di�erentiable�

The Principles on Which Optimality Conditions are Based

Let K denote the set of feasible solutions for an optimization problem in which the

objective function �x� is to be minimized� Let x � K be a feasible solution� A feasible

direction at x for K is a direction y satisfying the property that beginning at x� you

can move a positive length along a straight line in the direction y� without leaving K�

Necessary optimality conditions for this optimization problem are derived� based on

two very simple principles� These are the following�

�� If x is a local minimum for this optimization problem� then� as you move from x

straight along any feasible direction at x for K� in a small neighborhood of x� the

objective value cannot decrease�


� Take a one dimensional� nonlinear� di�erentiable curve in the feasible region K�

passing through x� If x is a local minimum for this optimization problem� then� as you

move from x along this curve� in a small neighborhood of x� the objective value cannot

decrease �in e�ect this says that if x is a local minimum for �x� in K� then x must be

a local minimum for the one dimensional optimization problem of minimizing �x� on

the curve��

Of course � is a special case of 
� since a straight line is a di�erentiable curve� These

principles make it possible for us to derive necessary conditions for local minimality

in higher dimensional feasible regions using well known necessary conditions for local

minimality in one�dimensional optimization problems�

All the necessary optimality conditions are derived using the above principles�

Even though the principles are the same� their application leads to optimality condi�

tions which depend on the structure of the problem�

We will now derive optimality conditions for di�erent types of nonlinear program�

ming problems�
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Unconstrained Minimization

First consider the unconstrained minimization problem

minimize �x�

over x � Rn�
���

Given x � Rn� y � Rn� y �� �� by di�erentiability of �x�� we know that limit of

��x	 �y�� �x� � ��r�x��y��� as � tends to zero is zero� So� if �r�x��y � � by

choosing � positive and su�ciently small� we will have �x 	 �y� � �x�� Similarly�

if �r�x��y � �� by choosing � negative with su�ciently small absolute value we will

have again �x 	 �y� � �x�� So if x is a local minimum for ���� we must have

�r�x��y � � for all y � Rn� that is

r�x� � � ����

���� is the �rst order necessary condition for x to be a local minimum for ����

If �x� is twice continuously di�erential at x� we know that the limit of ��x	�y��

�x�� ��r�x��y � ����
�yTH��x��y���� as � tends to zero is zero� where H��x��

is the Hessian matrix �the matrix of second order partial derivatives� of �x� at x� So

if x is such that ���� is satis�ed� and y is such that yTH��x��y � � then for � �� �

and su�ciently small� we will have �x	 �y� � �x�� So� if x is a local minimum for

��� we must have yTH��x��y �� � for all y � Rn� when x satis�es ����� that is

H��x�� must be PSD� ����

���� and ���� together are the second order necessary conditions for x to be a

local minimum to ����

We now state a su�cient optimality condition for ��� in the form of a theorem�

Theorem ��� Suppose �x� is twice continuously di�erentiable� and x is a point

satisfying

r�x� � �� and H��x��is PD ��
�

then x is a local minimum for ��
��

Proof� Since H��x�� is PD� all its principal subdeterminants are � �� Since �x� is

twice continuously di�erentiable� all principal subdeterminants of the Hessian matrix

H��x�� are continuous functions� These facts imply that there exists an � � �� such

that if    � fx � kx� xk � �g� all principal subdeterminants of H��x�� are � � for all

x �    � Being a Hessian matrix H��x�� is also symmetric� by Theorem ��� of Section

������ these facts imply that H��x�� is PSD for all x �    � By Theorem �� of Appendix

�� this implies that �x� is convex over x �    � So by Theorem �� of Appendix � �the

gradient support inequality�

�x�� �x� �� �r�x���x� x� for all x �    

�
� �� since r�x� � � by ��
��
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This proves that x is a local minimum for �x��

Thus a su�cient condition for x to be a local minimum for ��� is ��
��

Example �

Consider the problem

minimize �x� � 
x�� 	 x�� 	 x�� 	 x�x� 	 x�x� 	 x�x� � �x� � �x� � �x�

over x � R��

From the necessary optimality conditions� we know that every local minimum for this

problem must satisfy

��x�

�x�
� x� 	 x� 	 x� � � � �

��x�

�x�
� x� 	 
x� 	 x� � � � �

��x�

�x�
� x� 	 x� 	 
x� � � � ��

This system of equations has the unique solution x � ��� �� 
�T � The Hessian matrix is

H��x�� �

�������
 � �
� 
 �
� � 


������� �

This matrix is PD� So x satis�es the su�cient conditions for a local minimum� Clearly�

here� �x� is convex and hence x is a global minimum for �x��

Example �

Consider the problem

minimize �x� � 
x�� 	 x�� 	 
x�x� 	 
x�x� 	 x�x� 	 x� � �x� 	 
x�

over x � R��

The �rst order necessary conditions for a local minimum are

��x�

�x�
� x� 	 
x� 	 
x� 	  � �

��x�

�x�
� 
x� 	 x� � � � �

��x�

�x�
� 
x� 	 x� 	 
x� 	 
 � ��
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This system has the unique solution �x � ��
���� ��T � The Hessian matrix is

H���x�� � 


�������

 � �
� � 

� 
 �

�������
which is not PSD� So �x violates the second order necessary conditions for a local

minimum� So the function �x� here does not have a local minimum� It can be veri�ed

that in fact �x� is unbounded below on R��

Example �

Let �x� � �
x�� � x�� 	 x�x� � ��x� 	 �x� and consider the problem of minimizing

�x� over x � R�� The �rst order necessary conditions for a local minimum are

��x�

�x�
� �x� 	 x� � �� � �

��x�

�x�
� x� � 
x� 	 � � �

which has the unique solution �x � ��
� 
�T � The Hessian matrix is

H���x�� �

���� �
� �


��� �

Since H���x�� is not PSD� �x violates the second order necessary conditions for being

a local minimum of �x�� So �x� has no local minimum� In fact� it can be veri�ed

that the Hessian matrix is ND� so �x satis�es the su�cient condition for being a local

maximum for �x� �a local maximum for �x� is a local minimum for ��x��� Actually�

�x� here is concave and �x is a global maximum point for �x�� It can be veri�ed that

�x� is unbounded below on R��

An Important Caution for NLP Users

These examples point out one important aspect of using nonlinear programming al�

gorithms in practical applications� One should not blindly accept any solution of the

�rst order necessary optimality conditions as a solution to the problem� if it is a non�

convex programming problem �this caution can be ignored if the problem being solved

is a linear or other convex programming problem�� An e�ort should be made to check

whether the solution is at least a local minimum by using second order necessary op�

timality conditions� or the su�cient optimality conditions� or at least through a local

search in the neighborhood of the point�
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Stationary Point Necessary Optimality Conditions

for Constrained Minima

Consider the problem
minimize �x�

subject to x �    
����

where    is a speci�ed subset of Rn� and �x� is a real valued continuously di�erentiable

function de�ned on Rn�

Given x �    � y �� �� y � Rn is said to be a feasible direction for    at x if

x 	 �y �    for all � �
� � �

� � for some positive �� As an example� if    � fx � x �

�x�� x��
T � x� �� �� x� �� �g and x � ��� ��T � then fy � y � �y�� y��� y� �� �g is the set of

feasible directions at x�

Using the de�nition of di�erentiability� it follows that if x �    is a local minimum

for ����� and �x� is continuously di�erentiable at x� then we must have

�r�x��y �� � for all feasible directions y at x to    � ���

��� are the �rst order necessary conditions for x to be a local minimum for �����

If �x� is twice continuously di�erentiable at x �    � and x is a local minimum for �����

we must have

���� and yTH��x��y �� � for all feasible directions y satisfying �r�x��y � �� ����

The conditions ���� ���� become simpli�ed if    is a convex set� In this case� a feasible

direction y at x to    is y � x� x for any x �    � See Figure �� So in case    is convex�

the necessary conditions for x �    to be a local minimum is that ���� ���� hold for all

y � x� x� x �    �

x

Γ
x

Figure �� If    is a convex set� feasible directions at x to    are of the form

x� x for any x �    � x �� x�
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Example 	

Consider the problem

minimize �x�� �x�x��x� � x�
subject to x� �

� �

x� �
� ��

The set of feasible solutions� K� is marked in Figure ���

x1

(2,1)

(1,1)

x2

Figure ��

We have
r�x� � ��x� � �� �x� � ��

H��x�� �

��� � �
� �

��� �

Let x � �
� ��T � The set of feasible directions at x to K is clearly fy � y � �y�� y��
T �

y� �
� �g� r�x� � �
� ��� y � ���� ��T is a feasible direction to K at x� and yet

�r�x��y � �
 � � and hence the necessary condition ��� is violated at x�

Let �x � ��� ��T � The set of feasible directions to K at �x is clearly fy � y �
� �g�

r��x� � �
� 
� and we verify that both the necessary optimality conditions ��� and

���� are satis�ed at �x� Acutally� �x is the global minimum for this problem�

The conditions ���� ���� are respectively the �rst and second order stationary

point necessary optimality conditions for the NLP �����

Variational Inequality Problem

The stationary point necessary optimality conditions discussed above� lead to a problem

commonly known as the variational inequality problem� In this problem we are given a
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real vector function f�x� � �f��x�� � � � � fn�x��
T de�ned over Rn� and a subset K � Rn�

The variational inequality problem with this data� is to �nd a point x� � K satisfying

�x� x��T f�x�� �� � for all x � K�

Suppose K � fx � Ax �
� b� x �

� �g where A� b are given matrices of orders m � n

and m � �� the above variational inequality problem is equivalent to the nonlinear

complementarity problem� �nd z � Rn�m satisfying

z �� �� g�z� �� �� zT g�z� � �

where z � �x�� � � � � xn� y�� � � � � ym�
T � y � �y�� � � � � ym�

T and

g�z� �

��� f�x� �AT y
Ax �b

��� �

Optimality Conditions for Equality Constrained Minimization

Consider the NLP
minimize �x�

subject to hi�x� � �� i � � to m
����

where �x�� hi�x� are all real valued continuously di�erentiable functions de�ned on

Rn� Let h�x� � �h��x�� � � � � hm�x��
T � The set of feasible solutions is a surface in Rn�

and it is smooth if each hi�x� is a smooth function �i� e�� continuously di�erentiable��

If x is a feasible point� when some of the hi�x� are nonlinear� there may be no feasible

direction at x� In order to retain feasibility while moving from x� one has to follow a

nonlinear curve through x which lies on the feasible surface� See Figure ���

x

Figure �	 Feasible surface    � fx � h��x� � �g satisfying a nonlinear equa�

tion� At x �    � the direction marked by the arrow is not a feasible direction�

since any move of positive length in that direction takes the point out of    � To

move from x and remain inside    one has to follow a curve like the dashed curve�

A curve in Rn is the locus of a point x��� � �xj����� where each xj��� is a real valued

function of the real parameter �� as the parameter varies over some interval of the real

line� See Figure ���
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1-1

Figure �
 A curve in R�� fx��� � ��� ��� � �� �� � �
� �g is a piece of a curve

�parabola� in R� through the origin x � ��� ��T �

The curve x��� � �xj��� is said to be di�erentiable at � if dxj���
d�

exists for all j� and

twice di�erentiable if d�xj���
d��

exists for all j� The curve x��� is said to pass through

the point x if x � x��� for some ��

If the curve x��� de�ned over a � � � b is di�erentiable at �� a � � � b� then the

line fx � x��� 	 � dxd� ��� � � realg is the tangent line to the curve at the point x��� on

it� See Figure ���

(  )λx
(  )λx

curve at

a bλ

Tangent line to the

Figure ��

The tangent plane at a feasible point x to ���� is de�ned to be the set of all directions

�dx���
d�

���	� where x��� is a di�erential curve in the feasible region with x��� � x� See

Figure ���
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xplane at

x

xTangent plane to surface at

Translate of tangent

0

Figure �� The tangent plane to surface fx � h��x� � �g at a point x on it

is the collection of all directions of tangent lines to di�erentiable curves lying in

surface and passing through x�

We need the following results to study these tangent planes�
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The Implicit Function Theorem

Consider the system of m equations in n variables x�� � � � � xn

fi�x�� � � � � xn� � �� i � � to m ����

where each fi�x� is continuously di�erentiable in some open subset D � Rn� Let

x � D be feasible to ���� and let the subset of m variables� x�� � � � � xm� say� be such

that the m � m Jacobian ��fi�x�
�xj

� i � � to m� j � � to m� is nonsingular� Then

in a neighborhood of x� we can use the equations in ���� to express x�� � � � � xm as

functions of xm��� � � � � xn on the set of feasible solutions of ����� That is� there exists

a neighborhood D of �xm��� � � � � xn� in R
n�m and real valued di�erentiable functions

�i�xm��� � � � � xn�� i � � to m� such that for �xm��� � � � � xn� � D� ���� is equivalent to

xi � �i�xm��� � � � � xn�� i � � to m

i� e��

fi����xm��� � � � � xn�� � � � � �m�xm��� � � � � xn�� xm��� � � � � xn� � �� i � � to m ����

holds for all �xm��� � � � � xn� � D� Further� the partial derivatives
��i�xm�������xn�

�xj
� i � �

to m� j � m	 � to n� are obtained by solving the system of equations

mX
r��

�fi�x�

�xr

��r�xm��� � � � � xn�

�xj
	
�fi�x�

�xj
� �� j � m	 � to n� i � � to m� ����

It can be veri�ed that ���� is just obtained by setting the derivative of the identity

���� at x with respect to xj to zero for each j � m 	 � to n and i � � to m� See

references ������� for a proof of the implicit function theorem�

Example 
� An Illustration of the Implicit Function Theorem�

Here we provide a simple example to illustrate the implicit function theorem using

a linear system of constraints� Consider the following system in the variables x �

�x�� x�� x�� x�� x��
T �

f��x� � x� 	 x� 	 x� 	 x� � x� � �
 � �

f��x� � �x� 	 x� � 
x� � x� 	 x� � 
 � ��

Let x � ��� �� �� �� ��T � x is a feasible solution� and

� �f��x�
�x�

�f��x�
�x�

�f��x�
�x�

�f��x�
�x�

�
�

	
� �

�� �




is nonsingular� Therefore� by the implicit function theorem� it is possible to express

x�� x� as functions of the remaining variables x�� x�� x� in a neighborhood of x in the
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feasible region� Since the constraints are linear� we can do this explicitly by solving for

x�� x� in terms of x�� x�� x� using these two equations� and this leads to

x��x�� x�� x�� � �
�



x� � x� �

�



x� 	 ��

x��x�� x�� x�� �
�



x� �

�



x� 	 �

where x��x�� x�� x�� and x��x�� x�� x�� are the expressions for x�� x� as functions of

x�� x�� x�� on the feasible region for this system� When the equations are nonlinear�

it may not be possible to obtain these expressions explicitly� but the implicit function

theorem guarantees the existence of them in a neighborhood of x in the feasible region�

We verify that the partial derivatives are� �x�
�x�

� �x�
�x�

� �x�
�x�

�x�
�x�

� �x�
�x�

� �x�
�x�

�
�

�
��

� � ��� � �
�

�
� � �� � �

�

�
�

The equations corresponding to ���� for this system for j � � are

�f�
�x�

�x�
�x�

	
�f�
�x�

�x�
�x�

	
�f�
�x�

�
�x�
�x�

	
�x�
�x�

	 � � �

�f�
�x�

�x�
�x�

	
�f�
�x�

�x�
�x�

	
�f�
�x�

� �
�x�
�x�

	
�x�
�x�

� 
 � �

which together yield �x�
�x�

� ��
� �

�x�
�x�

� �
� � same as the values obtained above� In a

similar manner� writing the equations corresponding to ���� for this system for j � � ��

we can compute the values �xi
�xj

for i � �� 
� j � � �� and verify that they are the same

as those obtained above�

Constraint Quali�cations

In general� determining the tangent plane for ���� at the feasible point x is hard�

However� if the constraint functions hi�x� satisfy ceratin conditions at x� it becomes

possible to obtain a simple characterization of the tangent plane for ���� at x� So

these conditions are called constraint quali�cations because these conditions are

speci�cally on the constraints in ����� not so much on the set of feasible solutions of

����� Several constraint quali�cations have been developed� but for most of them� it is

very hard to verify whether they hold in any given problem� We will only discuss one

constraint quali�cation� which can be checked e�ciently� It is called the regularity

condition�

The regularity condition is said to hold for ���� at the feasible point x if the

Jacobian matrix ��hi�x��xj
� i � � to m� j � � to n� has rank m� in this case the feasible

point x is called a regular point for �����

De�nition� We denote by rh�x� � ��hi�x�
�xj

� i � � to m� j � � to n�� the Jacobian

matrix of order m � n� the ith row vector of rh�x� is the gradient vector of hi�x�

written as a row vector�
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Tangent Planes at Regular Points

Theorem ��� If x is a regular point for ����� the tangent plane for ���� at x is

fy � �rh�x��y � �g�

Proof� Let x��� be a di�erentiable curve lying in the feasible region for � lying in an

interval around zero� with x��� � x and dx�	�
d� � y� So h�x���� � � for all values of �

lying in an interval around zero� and hence �dh�x����d� ���	 � �� that is �rh�x��y � ��

This implies that the tangent plane is a subset of fy � �rh�x��yg � ��

Suppose y � fy � �rh�x��y � �g and y �� �� De�ne new variables u � �u�� � � � �

um�
T � Consider the following system of m equations in m	 � variables u�� � � � � um� ��

gi�u� �� � hi�x	 �y 	 �rh�x��Tu� � �� i � � to m� ����

It can be veri�ed that g��� �� � � and the Jacobian matrix of g�u� �� with respect to

u is nonsigular at u � �� � � � �since x is a regular point of ������ So by applying

the implicit function theorem on ����� we can express u as a di�erentiable function of

�� say u���� in an interval around � � �� and that ���� holds as an identity in this

interval when u in ���� is replaced by u���� and that u��� � �� and du�	�
d�

is obtained

by solving � d

d�
h�x	 �y 	 �rh�x��Tu����

�
��	

� �

which leads to d
d�
u��� � � since rh�x� has rank m� So if we de�ne

x��� � x	 �y 	 �rh�x��Tu���

this de�nes a di�erentiable curve lying in the feasible region for ���� for values of � in

an interval around � � �� and that dx
d� ��� � y� which implies that y is in the tangent

plane for ���� at x�

Example �

Consider the system
h�x�� x�� � x� � �

x � �x�� x��
T � R��

The set of feasible solutions is the x��axis in R
�� since rh�x� � ��� �� every feasible

point is a regular point� and the tangent plane at any feasible point x is again the

x��axis � fy � �rh�x��y � �g � fy � y � �y�� y��� y� � �g� On the other hand the

system
g�x�� x�� � x�� � �

x � �x�� x��
T � R�

has the same set of feasible solutions� namely the x��axis inR
�� Since rg�x� � ��x�� � ��

is zero whenever x is feasible� no feasible point is regular� The tangent plane at every

feasible solution is again the x��axis in R�� but fy � rg�x�y � �g � R� for every

feasible solution x�
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Optimality Conditions

Using Theorem 
� we can now derive optimality conditions for ����� If x is a feasible

regular point for ����� and it is a local minimum� clearly along every di�erentiable

curve x��� lying in the feasible region for ���� for values of � in an interval around

� � �� satisfying x��� � x� � � � must be a local minimum for �x� on this curve�

That is� for the problem of minimizing �x���� over this interval for �� � � � must

be a local minimum� Since � � � is an interior point of this interval this implies that
d�
d� �x���� must be zero� Applying this to all such curves and using Theorem 
� we

conclude that �r�x��y � � for all y satisfying �rh�x��y � �� By Theorem � �see

Exercise �� this implies that there must exist 	 � �	�� � � � � 	m� such that

r�x��
mX
i��

	irhi�x� � �

and by feasibility h�x� � �

����

the conditions ���� are the �rst order necessary optimality conditions for �����

the vector 	 is the vector of Lagrange multipliers� ���� is a system of �n 	 m�

equations in �n 	m� unknowns �including x and 	� and it may be possible to solve

���� using algorithms for solving nonlinear equations� If we de�ne the Lagrangian for

���� to be L�x� 	� � �x��	h�x� where 	 � �	�� � � � � 	m�� h�x� � �h��x�� � � � � hm�x��
T �

���� becomes� �x� 	� satis�es
h�x� � �

rxL�x� 	� � ��
��
�

We will now derive the second order necessary optimality conditions for �����

Suppose the functions �x�� hi�x� are all twice continuously di�erentiable� Let x be

a feasible solution for ���� which is a regular point� If x is a local minimum for �����

by the �rst order necessary optimality conditions ����� there must exist a row vector

of Lagrange multipliers� 	 � �	�� � � � � 	m� such that rx�L�x� 	�� � �� where L�x� 	� �

�x��	h�x� is the Lagrangian� Since x is a regular point� the tangent plane to ���� at x

is T � fy � �rh�x��y � �g� Suppose there exists a y � T satisfying yTHx�L�x� 	��y �

�� Since y � T� and all the functions are twice continuously di�erentiable� there exists

a twice di�erentiable curve x��� through x lying in the feasible region �i� e�� x��� � x�

and the curve is de�ned in an interval of � with � as an interior point� with h�x���� � �

for all � in this interval�� such that �dx���
d�

���	 � y� Now�

d

d�
L�x���� 	� � �rxL�x���� 	��

�dx���
d�

�
d�

d��
L�x���� 	� �

�dx���
d�

�T
Hx�L�x���� 	��

dx���

d�
	 �rxL�x���� 	��

�d�x���
d��

�

where rx�L�x� 	��� Hx�L�x� 	�� are the row vector of partial derivatives with respect

to x� and the Hessian matrix with respect to x of L�x� 	� at x � x respectively� At
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� � �� we have rxL�x���� 	� � rxL�x� 	� � � by the �rst order necessary optimality

conditions�

So� from the above

� d

d�
L�x���� 	�

�
��	

� �

� d�

d��
L�x���� 	�

�
��	

� yTHx�L�x� 	��y�

Using these in a Taylor series expansion for f��� � L�x���� 	� up to second order

around � � � leads to

f��� � L�x���� 	� � L�x� 	� 	
��



yTHx�L�x� 	��y 	 ����

where ���� is a function of � satisfying the property that limit of ��������� as � tends

to zero� is zero� Since h�x���� � � for every point on the curve� we have f��� �

L�x���� 	� � �x���� for all � in the interval of � on which the curve is de�ned� So in

the neighborhood of � � � on the curve we have from the above


��x����� �x��

��
�

�f���� f����

��
� yTHx�L�x� 	��y 	


������

��

and since yTHx�L�x� 	��y � � and limit of ��������� as � tends to zero is zero� for all

� su�ciently small �x���� � �x� � �� For all these �� x��� is a point on the curve

in the feasible region in the neighborhood of x� and this is a contradiction to the fact

that x is a local minimum for �����

In fact it can be veri�ed that yTHx�L�x� 	��y � �d
�f���
d�� ���	� and if this quantity

is � �� � � � cannot be a local minimum for the one variable minimization problem

of minimizing f��� � �x���� over �� or equivalently� that x � x��� is not a local

minimum for �x� along the curve x����

These facts imply that if �x�� hi�x� are all twice continuously di�erentiable� and

x is a regular point which is a feasible solution and a local minimum for ����� there

must exist a Lagrange multiplier vector 	 such that the following conditions hold�

h�x� � �

rxL�x� 	� � r�x�� 	rh�x� � �

yTHx�L�x� 	��y �� � for all y � T � fy � �rh�x��y � �g�

that is Hx�L�x� 	�� is PSD on the subspace T�

����

These are the second order necessary optimality conditions for a regular feasible

point x to be a local minimum for �����

We now state a su�cient optimality condition for ���� in the form of a theorem�
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Theorem ��� Suppose �x�� hi�x�� i � � to m are all twice continuously di�eren

tiable functions� and x is a feasible point such that there exists a Lagrange multiplier

vector 	 � �	�� � � � � 	m� which together satisfy

h�x� � �

r�x�� 	rh�x� � �

yTHx�L�x� 	��y � � for all y � fy � �rh�x��y � �g� y �� �

���

where L�x� 	� � �x�� 	h�x� is the Lagrangian for ����� Then x is a local minimum

for �����

Proof� Suppose x is not a local minimum for ����� There must exist a sequence of

distinct feasible points fxr � r � �� 
� � � �g converging to x such that �xr� � �x� for

all r� Let �r � kx� xrk� yr � �xr � x���r� Then kyrk � � for all r and xr � x	 �ry
r�

Thus �r � �� as r�
� Since the sequence of points fyr � r � �� 
� � � �� all lie on the

surface of the unit sphere in Rn� a compact set� the sequence has at least one limit

point� Let y be a limit point of fyr � r � �� 
� � � �g� There must exist a subsequence

of fyr � r � �� 
� � � �g which converges to y� eliminate all points other than those in

this subsequence� and for simplicity call the remaining sequence by the same notation

fyr � r � �� 
� � � �g� So now we have a sequence of points xr � x 	 �ry
r all of them

feasible� such that kyrk � � for all r� yr � y and �r � � as r � 
� By feasibility

h�x	 �ry
r� � � for all r� and by the di�erentiability of h�x� we have

� � h�x	 �ry
r� � h�x� 	 �rrh�x�y

r 	 ���r�

� �rrh�x�y
r 	 ���r�

Dividing by �r � �� and taking the limit as r�
 we see that rh�x�y � ��

Since L�x� 	� is a twice continuously di�erentiable function in x� applying Taylor�s

theorem to it� we conclude that for each r� there exists a � �� �r �� �r such that

L�x	 �ry
r� 	� � L�x� 	� 	 �rrxL�x� 	�y

r 	 ���
���r�y
r�THx�L�x	 �ry

r� 	��yr�

From the fact that x 	 �ry
r � xr and x are feasible� we have L�xr� 	� � �xr� and

L�x� 	� � �x�� Also� from ���� rxL�x� 	� � �� So� from the above equation� we have

�xr�� �x� � ���
���r�y
r�THx�L�x	 �ry

r� 	��yr� ����

Since � �� �r �� �r� and �r � � as r �
� and by continuity� we know that Hx�L�x	

�ry
r� 	�� converges to Hx�L�x� 	�� as r�
� Since yr � y as r�
� and rh�x�y �

�� from the last condition in ��� and continuity we conclude that when r is su�ciently

large� the right�hand side of ���� is � �� while the left�hand side is � �� a contradiction�

So� x must be a local minimum for �����

Thus� ��� provides a su�cient condition for a feasible point x to be a local

minimum for �����
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Example �

Consider the problem
minimize �x� � x�x�
subject to x� 	 x� � 
�

The Lagrangian is L�x� �� � x�x� � ��x� 	 x� � 
�� So� the �rst order necessary

optimality conditions are

�L�x� ��

�x
� �x� � �� x� � �� � �

which together with the feasibility conditions lead to x � ��� ��T � x is the unique

solution for the �rst order necessary optimality conditions� x� � � � together satisfy

the �rst order necessary conditions for a local minimum� The Hessian of the Lagrangian

is

Hx�L�x� ��� �

��� � �
� �

��� �

The tangent plane at x is fy � y�	 y� � �g� So on the tangent plane� yTHx��x� ���y �


y�y� � �
y�� � �� whenever y �� �� So the second order necessary optimality condi�

tions for a local minimum are violated at x� In fact it can be veri�ed that x satis�es the

su�cient conditions for being a local maximum for �x� in the feasible region� �x� has

no local minimum in the feasible region� it is unbounded below in the feasible region�

Example ��

Consider the problem
minimize �x� � x�
subject to x�� 	 x�� � � � ��

The Lagrangian is L�x� �� � �x� � x� � ��x�� 	 x�� � ��� The �rst order necessary

optimality conditions are

�L�x� ��

�x
�

����� �
x��
�� �
x��

���T

� �

together with the constraint on the variables� this leads to the unique solution x �

�
� 
�T � � � ���� The Hessian of the Lagrangian is

Hx�L�x� ��� �

��� ��
 �
� ��


���
which is PD� Hence the point x satis�es the su�cient condition for being a local

minimum in this problem�
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Example ��

Consider the problem

minimize �x� � 
x�� 	 ���
�x�� 	 x�x� 	 ���
�x�
subject to x� 	 x� � 
�

The Lagrangian is L�x� �� � 
x�� 	 ���
�x�� 	 x�x� 	 ���
�x� � ��x� 	 x� � 
�� The

�rst order necessary optimality conditions are

�L�x� ��

�x
�

����� �x�� 	 x� 	 ���
�� �

x� 	 x� � �

�����
T

� ��

Combining this with the constraints on the variables� we have � � 
� �x��	x�	���
��


 � �x�� 	 �
 � x�� � 
 	 ���
� � �x�� � x� 	 ���
� � �� This leads to the unique

solution satisfying the �rst order necessary optimality conditions �x � ����
� 
���
�T �

� � 
�� The tangent hyperplane at any feasible solution is fy � y� 	 y� � �g� The

Hessian of the Lagrangian is

Hx�L�x� ��� �

��� �
x� �
� �

��� �

��� � �
� �

��� �

So� on the tangent hyperplane to the feasible region at x we have yTHx�L�x� ���y �

�y� 	 y��
� � �� Thus the second order necessary conditions for a local minimum are

also satis�ed� However� the point x does not satisfy the su�cient conditions for being

a local minimum in this problem� ���� discussed above�

Optimality Conditions for the Inequality

Constrained Minimization Problems

Consider the general NLP

minimize �x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t
����

where �x�� hi�x�� gp�x� are all real valued continuously di�erentiable functions de�ned

on Rn� Let h�x� � �h��x�� � � � � hm�x��
T and g�x� � �g��x�� � � � � gt�x��

T �

Let x be a feasible solution for ����� The active constraints at x are all the equality

constraints in ���� and all the inequality constraints which hold as equations at x �i� e��

gp�x� for p such that gp�x� � ��� Let P�x� � fp � p � � to t� gp�x� � �g� The feasible

solution x is said to be a regular point for ���� if frhi�x� � i � � to mg � frgp�x� �

p � P�x�g is linearly independent� This is a constraint quali�cation known as the

regularity condition for ����� As mentioned earlier� this is a condition on the active
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constraints at x� and not on the set of feasible solutions� As an example� consider the

system of constraints
�x� � ��� 	 �x� � ��� � �

x�� 	 x�� � 

x� �

� �
x� �

� �
x� 	 x� �

� 
 �

This system has the unique solution �x�� x��
T � ��� ��T � all the constraints are active

and it can be veri�ed that the regularity condition does not hold at this point� On the

other hand� if this singleton set is represented by the system of constraints

x� � �
x� � �

then the regularity condition holds at the point� Thus� whether regularity conditions

hold or not could depend on the system of constraints chosen to represent the set of fea�

sible solutions� This points out the importance of exercising great care in constructing

the model for the problem�

Since the inequality constraints �gi�x� �� �� for i �� P�x� are inactive at x� the local

feasible region around x remains unchanged if these inactive inequality constraints are

ignored� See Figure 
��

x

Figure �� The region which lies on the side of the arrow of each nonlinear

surface is the feasible region� The inequality constraint corresponding to the

dashed surface is inactive at x� and it can be ignored for the purpose of deriving

optimality conditions for x to be a local minimum in the feasible region�

Thus for the purpose of deriving optimality conditions for x to be a local minimum

for ����� we can ignore the inactive inequality constraints at x� Also� when all the active
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constraints at x are treated as equality constraints� the local feasible region around x

becomes smaller� and hence� if x is a local minimum for ����� it must be a local

minimum for the problem obtained by treating all active constraints at x as equality

constraints�

Let x� a feasible regular point for ����� be a local minimum for ����� By the above

arguments� it must be a local minimum for the problem�

minimize �x�

subject to hi�x� � �� i � � to m

gp�x� � �� p � P�x��

����

So by previous results� there exists �	�� � � � � 	m� and �p for p � P�x� satisfying

r�x��
mX
i��

	irhi�x��
X

p�P�x�

�prgp�x� � �� ����

We will now prove that if x is a local minimum for ����� then �p �� � for all p � P�x��

Suppose in ����� �p � � for some p � P�x�� say for p � r� By the regularity

condition� the set frhi�x� � i � � to mg�frgp�x� � p � P�x�g is linearly independent�

and by our assumption r � P�x�� So there exists a y � Rn satisfying

�rhi�x��y � �� i � � to m

�rgp�x��y � �� p � P�x�� p �� r

�rgr�x��y � ��

����

By Theorem 
� there exists a di�erentiable curve x��� with x��� � x� de�ned for

values of � in an interval around � � �� lying on the set of feasible solutions of

hi�x� � �� i � � to m

gp�x� � �� p � P�x�� p �� r
����

with dx�	�
d� � y� Since �dgr�x����d� ���	 � �rgr�x��y � � � �� by Taylor�s theorem we

know that there exists a � � � such that for all � �� � �
� �� points on the curve x���

satisfy gr�x� �� �� Using this� it can be veri�ed that when � is positive but su�ciently

small� x��� remains feasible to ���� and since �d��x����d� ���	 � �r�rgr�x��y �by �����

� �� it is a better feasible solution for ���� than x� contradicting the local minimum

property of x� Thus if x is a local minimum for ���� and is a regular point� there

must exist 	 � �	�� � � � � 	m�� and �p for p � P�x� satisfying ����� and �p �
� � for all

p � P�x�� De�ne �p � � for all p � � to t� p �� P�x� and let � � ���� � � � � �t�� Let

L�x� 	� �� � �x�� 	h�x�� �g�x�� L�x� 	� �� is the Lagrangian for ���� and �	� �� are

the Lagrange multipliers� These facts imply that if x is a regular point local minimum

for ����� there exist 	� � satisfying

rxL�x� 	� �� � �

� �
� �

�pgp�x� � � for all p � � to t

����
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and the feasible conditions

h�x� � �� g�x� �� ��

���� are known as the �rst order necessary optimality conditions for the regular

feasible point x to be a local minimum for ����� They are also known as the Karush�

Kuhn�Tucker �or KKT� necessary conditions for optimality�

Let T � fy � �rhi�x��y � �� i � � to m� and �rgp�x��y � �� p � P�x�g� If

all the functions �x�� hi�x�� gp�x� are twice continuously di�erentiable� and x is a

regular feasible point for ����� using similar arguments as before� it can be shown that

a necessary condition for x to be a local minimum for ���� is that there exist Lagrange

multiplier vectors 	� � such that

���� holds� and yTHx�L�x� 	� ���y �� � for all y � T� ��
�

��
� are known as second order necessary conditions for x to be a local minimum

for �����

We now state a su�cient optimality condition for ���� in the form of a theorem�

Theorem ��� Suppose �x�� hi�x�� gp�x� are all twice continuously di�erentiable

functions� and x is a feasible point such that there exists Lagrange multiplier vectors

	 � �	�� � � � � 	m�� � � ���� � � � � �t� which together satisfy

h�x� � �� g�x� �� �

rxL�x� 	� �� � �

� �
� �� �g�x� � �

����

yTHx�L�x� 	� ���y � �� for all y � T�� y �� �

where T� � fy � �rhi�x��y � �� i � � to m and �rgp�x��y � � for p � P�x� � fp �

�p � �g� �rgp�x��y �
� � for p � P�x� � fp � �p � �gg� then x is a local minimum for

�����

Proof� Suppose x is not a local minimum for ����� As in the proof of Theorem 
��

there must exist a sequence of distinct feasible solutions xr � x 	 �ry
r� r � �� 
� � � �

converging to x as r � ��� where kyrk � � for all r� yr � y and �r � ��� such that

�xr� � �x� for all r� By feasibility� as in the proof of Theorem 
�� we have

�rhi�x��y � �� i � � to m� ���

For each p � P�x�� we have gp�x� � �� and gp�x
r� �� � by feasibility� So

� �� gp�x	 �ry
r�� gp�x� � �r�rgp�x��y

r 	 ���r�

Dividing by �r � �� and taking the limit as r�
� we conclude that

�rgp�x��y �� � for all p � P�x�� ����
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Also� � � �x	 �ry
r�� �x� � �r�r�x��y

r 	���r�� and again dividing by �r � �� and

taking the limit as r�
 we conclude that �r�x��y �� ��

Suppose �rgp�x��y � � for some p � J � fp � �p � �g� Then

� �� �r�x��y � 	�rh�x��y 	 ��rg�x��y� by ����

�
X
p�J

�p�rgp�x��y� by ����� ����

� �� by ����� ���� and the assumption that

�rgp�x��y � � for some p � J

a contradiction� So y satis�es

�rgp�x��y � � for all p � P�x� � fp � �p � �g� ����

By ���� ����� ����� we see that y � T�� From ���� and feasibility we have

�xr�� �x� � L�x	 �ry
r� 	� ��� L�x� 	� �� �

���
���r �y
r�THx�L�x	 �ry

r� 	� ���yr
����

where � �� �r �� �r� by using ���� on the expression given by Taylor�s theorem� When

r is su�ciently large� from the continuity� and the conditions satis�ed by y proved

above� and ����� we conclude that the right�hand side of ���� is �� �� while �xr���x�

is � �� a contradiction� So� x must be local minimum for �����

Thus ���� provides a su�cient local minimality condition for ����� See refer�

ences �A�� A��� ���
� ����
� ������ ������ ���
�� for a complete discussion of optimality

conditions for nonlinear programs�

In inequality constrained problems� we notice that the gap between known second

order necessary optimality conditions and su�cient optimality conditions� is quite wide�

The NLP ���� is said to be a convex programming problem if �x� is convex�

hi�x� is a�ne for all i� and gp�x� is concave for all p� In this case the set of feasible

solutions is a convex set� For convex programming problems� we will now show that

���� are both necessary and su�cient conditions for global optimality�

Theorem ��� Suppose ���� is a convex program� The feasible regular point x is a

global minimum for ���� i� there exists a Lagrange multiplier vector �	� �� such that

x� 	� � together satisfy �	���

Proof� The necessity of ���� for optimality has already been established above� We

will now prove the su�ciency� Suppose x is a feasible solution of ���� satisfying �����
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Let x be any other feasible solution for ����� By Theorem ��

�x�� �x� �� �r�x���x� x�

�
� mX
i��

	irhi�x� 	
X

p�P�x�

�prgp�x�
�
�x� x� by ����

�
X

p�P�x�

�prgp�x��x� x�� since h�x� is a�ne

�
�

X
p�P�x�

�p�gp�x�� gp�x�� by Theorem ��� since gp�x� is concave�

�
X

p�P�x�

�pgp�x�� since gp�x� � � for p � P�x��

�
� �� since � �

� � and g�x� �� � for feasibility�

So x is a global minimum for �����

Example ��

Consider the problem of determining the electrical current #ows in the following elec�

trical network�

1

23
1

1/2

1

1/2

9 units 4 units

5 units

x1

x2

x3

x4

Figure ��

Assume that the current #ows on each arc in the direction indicated� A total of ��

 units of current enters the system at nodes �� 
 respectively per unit time� The

numbers given on the arcs are the resistences of the arcs� Let x�� x�� x�� x� denote

the current #ows on the arcs as indicated� If rj denotes the resistence associated with

xj it is known that the power loss is
P�

j�� rjx
�
j � It is required to �nd out the current

#ows� under the assumption that the #ows would occur so as to minimize the power
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loss� Hence the x�vector is the optimum solution of the problem

minimize x�� 	���
�x
�
� 	x

�
�	���
�x

�
�

subject to x� 	x� � �

�x� 	x�	 x� � 

xj �� �� j � � to �

����

So� the Lagrangian is L�x� 	� �� � x�� 	 ���
�x�� 	 x�� 	 ���
�x�� � 	��x� 	 x� � �� �

	���x� 	 x� 	 x� � ��
P�

j�� �jxj �

So� the �rst order necessary optimality conditions are

�L

�x�
� 
x� �	� ��� � �

�L

�x�
� x� �	� 		� ��� � �

�L

�x�
� 
x� �	� ��� � �

�L

�x�
� x� �	� ��� � �

����

��� ��� ��� �� �� � ����

��x� � ��x� � ��x� � ��x� � � ����

and the constraints ���� on the x�variables for feasibility�

The complementary slackness conditions ���� imply that for each j� either the

Lagrange multiplier �j is zero� or the inequality constraint xj �� � holds as an equality

constraint �i� e�� it is active� at the optimum� One technique to �nd a solution to

the �rst order necessary optimality conditions here is to guess the subset of inequality

constraints in ���� which will be active at the optimum� called the active set� Treat

each of the inequality constraints in ���� in this active set as an equation� ignore the

inequality constraints in ���� outside the active set �we are assuming that they will

be inactive at the optimum�� Set the Lagrange multiplier �j corresponding to each

inequality constraint in ����� not in the active set to zero� What remains among �����

���� is a system of equations� which is solved� If the solution of this system satis�es

���� and the ignored inequality constraints in ���� not in the active set� we are done�

this solution solves the �rst order necessary optimality conditions� If some of these

conditions are violated� repeat this process with a di�erent active set� This process�

therefore� involves a combinatorial search� which may eventually involve solving 
t

systems where t is the number of inequality constraints in the original NLP �t �  here��

not e�cient if t is large� E�cient algorithms for solving NLP�s involving inequality

constraints either carry out this combinatorial search very e�ciently� or do not use

it at all� but operate with other e�cient methods to �nd a solution to the �rst order

necessary optimality conditions �see Chapters 
� ����
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We �rst try treating the inequality constraint x� �� � as active� and all the other

inequality constraints xj �� �� j � �� 
�  as inactive� Ignoring these inactive inequality

constraints� and setting �j � �� j � �� 
�  leads to the system of equations�

x� 	x� � �

�x� 	x� � 


x� �	� � �

x� �	� �	� � �

�	� ��� � �

x� �	� � ��

This system has the unique solution �x�� x�� x�� � ��
� �� ���� �	�� 	�� � ��� ����

�� � ���� This solution violates the constraints �x� �� �� �� �� ��� so this choice of

active set did not lead to a solution of the �rst order necessary optimality conditions

in this problem�

Let us now try treating all the constraints �xj �
� �� j � � to � as inactive�

Ignoring all these inactive constraints� and setting �j � �� j � � to  leads to the

system of equations

x� �	� � �

x� �	� 		� � �


x� �	� � �

x� �	� � �

x� 	x� � �

�x� 	x� 	x� � �

This system has the unique solution x � ��� 
� 
� �T � 	 � ��� �� This solution also

satis�es the inequality constraints� on the xj which were ignored� So �x� 	� � � ��

satis�es the �rst order necessary optimality conditions for this problem� It can be

veri�ed that x also satis�es the second order necessary optimality conditions� as well

as the su�cient conditions for being a local minimum for this problem� Since �x� is

convex here� x is in fact a global minimum for this problem�

Optimality Conditions for Linearly Constrained Optimization Problems

Consider the nonlinear program�

minimize �x�

subject to Ax � b

Dx �
� d

��
�

where A� b�D� d are given matrices of ordersm�n�m��� t�n and t�� respectively� and

�x� is continuously di�erentiable� Since the constraints are linear� for this problem�

we can establish �rst order necessary optimality conditions of the form in ���� without

requiring a regularity type of constraint quali�cation�
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Theorem ��� If x is a local minimum for ����� there exist Lagrange multiplier

vectors 	 � �	�� � � � � 	m�� � � ���� � � � � �t� such that

rxL�x� 	� �� � r�x�� 	A� �D � �

Ax � b� Dx �
� d

� �
� �� ��Dx� d� � �

����

where L�x� 	� �� � �x�� 	�Ax� b�� ��Dx� d� is the Lagrangian for �����

Proof� Let P�x� � fp � � �
� p �

� t and Dp�x � dpg� it is the index set of active

inequality constraints in ��
� at the feasible point x� Since the constraints are linear�

the tangent plane to the system determined by the active constraints in ��
� at x is

T � fy � Ai�y � �� i � � to m� and Dp�y � �� p � P�x�g ���

whether x satis�es the regularity condition for ��
� or not� Let

   � � fy � y � Rn� Ai�y � �� i � � to m and Dp�y �� � for all p � P�x�g

   � � fy � y � Rn� �r�x��y � �g�

We will now show that the fact that x is a local minimum for ��
� implies that    ��   � �

�� Suppose not� Let y �    � �    �� Since Dp�x � dp for p �� P�x�� and y �    �� it can

be veri�ed that x	�y is feasible to ��
� when � is positive and su�ciently small� and

since y �    �� we have �x	�y� � �x�� contradicting the local minimality of x to ��
��

So    � �   � � ��

   � �    � � � implies by Farkas� theorem �Theorem � of Appendix �� that there

exist 	 � �	�� � � � � 	m� and �p for p � P�x� satisfying

r�x� �
mX
i��

	iAi� 	
X

p�P�x�

�pDp�

�p �� � for all p � P�x��

Now de�ne �p � � for p �� P�x�� and let � � ���� � � � � �t�� From the above� we verify

that x� 	� � together satisfy �����

The conditions ���� are the �rst order necessary optimality conditions for

the linearly constrained optimization problem ��
��

If �x� is twice continuously di�erentiable in ��
�� since the constraints are linear

in ��
�� it can be veri�ed that the Hessian matrix of the Lagrangian is the same as

the Hessian matrix of �x�� Using the Taylor series approximation up to the second

order� it can be shown that if x is a local minimum for ��
�� there must exist Lagrange

multiplier vectors 	� � such that

���� holds and yTH��x��y �� � for all y � T of ���� ����

The conditions ���� correspond to ��
�� they are the second order necessary opti

mality conditions for ��
��
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�� Summary of Some Optimality Conditions

All the functions �objective and constraint function� are assumed to be continuously

di�erentiable� They are assumed to be twice continuously di�erentiable� if the Hessian

matrix� appears in the expressions�

necessary optimality su�cient optimality

Problem conditions for point $x conditions for point $x

to be a local minimum to be a local miminum

unconstrained First order conditions

minimization� r�$x� � �

minimize �x� Second order conditions

over x � Rn r�$x� � � and r�$x� � � and

H��$x�� is PSD� H��$x�� is PD�



�	� Appendix �



�� Summary of Some Optimality Conditions �	�



�
� Appendix �

�� Exercises

��� Consider the quadratic program

minimize cx 	���
�xTDx

subject to Ax �� b

x �� �

where D is a general symmetric matrix of order n� Prove that the necessary and

su�cient conditions for x� to be a local minimum to this general quadratic program is

that there exist vectors y�� u�� v�� such that

���u�

v�

��� �

���D �AT

A �

������x�

y�

���	

��� cT

�b

���
���u�

v�

��� �
� ��

���x�

y�

��� �
� ��

���u�

v�

���T ���x�

y�

��� � �

hold� and for every vector � � Rn satisfying

Ai�� � � if y�i � �

Ai�� �� � if v�i � y�i � �

�j � � if u�j � �

�j �� � if x�j � u�j � �

we have �TD� �� �� �A� Majthay �A���

��� Consider the quadratic programming problem

minimize cx	 ���
�xTDx

subject to � �� x �
� u

where

D �

�������
�
 �� ��
�� �� ��
�� �� �

������� � c �

�������

�
�

�������
T

� u �

�������
��
��
��

�������
and identify the global optimum solution of this problem� �W� P� Hallman and

I� Kaneko �
�����

��� Let f�x� be a real valued di�erentiable function de�ned on R�� Let x	 � R��

Is the following statement true! �For x	 to be a local minimum for f�x� in R�� it is

necessary that the derivative f ��x	� � �� and there must exist an open interval �a� b�

around x	 such that f ��x� � � for all x in the open interval �a� x	�� and f ��x� � �
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�

for all x in the open interval �x	� b��� Is this condition su�cient for x	 to be a local

minimum of f�x�! Use the function de�ned by

f�x� � x��
 	 sin���x��� when x �� �

f��� � �

and x	 � �� as an example� �K� Sydsaeter �A���

�	� Let f�x� be a real valued function de�ned on R�� Let x	 � R�� and suppose

f�x� has continuous nth derivative� A su�cient condition for x	 to be a strict local

minimum for f�x� in R�� is that f ����x	� � f ����x	� � � � � � f �n����x	� � �� and

f �n��x	� � � for n even� where� f �r��x	� is the rth derivative of f�x� at x	� Is this

condition necessary for x	 to be a local minimum for f�x�! Use the function de�ned

by

f�x� � e����x
��� x �� �

f��� � �

and x	 � �� as an example� �K� Sydsaeter �A���

�
� It is sometimes stated that minimizing a function subject to constraints is equiv�

alent to �nding the unconstrained minimum of the Lagrangian function� Examine

whether this statement is true� using the example

minimize �x�x�
subject to x� 	 x� � 


and the point x � ��� ��T which is optimal for it� �K� Sydsaeter �A���

��� Consider the equality constrained optimization problem ���� and the Lagrangian

L�x� 	� � �x�� 	h�x� for it� If �x� 	� is an unconstrained local minimum for L�x� 	�

over x � Rn� 	 � Rm� prove that the point x must be feasible to ���� and in fact

it must be a local minimum for ����� However� show that the converse may not be

true� that is� even if �x is a local minimum for ����� there may not exist a Lagrange

multiplier vector �	 such that ��x� �	� is an unconstrained local minimum for L�x� 	�� See

Exercise �� above� Develop general conditions on the NLP ���� and the point x which

can guarantee that if x is a local minimum for ����� there exists a Lagrange multiplier

vector 	 such that �x� 	� is a local minimum for L�x� 	� over x � Rn� 	 � Rm�

��� Consider the NLP ���� and the Lagrangian L�x� 	� �� � �x�� 	h�x�� �g�x�� If

�x� 	� �� is a local minimum for the problem

minimize L�x� 	� ��

subject to x � Rn� 	 � Rm

and � �
� �

����
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prove that x must be feasible to ���� and in fact must be a local minimum for �����

However� show that the converse may not be true� that is even if �x is a local minimum

for ����� there may not exist a �	 � Rm and �� � Rt� �� �
� �� such that ��x� �	� ��� is a local

minimum for �����

Develop general conditions on the NLP ���� and the point x� which can guarantee

that if x is a local minimum for ����� there exist Lagrange multiplier vectors 	� � such

that �x� 	� �� is a local minimum for �����

��� Let �x� be a real valued function de�ned on Rn and let x � Rn� Examine the

following statement �If x is a local minimum along each straight line through x in

Rn� then x is a local minimum for �x� in Rn�� and mark whether it is true or false�

Use �x�� x�� � �x� � x����x� � 
x��� de�ned on R� and x � ��� ��T as an example�

�K� Sydsaeter �A���

��� Let A� D be given PD matrices of order n� Solve the following two optimization

problems�

�i� minimize cx

subject to �x� x�TA�x� x� �� �

�ii� minimize cx	 ���
�xTDx

subject to �x� x�TA�x� x� �� ��

Discuss what happens if A is PD but D is either PSD or not even PSD�

��� Consider the following quadratic programming problem

f�b� � minimum value of Q�x� � cx	 ���
�xTDx

subject to Ax �
� b

x �
� �

where D is a symmetric PSD matrix of order n� f�b� denotes the optimum objective

value in this problem as a function of the vector b� and A� b are given matrices of orders

m� n and m� � respectively� In this problem� assume that A� c� d remain �xed� but

b may vary�

�i� If f�b� is �nite for some b� prove that f�b� is �nite for all b for which the problem

is feasible�

�ii� If f�b� is �nite for some b� prove that f�b� is convex over b � Pos�A��Im��

�iii� What is �f�b�!

Note� The result in �i� above could be false if D is not PSD� Consider the following
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example from B� C� Eaves �
���

minimize Q�x� ��x� 	 x�� � x��
subject to � x� 	 x� �

� b�
� x� 	 x� �

� b�
x�� x� �

� ��

Let b � �b�� b��
T � If b � b� � ��
���� or if b � b� � ����
�� verify that the

problem is feasible and that Q�x� is bounded below on the set of feasible solution� If

b � �b�	 b���
 � �������T � verify that Q�x� becomes unbounded below on the set of

feasible solutions�

��� Let K � Rn be a closed convex set� For x � Rn� de�ne

f�x� � Minimum fky � xk � y � Kg�

Prove that f�x� is convex�

��� Let �x� � �
x� � x���
�� Check whether �x� is convex� or concave� or neither� on

�� �� x� �� �� �� �� x� �� ��

��� Consider the linear program in standard form

minimize cx

subject to Ax� b

x�� ��

This problem can be written as the following NLP in which the constraints are all

equalities� but there are new variables uj �

minimize cx

subject to Ax � b

u�j � xj � �� for all j�

Write down the necessary optimality conditions for this equality constrained NLP� and

show that they are equivalent to the duality�complementary slackness conditions for

optimality in the above LP�

�	� Consider the NLP

minimize �x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t
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where all the functions �x�� hi�x�� gp�x� are continuously di�erentiable� If x is a local

minimum for this problem� and

�a� frhi�x� � i � � to mg is linearly independent�

�b� there exists a y � Rn satisfying

rhi�x�y � �� i � � to m

rgp�x�y � �� p � P�x�

where P�x� � fp � gp�x� � �g�

Prove that there must exist 	 � �	�� � � � � 	m�� � � ���� � � � � �t� such that

r�x�� 	rh�x�� �rg�x� � �

� �
� � and �pgp�x� � � for all p � � to t�

�
� Consider the NLP
minimize �x� � x�� 	 x��
subject to �x� � ��� � x�� � ��

i� If x � �x�� x��
T is a feasible solution to this problem� prove that x� must be �� ��

Using this information� prove that �x � ��� ��T is the global minimum for this

problem�

ii� Write down the �rst order necessary optimality conditions for this problem� Does

�x satisfy these conditions! Why! Explain clearly� �R� Fletcher ��������

��� Consider the NLP
minimize �x� � x�
subject to ��� x��

��x� �� �

x� �
� �

x� �� ��

Verify that x � ��� ��T is a global optimum solution to this problem� Is x a regular

point! Do the �rst order necessary optimality conditions hold at x!

If the problem is to minimize� �x�� subject to the constraints given above� verify

that x is again the global optimum� Do the �rst order necessary optimality conditions

hold at x for this problem! Why!

��� In each of the following NLPs� �nd out the global optimum and check whether

the �rst order necessary optimality conditions hold at it� Explain the reasons for it�

����

minimize �x�

subject to �x�� �� �

x� �� �

����

minimize �x�

subject to �x�� 	 x� �� �

�x� �� ��
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��� Find an optimum solution to the following NLP� using a combinatorial search for

the set of active constraints at the optimum

minimize �x� � 
x�� 	 
x�x� 	 x�� � ��x� � ��x�
subject to x�� 	 x�� �� �

�x� 	 x� �� ��

��� Consider the following NLP

minimize �x�� � x��
subject to x�� 	 �x� � ��� � � � ��

Verify that x � ��� 
�T is a global minimum for this problem� Do the �rst order

necessary optimality conditions hold at x! Is there a 	 such that �x� 	� is a local

minimum for the Lagrangian in this problem!

��� Consider the general NLP

minimize �x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t

where �x�� hi�x�� gp�x� are all continuously di�erentiable functions de�ned on R
n�

One of the hard unsolved problems in NLP is to develop a computationally viable

method or characterization to determine whether �x� is bounded below on the feasible

solution set for this problem� or diverges �
 on this set� and when �x� is bounded on

the solution set� to determine whether �x� attains its minimum at some �nite feasible

solution ��x� may only have an in�mum in this problem� it may not be an attained

minimum��

Another hard problem is to develop optimality conditions for a feasible solution

x of this problem to be a global minimum for it� In the absence of convexity of �x��

concavity of g�x� and a�neness of h�x�� at present we do not have any conditions

for distinguishing the global minimum for this problem� from other local minima that

may exist �the only known condition for the global minimum is its de�nition� that is�

x is a global minimum i� �x� �� �x� for all feasible solutions x� this condition is not

computationally useful� since checking it directly may require computing the function

value at uncountably many points��

��� Let A be a given matrix of order m�n� Prove that the following three conditions

are equivalent

�i� there exists no x � Rn satisfying Ax �� �� x � ��

�ii� for every b � Rm� the set fx � Ax �� b� x �� �g is bounded�

�iii� there exists a � �
� � satisfying �A � ��
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��� If �x� is a continuous real valued function de�ned over Rn with the monotonicity

property �that is for every � �
� x �

� y we have �x� �� �y��� then prove that the

problem
minimize �x�

subject to Ax �� b

x �� �

has an optimum solution� if it is feasible� �B� C� Eaves �
����

��� Let Q�x� � cx 	 ��� �x
TDx where D is a symmetric matrix� Let � � � be given�

Prove that the point x� solves the problem

minimize Q�x�

subject to kxk �� �

i� it is feasible and there exists a � �
� � satisfying

�x��T �D 	 �I� � �c

���� kx�k� � �

�D 	 �I� is a PSD matrix�

�	� Consider the following NLPs in each of which the variables are x � Rn�

����

minimize cx

subject to xTx �
� �

Ax �
� �

����

minimize xTx

subject to �cx �
� �

Ax �
� ��

The data in both the problems� the matrices A� c of order m�n and ��n respectively�

are the same� Prove that these two problems are equivalent�

�
� Let f��� � R� � R� be a real valued convex function de�ned on R�� For any ��

the limit of f������f���
� as �� � through positive values is called the right derivative of

f��� at �� and denoted by f ������ the limit of the same as �� � through negative values

is called the left derivative of f��� at � and denoted by f �
�
���� Prove the following

i� If � � 
� then f �
�
��� �� f ����� �� f �

�
�
� �� f ���
��

ii� A necessary and su�cient condition for �� to minimize f��� over � � R� is�

f �
�
���� �� � �� f �������

iii� The subdi�erential �f��� is the line segment �f ������ f
�

������

iv� For each �� let g��� � �f���� Prove that
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�a� P ��� 
� � f���� �f�
� 	 g�
���� 
�� �� � for all �� 
�

�b� If f��� �� f�
�� then P ��� 
� �� jg�
�j 	 j
 � �j�

�c� If g���g�
� � �� then

P ��� 
� �� jg�
�j 	 j�� ��j where �� is the minimizer of f����

�C� Lemarechal and R� Mi%in ����
���

��� Consider the problem
minimize cx

subject to Ax �� �

kxk� �

where A is of order m� n�

Let K � fy � y �
Pm

i�� 	iAi�� 	i �� � for all ig� Prove the following

i� If c � K� the maximum objective value in this problem� is �� ��

ii� If c �� K� let b � K be the point in K that is closest to c� Then �c � b��kb � ck

is the optimum solution of this problem� and the optimum objective value in the

problem is kc� bk�

��� Let K � Rn be a closed convex polyhedral set partitioned into closed convex

polyhedral regions as
S

t��to rKt� So if u �� v� the interiors of Ku and Kv have an

empty intersection� and Ku � Kv is itself either empty or is either a face of lower

dimension or a subset of a face of lower dimension of each of Ku and Kv� Assume that

each Kt has a nonempty interior� Suppose the real�valued function f�x� is de�ned on

K by the following

f�x� � ft�x� � ct	 	
nX

j��

ctjxj � if x � Kt

where ct	 and ctj are all given constants� The de�nition assumes that if Ku �Kv �� ��

then fu�x� � fv�x� for all x � Ku � Kv� So f�x� is a continuous piecewise linear

function de�ned on K�

Derive necessary and su�cient conditions for the continuous piecewise linear func�

tion f�x� to be convex on K� and develop an e�cient algorithm to check whether these

conditions hold�

As a numerical example� let K � fx � �x�� x��
T � �� �� x� �� ���� �� x� �� �g�

Consider the partition of K given in Figure 

� Two piecewise linear functions f�x��

g�x� de�ned on K are provided in Figure 

� Check whether they are convex on K�

�See Section ��� in K� G� Murty �
�
����
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Figure ��

��� �Research Problem� For i � � to m� gi�x� is a real valued continuously dif�

ferentiable function de�ned on Rn� but g�x� � �g��x�� � � � � gm�x��
T is not convex�

Let � � ���� � � � � �m�
T � Rm� Let K��� � fx � gi�x� �

� �i� i � � to mg� Let

b � �b�� � � � � bn� � R
n be a given point�

�i� Assuming that K��� �� � is a convex set� develop an e�cient algorithm to check

whether K��� is convex for given �� Is this problem easier to solve if either � �
� �

or � �
� �!
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�ii� Assuming that K��� �� � is a convex set� and that b is a boundary point of K����

�that is� there exists an i such that gi�b� � ��� develop an e�cient algorithm

to �nd a c � �c�� � � � � cn� �� � satisfying c�x � b� �
� � for all x � K��� �then

H � fx � c�x� b� � �g is a supporting hyperplane for the convex set K��� at its

boundary point b��

�iii� Assuming that K��� �� � is a convex set and that b �� K���� develop an e�cient

algorithm to determine a hyperplane separating b from K����

�iv� Consider the special cases of the above problems when all gi�x� are a�ne functions�

excepting one which is quadratic and nonconvex�

��� Let �x� be a continuously di�erentiable real valued function de�ned onRn� LetK

be a subspace of Rn� If x � K minimizes �x� over K� prove that r�x� is orthogonal

to every vector in K�

��� Let �x�� gi�x�� i � � to m� be continuously di�erentiable convex functions de�ned

on Rn� Let  be the optimum objective value� and �� an optimum Lagrange multiplier

vector associated with the NLP

minimize �x�

subject to �gi�x� �� �� i � � to m�

Then prove that  � In�mum f�x� 	 �g�x� � x � Rng�

��� Arithmetic Mean � Geometric Mean Inequality�

Let x�� � � � � xn be positive real numbers� Let ��� � � � � �n be positive real numbers satis�

fying �� 	 � � �	 �n � �� Prove that

nY
i��

�xi�
	i �
�

nX
i��

�ixi

with equality holding i� x� � x� � � � � � xn� where �
Q
� indicates the product sign�

��� Young�s Inequality�

Let x� y� p� q be all positive real numbers� and p � �� q � � satisfying �
p 	

�
q � �� Prove

that

xy ��
xp

p
	
yq

q

with equality holding only when xp � yq�



��� Appendix �

��� Holder�s Inequality�

Let p� q� be positive real numbers � � satisfying �
p 	

�
q � �� Let x � �x�� � � � � xn��

y � �y�� � � � � yn� be real vectors� Prove that

nX
i��

xiyi ��

�
nX
i��

jxij
p

���p� nX
i��

jyij
q

���q
�

�	� Minkowski�s Inequality�

Let x � �x�� � � � � xn�� y � �y�� � � � � yn� be real vectors and p �� �� Prove that

�
nX
i��

jxi 	 yij
p

���p
�
�

�
nX
i��

jxij
p

���p
	

�
nX
i��

jyij
p

���p
�

�
� Let f��� denote a smooth real valued function de�ned over R�� A classical

su�cient condition for � � R� to be a local minimum for f��� over R� states �� is a

local minimum for f��� over R� if the �rst nonzero derivative of f��� at � is of even

order� and this derivative is � ��� Develop a generalization of this result to Rn� n � ��

��� Given a vector y � �yj� � R
n� de�ne

kyk� �
nX

j��

jyjj

kyk� � maximum fjyj j � j � � to ng

kyk� �

vuut nX
j��

y�j

y� � �y�j � where y
�
j � maximum f�� yjg

kyk�� kyk�� kyk� are called the ��norm� 
�norm� 
�norm� respectively� of the vector

y�

Consider the system

Ax �� b

Bx � d
����

where A� B are �xed matrices of orders m�n� p�n respectively� and b� d are column

vectors of appropriate dimensions� Assume that each row vector of A contains at least

one nonzero entry� and if equality constraints do exist� then B is of full row rank �B
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could be vacuous� that is� there may be no equality constraints in ������ Let K�b� d�

denote the set of feasible solutions of ����� De�ne

	�A�B� � supremum ku� vk�

subject to� u� v are row vectors in Rm� Rp�

kuA	 vBk� � �

u �
� �

and the set of rows of

���A
B

��� corresponding to

nonzero elements of �u� v� is linearly independent�

��
�

�i� Prove that 	�A�B� is �nite�

�ii� If

��� b�

d�

���� ��� b�

d�

��� are such� that K�b�� d�� and K�b�� d�� are both nonempty�

for each x� � K�b�� d��� prove that there exists an x� � K�b�� d�� satisfying

kx� � x�k� �
� 	�A�B�


��� b�

d�

����

��� b�

d�

���
�

�

This result can be interpreted as implying that feasible solutions of ���� are

Lipschitz continuous with respect to right hand side constants vector pertur�

bations� with Lipschitz constant 	�A�B� depending only on the coe�cient

matrix

���A
B

����
�iii� In ����� if B is of full row rank and the system �Ay � �� By � �� has a

solution y� prove that K�b� d� �� � for all

��� b
d

��� � Rm�p� and that for any��� b�

d�

��� �

��� b�

d�

��� � Rm�p� and x� � K�b�� d��� there exists an x� � K�b�� d��

satisfying

kx� � x�k� �
� 	�A�B�


��� b�

d�

����

��� b�

d�

���
�

where

	�A�B� � maximum ku� vk�

subject to� u� v are row vectors in Rm� Rp�

kuA	 vBk� � �

u �
� ��

����

�iv� Suppose

��� b�

d�

��� is such that K�b�� d�� �� �� For any x � Rn� prove that there

exists an x� � K�b�� d�� satisfying

kx� x�k� �
� 	�A�B�

 �Ax� b���

�Bx� d��


�

�
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If the Lipschitz constant 	�A�B� is available� this inequality provides an error

bound on how far x is from a feasible solution of �����

�v� Consider the LP
minimize cx

subject to Ax �� b

Bx � d

���

with A� B �xed� let    �b� d� denote the set of optimum solutions of ���� If it is

known that    �b�� d�� and    �b�� d�� are both nonempty� for any x� �    �b�� d��

prove that there exists an x� �    �b�� d�� satisfying

kx� � x�k� �
� 	�A�B�


��� b�

d�

����

��� b�

d�

���
�

where 	�A�B� is the Lipschitz constant de�ned in ��
�� This result can be in�

terpreted as implying that optimum solutions of LPs are Lipschitz continuous

with respect to right hand side constants vector perturbations�

�vi� Consider the LP
minimize ��� 	 ��x��x�
subject to x�	x� �� �

x�� x� �
� �

����

where � is a real parameter� Show that when � � �� and � �� �� this problem

has a unique optimum solution x��� given by

x��� �

�
��� ��T � if � � �
��� ��T � if �� � � � ��

By showing that

limit
	�	�

kx���� x����k


�
� 	


prove that x��� is not Lipschitzian with respect to ��

This shows that in general� optimum solutions of linear programs are not Lips�

chitzian with respect to perturbations in the objective function coe�cients�

�vii� Consider the LCP �q�M� of order n� Let J � f�� � � � � ng� Consider the system

Mi�z 	 qi �� �� zi � �� for all i � J

Mi�z 	 qi � �� zi �� �� for all i �� J�
����

If z is any solution of ���� then z leads to a solution of the LCP �q�M� �that

is� �w �Mz	q� z� is a solution of the LCP �q�M��� Using this fact� Lipschitz

continuity of solutions with respect to the right hand side constants vector

perturbations� can be established for certain classes of LCPs�

For any J � f�� � � � � ng� de�ne A�J� to be the square matrix of order n such that

�A�J��i� �

�
�Mi� for i � J
Ii� for i �� J�
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Similarly� de�ne the square matrix B�J� of order n by

�B�J��i� �

�
Ii� for i � J�

�Mi� for i �� J�

Now de�ne

��M� � maximum f	�A�J�� B�J�� � J � f�� � � � � ngg

where 	�A�J�� B�J�� is 	�A�B� of ��
� with A � A�J�� B � B�J��

Suppose M is a P �matrix and �wr� zr� is the unique solution of the LCP �q�M�

when q � qr� r � �� 
� Prove that

kz� � z�k� �
� ��M�kq� � q�k��

This establishes that when M is a P �matrix and �xed� the solution of the LCP �q�M�

is Lipschitz continuous in q with Lipschitz constant ��M� de�ned above�

�viii� Let M �

��� � �
�� �

���� q� � �����
�

���� q� � ��� �
�

��� where � � �� Show that if

z� � ��� ��T � z� � ��� ��T � the solution of the LCP �qr�M� is �wr � Mzr 	

q� zr�� r � �� 
� Verify that

limit
��	�

kz� � z�k�

�

� 	
�

This shows that the solution of the LCP �q�M� may not be Lipschitzian in q for �xed

M � when M is positive semide�nite but not a P �matrix� �O� L� Mangasarian and

T� H� Shiau �A����

��� Let A� b be given real matrices of orders m� n and m� � respectively� Consider

the system of equations

Ax � b� ����

This system may or may not have a solution� It is required to �nd a vector x that

satis�es ���� as closely as possible using the least squares measure of deviation� For�

mulate this as a nonlinear program and write down the optimality conditions for it�

Prove that this system of optimality conditions always has a solution�

Now consider the problem of �nding a vector x satisfying ���� as closely as possible�

subject to the additional constraints kxk � �� which is required to be satis�ed� This

leads to the nonlinear program

minimize kAx� bk�

subject to kxk� � ��
����

Discuss how ���� can be solved to optimality e�ciently�
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��� Let f�x� be a real valued function de�ned on Rn which is thrice continuously

di�erentiable� Consider the NLP

minimize f�x�

subject to x �
� ��

i� Prove that the �rst order necessary optimality conditions for this NLP can be

posed as a nonlinear complementarity problem�

ii� Let fi�x� �
�f�x�
�xi

� i � � to n� De�ne g�x� � �gi�x� � i � � to n�T where

gi�x� � �jxi � fi�x�j
� 	 x�i 	 �fi�x��

��

Prove that solving he NLCP described in �i� above� is equivalent to solving the

system of n equations in n unknowns

g�x� � ��

Show that g�x� is twice continuously di�erentiable� �L� Watson �A����

��� We have received a large shipment of an engineering item� A random sample of

�� items selected from this lot had the following lifetimes in time units�

����� ����� ����� �����
��
�� ����� ���
�
����� ���� ����


Assume that the lifetime� x� of items from the lot follows a Weibull distribution with

the following probability density function

f�x� � �x���e���x
��� x �

� ��

Formulate the problem of obtaining the maximum liklihood estimators for the param�

eters ��  as an NLP� Write down the optimality conditions for this NLP� and solve

this NLP using them�

��� Consider the convex polyhedra K�� K�� which are the sets of feasible solutions of

the systems given below
K�

Ax � b

x �
� �

K�

Dy � d

y �
� ��

It is required to �nd a pair of points �x� y�� x � K�� y � K�� which are closest in terms

of the Euclidean distance� among all such pairs� Does this problem have a unique

optimum solution! Why!
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Formulate this problem as an NLP and write down the necessary optimality con�

ditions for it� Are these conditions also su�cient for optimality for this problem!

��� Write down the necessary optimality conditions for Sylvester�s problem� Exercise

��
�� and determine whether these conditions are also su�cient for optimality�

��� We are given smooth real valued functions ��x�� � � � � r�x�� g��x�� � � � � gm�x�� all

de�ned over Rn� Consider the following optimization problem�

minimize v�x�

subject to gi�x� �� �� i � � to m

where for each x � Rn� v�x� � maximum f��x�� � � � � r�x�g� Transform this problem

into a smooth NLP with a linear objective function� but with additional constraints

than those in this problem� Write down the necessary optimality conditions for the

transformed problem and simplify them� State some general conditions on the data in

the problem under which these conditions are also su�cient for optimality� Show that

this technique can be used to transform any NLP into an NLP in which the objective

function is linear�

��� The army has n types of weapons available� Using them� they want to destroy m

targets� The following data is given�

pij � probability that a weapon of type j shot at target type i will destroy it�

vi � value in � of target i�

bj � number of weapons of type j available�

Assume that a weapon shot at a target either destroys it� or leaves it absolutely unaf�

fected�

Formulate the problem of determining the number of weapons of each type to

be shot at each of the targets� so as to maximize the expected value destroyed� as

an NLP� Neglecting the integer requirements on the decision variables in this problem�

write down the necessary optimality conditions for it� Specialize these for the numerical

example with the following data�

n � 
� m � �

p � �pij� �

�������
�
� ���
��� ���
��� ���

������� � v � �vi� �

�������
���
��
���

������� � b � �bi� �

��� �
��

��� �

�	� Let B� A be matrices of order n�n and m�n respectively� Suppose rank�A� � m

and B is symmetric and PD on the subspace fx � Ax � �g� Then prove that the matrix���B AT

A O

��� is nonsigular�
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�
� Let f�x� be a real valued convex function de�ned on Rn� Assume that f�x� is

twice continuously di�erentiable at a given point x � Rn� De�ne

l�x� � f�x� 	rf�x��x� x�

Q�x� � f�x� 	rf�x��x� x� 	 �
�
�x� x�TH�f�x���x� x��

The functions l�x�� Q�x� are respectively the �rst and second order Taylor approxi�

mations for f�x� around x� In Theorem �� we established that f�x�� l�x� always has

the same sign ��� �� for all x � Rn� Discuss whether f�x��Q�x� always has the same

sign for all x � Rn� If so� what is that sign! Why! �Richard Hughes�

��� Let K denote the set of feasible solutions of

Ax �� b ����

where A is an m� n matrix� We know that K �� � and dimension of K is n� �x� is a

strictly convex function de�ned on Rn� with a unique unconstrained minimum in Rn�

x� We know that x satis�es all but one constraint in ����� Suppose Ai�x �� bi for i � 


to m� but A��x � b�� Prove that if the problem

minimize �x�

x � K

has an optimum solution� the �rst constraint in ���� must be active at it� What is the

appropriate generalization of this result when x violates more than one constraint in

����! �M� Q� Zaman� S� U� Khan� and A� Bari� private communication��

��� Let f��� � R� � R� be a continuously di�erentiable strictly increasing function

of the real parameter ��

Let �x� � Rn � R�� g�x� � Rn � Rm� h�x� � Rn � Rt be continuously

di�erentiable functions�

Consider the constraint system

g�x� �� �

h�x� � �
�����

and the two optimization problems

Problem �� Minimize �x�� subject to �����

Problem 
� Minimize f��x��� subject to ������

Rigorously prove that both the problems have the same set of stationary points�

�H� L� Li� private communication��
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	�� Consider the following separable NLP

minimize
nX

j��

fj�xj�

subject to
nX

j��

xj �� �

xj �� �� j � � to n

where fj�xj� is a di�erentiable function for all j� If x � �xj� solves this problem� prove

that there must exist a nonnegative scalar k such that

dfj�xj�

dxj
�
� k for all j�

and for all j such that xj � � �
dfj�xj�

dxj
� k�

	�� Let A be a given matrix of order m � n� Prove that at least one of the following

systems
�I�

Ax �
� �

x �
� �

�II�

�A �
� �

� �
� �

has a nonzero feasible solution�

	�� Consider the following LP

minimize cx

subject to Ax �� b

x �� ��

Let K�    denote the set of feasible solutions of the LP� and its dual respectivley� Prove

that either both K and    are empty� or at least one of K�    is an unbounded set�

	�� Let D be the diagonal matrix diag���� � � � � �n�� where �� �� �� �� � � � �� �n � ��

Consider the following NLP

minimize �yTDy��yTD��y�

subject to yT y � ��

�i� Transform this NLP into another problem in new variables x�� � � � � xn in which the

objective function to be optimized is a product of two linear functions� g�x� and h�x��

say� and the constraints are all linear� Call this transformed problem �P��
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�ii� Show that �P� must have a global optimum solution�

Assume that x� is an optimum solution of �P�� Let h�x�� � �� Show that x� must

also be an optimum solution of the LP in the variables x � �x�� � � � � xn� in which the

objective function to be optimized is g�x�� and the constraints are the same as those

in �P� plus the additional constraint h�x� � �� Conversely� show that every optimum

solution of this LP must also be optimal to �P�� Using this� show that �P� has an

optimum solution in which two variables among x�� � � � � xn are positive� and the others

are all zero�

�iii� Consider the problem �P� again� In this problem� substitute xi � � for all i �� p� q�

for some selected p� q between � to n� Show that in the optimum solution of this

reduced problem� both xp and xq are equal�

�iv� Use the above results to prove Kantorovich�s inequality which states the following�

Let A be a symmetric PD matrix of order n with eigen values �� �� �� �� � � � �� �n � ��

Then

�yTAy��yTA��y� ��
��� 	 �n�

�

���n
for all y such that kyk � ��

�M� Raghavachari� �A linear programming proof of Kantorovich�s inequality�� The

American Statistician� � ������ ���&�����

	�� f�x� is a real valued di�erentiable function de�ned on Rn� Prove that f�x� is a

convex function i�

�rf�x���rf�x����x� � x�� �� ��

for all x�� x� � Rn� Similarly� prove that a real valued di�erentiable function g�x�

de�ned on Rn is concave i�

�rg�x���rg�x����x� � x�� �� ��

for all x�� x� � Rn�

	�� Let f�x� be a real valued convex function de�ned on Rn� For each x � Rn

let f��x� and f��x� denote the positive and negative parts of f�x�� that is� f��x�

and f��x� satisfy for all x � Rn� f��x� �� �� f��x� �� �� f�x� � f��x� � f��x��

�f��x���f��x�� � �� Are f��x� and f��x� both convex functions over Rn! Why!

		� Consider the linearly constrained NLP

minimize �x�

subject to Ax � b

where �x� is a real valued continuously di�erentiable convex function de�ned on Rn�

and A is an m � n matrix of rank m� If x� is a feasible solution for this problem

satisfying
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r�x���I �AT �AAT ���A� � �

prove that x� is an optimum solution of the NLP�

	
� Consider the NLP

minimize cx

subject to gi�x� �� �� i � � to m

where c � �c�� � � � � cn� �� �� and gi�x� is a continuously di�erentiable real valued

function de�ned over Rn for each i � � to m� Suppose x� is a local minimum for

this problem� and is a regular point� Prove that there exists at least one i such that

gi�x
�� � ��

	�� i� On the x�� x��Cartesian plane� �nd the nearest point on the parabola fx �

�x�� x��
T � x�� � x�g to ��� ��

T in terms of the Euclidean distance�

ii� For the following NLP� check whether either of x� � ��� �� �
T or x� � ��� ��

�

 �

T are

optimum solutions
minimize x�� 	 
x��
subject to x�� 	 x�� �� �


x� � 
x� � ��

	�� Let f�x� be a real valued continuously di�erentiable convex function de�ned over

Rn and let K be a closed convex subset of Rn� Suppose x � K is such that it is the

nearest point �in terms of the Euclidean distance� in K to x��rf�x� for some � � ��

Prove that x minimizes f�x� over x � K� Construct the converse of this statement

and prove it too�


�� Consider the following NLP

minimize �x�

subject to l �� x �� k

where �x� is a real valued twice continuously di�erentiable function de�ned on Rn�

and l� k are two bound vectors in Rn satisfying l � k� Develop an algorithm for

solving this problem� which takes advantage of the special structure of the problem�

Write down the termination criteria that you would use� and provide a justi�cation for

them� Also� mention what type of a solution the algorithm is guaranteed to obtain at

termination�


�� Consider the following NLP

minimize �x�

subject to ai �� gi�x� �� bi�x�� i � � to m

and l �� x �
� k
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where �x�� gi�x�� � � � � gn�x� are all real valued twice continuously di�erentiable func�

tions de�ned over Rn� and a � �ai�� b � �bi�� l� k satisfy a �
� b� l � k� Discuss how

you can solve this problem using the algorithm developed in Exercise ���


�� �x� is a real valued continuously di�erentiable convex function de�ned over Rn�

K is a closed convex subset of Rn� If x � K is the global maximum for �x� over

x � K� prove that

r�x�x �� r�x�x� for all x � K�

Is the converse of this statement also true! Why!

Would the above inequality hold for all x � K if x is only a local maximum for

�x� over K and not a global maximum! Why!


�� If M is a P �matrix of order n �not necessarily PD� prove that the system

�M � �

� �
� �

has a solution ��


�� Write down the �rst order necessary optimality conditions for the following NLP�

and �nd an optimum solution for it�

minimize �x� � �� 	 �x� 	 ���

subject to � �� x� �� �

�� �� x� �� 

�


�� Consider the following linear program

minimize z�x� � � cx

subject to Ax � b

Dx �� d�

Let K denote the set of feasible solutions for this problem� Show that the primal

simplex algorithm for this problem� is exactly the gradient projection method �Section

�������� applied on this problem� beginning with a feasible point x	 which is an extreme

point of K�


	� �x�� hi�x�� i � � to m� gp�x�� p � � to t are all real valued twice continuously

di�erentiable functions de�ned over Rn�

i� Consider the NLP
minimize �x�

subject to hi�x� � �� i � � to m�

gp�x� �� �� p � � to t�
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Let L�x� 	� �� � �x� �
Pm

i�� 	ihi�x� �
Pt

p�� �pgp�x� be the Lagrangian� Suppose

we have a feasible solution x to this NLP and Lagrange multiplier vectors 	� � such

that �x� 	� �� satisfy the �rst order necessary optimality conditions for this NLP� and

the additional condition that L�x� 	� �� is a convex function in x over Rn �notice that

L�x� 	� �� could be a convex function� even though �x�� �gp�x�� hi�x� and �hi�x� are

not all convex functions�� Then prove that x must be a global minimum for this NLP�

ii� Consider the numerical example

minimize �x� � ��� 	 �x� � ���

subject to x�� � � � �

�� x�� �� �

where � is any real number satisfying k�k �� �� Let x � �x�� x��
T � ��� ��T � 	 � ������

� � ������ Verify that x is a global minimum for this problem using the result in �i��

�P� Mereau and J� A� Paquet� �A su�cient condition for global constrained extrema��

Int� J� Control� �� ������ ����&������



� �x�� gi�x�� i � � to m are all real valued convex functions de�ned over Rn�

Consider the NLP
minimize �x�

subject to gi�x� �� �� i � � to m�

i� Prove that the set of all optimum solutions of this problem is a convex set�

ii� A real valued function de�ned on Rn is said to be a symmetric function if f�x� �

f�Px�� for all x � Rn� and P any permutation matrix of order n� If all the functions

�x�� gi�x�� i � � to m� are symmetric functions� and the above problem has an

optimum solution� prove that it has one in which all the variables are equal�

Exercises 
� to �� have been suggested to me by Vasant A� Ubhaya�


�� Let J be an interval of the real line� f�x� is a real valued function de�ned on J�

Prove that f�x� is convex i� for any three point x� y� z in J with x � y � z�

determinant

������
x f�x� �
y f�y� �
z f�z� �

������ �� ��


�� Let a� �� a� �� � � � �� an �
� � and let f�x� be a real valued convex function de�ned

on the interval ��� a�� with f��� � �� Show that

nX
k��

����k��f�ak� �� f
� nX
k��

����k��ak
�
� �contd��
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�E� F� Beckenbach and R� Bellman� �Inequalities�� Springer�Verlag� New York� �����

and E� M� Wright� �An inequality for convex functions�� American Mathematical

Monthly� �� ����� �
���

��

��� Let J be a closed interval of the real line� A real valued function f�x� de�ned on

J is said to be midconvex or Jensen�convex if

f
�x	 y




�
�
�
�



�f�x� 	 f�y��

for all x� y � J� Prove that if f�x� is midconvex� then

f��x	 ��� ��y� �� �f�x� 	 ��� ��f�y�

for all x� y � J and all rational numbers � between � and �� Hence conclude that a

continuous function is midconvex i� it is convex� �A� W� Roberts and D� E� Varberg�

�Convex Functions�� Academic Press� New York� ������

��� Let    � Rn be a convex set� and let f�x� be a real valued convex function de�ned

on    � Let g��� be a nondecreasing convex function de�ned on a real interval J where

the range of f�x� is contained in J� Prove that h�x� � g�f�x�� is convex� Use this to

show the following�

a� If f�x� is a positive concave function de�ned on    � then ��f�x� is convex�

b� If f�x� is a nonnegative convex function de�ned on    � then �f�x��r is convex for

r �� ��

c� If f�x� is a convex function de�ned on    � then exp�f�x�� is convex�

��� Let y � �y�� � � � � yn���
T � and    � fy � � � y	 � y� � � � � � yn�� � yn � �g�

De�ne� for j � �� �� � � � � n

Dj�y� �
Y

�jyi � yj j � over � �� i �� n� i �� j�

� ����j
Y

��yi � yj� � over � �� i �� n� i �� j�

where
Q

denotes the product sign� De�ne

F �y� �
X

��Dn����j�y��
�� � over � �� j �� b�n� ���
c��

Show that F �y� is a strictly convex function of y over    � Prove that y� � ��sin���
n���

�sin�
��
n���� � � � � �sin��n� ����
n����T is the unique optimum solution for the prob�

lem of minimizing F �y� over    � and that F �y�� � 
�n��� Prove the following inequal�

ities for all y �    �

�i�
P
��Dj�y��

�� � over j odd� � �� j �� n� �� �
� 
�n��� if n is even�

�ii�
P
��Dj�y��

�� � over j even� � �� j �� n� �� �
� 
�n��� if n is odd�

�iii�
P
��Dj�y��

�� � over j odd� � �� j �� n � �
� 
�n��� if n is odd�

�iv�
P
��Dj�y��

�� � over � �� j �� n � �
� 
�n��� if n is odd�
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Furthermore prove that each of the above inequalities holds as an equation i� y � y�

de�ned above� �V� A� Ubhaya �Nonlinear programming� approximation and opti�

mization on in�nitely di�erentiable functions�� Journal of Optimization Theory and

Applications� 
� ������� ����
����

��� Let S � Rn�� be a convex set� De�ne a set    � Rn and a real valued function

f�x� on    as follows�

   � fx � Rn � u � R�� �x� u� � Sg�

f�x� � inffu � x �    � �x� u� � Sg�

Show that    is convex and f�x� is a convex function on    �

��� Let    � Rn and f�x� be any real valued function de�ned on    � The epigraph

E�f� of f�x� is a subset of Rn�� de�ned as in Appendix �� Assume that    is closed�

and show that E�f� is closed i� f�x� is lower semi�continuous� In particular� E�f� is

closed if    is closed and f�x� is continuous�

��� Let    � Rn be a convex set and f�x� be a real valued bounded function de�ned

on    � The greatest convex minorant f�x� of f�x� is the largest convex function which

does not exceed f�x� at any point in    � viz��

f�x� � supfh�x� � h�y� is convex and h�y� �� f�y� for all y in    g� x �    �

Show that f�x� de�ned in this way is� indeed� convex� If E�f� is the epigraph of f�x�

then show that

f�x� � inffu � x �    � �x� u� � co�E�f��g�

where co�E�f�� is the convex hull of E�f�� i� e�� the smallest convex subset of Rn��

containing E�f��

�	� Let    � Rn be convex and f�x� be a real valued convex function de�ned on    �

Assume � �� f�x� � �� Show that ��	f�x����� and ���f�x������ are convex functions

on    � Is ��� 	 f�x������ f�x������ convex!

�
� Let f�x� be a real homogeneous polynomial of degree 
 de�ned on Rn� i� e��

f�x� �
X
i

aix
�
i 	

X
i
j

bijxixj�

where x � �x�� x�� � � � � xn�� and ai� bij are given numbers� Show that f�x� is convex i�

f�x� is nonnegative on Rn�
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��� Let f�x� be a real valued function de�ned on the interval J � ��� ��� The nth

�n �
� �� Bernstein polynomial for f�x� is de�ned by

Bn�f� x� �
nX

k�	

f
�k
n

��n
k

�
xk��� x�n�k�

Note that Bn�f� �� � f��� and Bn�f� �� � f���� Show the following�

�a� If f�x� is nondecreasing on J� then Bn�f� x� is nondecreasing on J�

�b� If f�x� is convex on J� then Bn�f� x� is convex on J� In this case� Bn���f� x� ��
Bn�f� x� for � � x � � and n �

� 
�

�c� If f�x� is bounded on J� then Bn�f� x� � f�x� as n � 
 at any point x in

J at which f�x� is continuous� Furthermore� if f�x� is continuous on J� then

this convergence is uniform on J� Hence conclude that the class of nondecreasing

�convex� polynomials on J are dense in the class of continuous nondecreasing

�convex� functions on J when the uniform norm kfk � maxfjf�x�j � x � Jg is

used to generate a metric for the set of continuous functions f�x��

�P� J� Davis� �Interpolation and Approximation�� Dover� New York� ������

��� Let    be a convex subset of Rn and f�x� a real valued function de�ned on    � f�x�

is said to be a quasiconvex function if fx �    � f�x� �� �g is a convex set for all real ��

A real valued function g�x�� de�ned on a convex set is said to be quasiconcave� if

�g�x� is quasiconvex�

Show that f�x� is quasi�convex on    i�

f��x	 ��� ��y� �� maxff�x�� f�y�g

holds for all x� y �    � all � �� � �
� ��

��� The following result is well known�

Let    � Rn and ��� � Rm be compact convex subsets� Let h�x� y� be a continuous

real valued function de�ned on    � ��� be such that� for each y � ���� h�x� y� is a

quasiconcave function of x� and for each x �    � h�x� y� is a quasiconvex function of y�

Then�

min
y��

max
x��

h�x� y� � max
x��

min
y��

h�x� y��

�See� e� g�� H� Nikaid�o� �On Von Neumann�s minimax theorem�� Paci�c Journal of

Mathematics�  ������ ��&�
� for the above result and M� Sion� �On general mini�

max theorems�� Paci�c Journal of Mathematics� � ������� ���&���� for more general

versions�� Using the above result� derive the following�

Let K� P be bounded subsets of R� with the property that there exists a � � �

such that u� �� � for all u � �u�� u��
T � K and v� �� � for all v � �v�� v��

T � P� Then�

inf
v�P

n
supu�K

nu� 	 v�
u� 	 v�

oo
� supu�K

n
inf
v�P

nu� 	 v�
u� 	 v�

oo
�contd��
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�V� A� Ubhaya� �Almost monotone approximation in L��� Journal of Mathematical

Analysis and Applications� � ������� ���&�����

��� A metric on Rn is a real valued function d�x� y� de�ned over ordered pairs of

points in Rn satisfying the following properties�

d�x� y� �� �� for all x� y � Rn

d�x� y� � �� i� x � y

d�x� y� � �� i� x �� y

d�x� y� � d�y� x�� for all x� y � Rn

d�x� y� 	 d�y� z� �� d�x� z�� for all x� y� z � Rn�

Let d�x� y� be a metric on Rn and F be a nonempty subset of Rn� For each x in Rn�

let f�x� denote the minimum distance between x and F� viz��

f�x� � inffd�x� u� � u � Fg�

Show that

jf�x�� f�y�j �� d�x� y�

for all x� y in Rn� Thus f is nonexpansive�

��� Let

d��f� g� � maxfwijfi � gij � � �� i �� ng�

denote the distance between two vectors f � �f�� f�� � � � � fn� and g � �g�� g�� � � � � gn��

where w � �w�� w�� � � � � wn� � � is a given weight vector� A vector g is called isotonic

if gi �� gi��� � �� i � n� Given a vector f � the problem is to �nd an isotonic vector g

which minimizes d��f� g�� Such a g� called an optimal vector� is not unique in general�

Denote the minimum of d��f� g� over isotonic vectors g� for given f � by ��

De�ne the following quantities�

 � max
� wiwj

wi 	 wj
�fi � fj� � � �� i �� j �� n

�
�

g
i
� maxffj � �wj � � �� j �� ig� � �� i �� n�

gi � minffj 	 �wj � � �� j �� ng� � �� i �� n�

Show the following� �a� Duality� � � � �b� Optimality� g and g are optimal vec�

tors with g �
� g� Furthermore� an isotonic g is an optimal vector i� g �

� g �
� g�

�V� A� Ubhaya� �Isotone optimization� I� II�� Journal of Approximation Theory� �


������ ��&��� and ���&�����

��� Consider Exercise �
 with wi � � for all i and de�ne

d�f� g� � maxfjfi � gij � � �� i �� ng�
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hi � maxffj � � �� j �� ig� � �� i �� n�

hi � minffj � i �� j �� ng� � �� i �� n�

Show the following�

 � maxf�hi � fi� � � �� i �� ng � maxf�fi � hi� � � �� i �� ng

and

g
i
� hi � � gi � hi 	 �

Construct an O�n� algorithm for computing optimal vectors g and g�

��� Let d�f� g�� as de�ned in Exercise ��� denote the distance between two vectors f

and g� A vector g is called convex if it satis�es

gi�� � 
gi 	 gi�� �� �� � � i � n�

or more generally�

ai��gi�� � �ai�� 	 ai�gi 	 aigi�� �� �� � � i � n�

where ai� � �
� i � n� are given positive numbers� Given a vector f � the problem is

to �nd a convex vector g� called an optimal vector� which minimizes d�f� g�� Let �

denote the minimum of d�f� g� over convex vectors g� for given f �

The greatest convex minorant h � �h�� h�� � � � � hn� of f is the largest convex vector

�i� e� satisfying the above condition� which does not exceed f � �See Exercise ���� Show

the following� � � ���
�d�f� h� and g � h 	 e� is the maximal optimal vector� i� e��

for all optimal vectors g it is true that g �
� g� Construct an O�n� algorithm for

computing h and then g� �V� A� Ubhaya� �An O�n� algorithm for discrete n�point

convex approximation with applications to continuous case�� Journal of Mathematical

Analysis and Applications� �
 ������� ���&����

��� In connection with Exercise � consider the following LP�

minimize
Pn

i�� xi
subject to �xi�� 	 
xi � xi�� �� �fi�� 	 
fi � fi��� � � i � n

xi �� �� � �� i �� n�

Show that the LP has a unique optimal solution x� and the quantities de�ned in

Exercise � for the �rst convexity constraint are given by

� � ���
�maxfx�i � � �� i �� ng�

gi � �� x�i 	 fi� � �� i �� n�

Devise a special pivoting strategy in conjunction with the Dual Simplex Algorithm of

linear programming to solve the above LP in O�n� computing time� �V� A� Ubhaya�
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�Linear time algorithms for convex and monotone approximation�� Computers and

Mathematics with Applications� An International Journal� � ������� ���&����

�	� A vector g � �g�� g�� � � � � gn� is called quasiconvex if

gj �� maxfgp� gqg�

for all j with p �� j �� q and for all � �� p �� q �� n� Show that g is quasiconvex i� there

exists � �� r �� n such that gi �� gi�� for � �� i � r and gi �� gi�� for r �� i � n� Show

that the set of all quasiconvex vectors is a closed nonconvex cone� but the set of all

isotonic or convex vectors is a closed convex cone�

Let d�f� g� be as de�ned in Exercise ��� Given a vector f � consider the problem

of �nding a quasiconvex vector g� called an optimal vector� which minimizes d�f� g��

Show that there exist two optimal vectors g and g with g �� g so that any quasiconvex

vector g with g �
� g �

� g is also an optimal vector� Furthermore� g is the maximal

optimal vector� i� e�� for all optimal vectors g it is true that g �� g� Construct an O�n�

algorithm to compute g and g� �V� A� Ubhaya� �Quasi�convex optimization�� Journal

of Mathematical Analysis and Applications� ��� ������� ��&���

�
� Exercise �� to �� involved �nding an isotonic� convex or quasiconvex vector g

minimizing d�f� g� given the vector f � Such an optimal vector g is not unique in

general� For each f it is of interest to select an optimal vector f � �in each of three

cases� so that f � is least sensitive to perturbations in f � Speci�cally� the following two

conditions may be imposed on the selection f � for f �

�i� d�f �� h�� �� C d�f� h� holds for all vectors f � h for some least number C� This

makes the mapping T de�ned by T �f� � f � Lipschitzian with constant C�

�ii� The selection f � is such that the number C is smallest among all selections of

optimal vectors for f � This makes T optimal�

Thus a mapping T satisfying �i� and �ii� may be called an optimal Lipschitzian

selection operator�

Show that optimal Lipschitzian selections are possible for the three problems as

shown below� Here g and g are as de�ned in Exercises ��� � and ���

�a� Isotonic problem� T �f� � f � � ���
��g 	 g� and C � ��

�b� Convex problem� T �f� � f � � g and C � 
�

�c� Quasiconvex problem� T �f� � f � � g and C � 
�

�V� A� Ubhaya� �Lipschitz condition on minimum norm problems on bounded

functions�� Journal of Approximation Theory� � ������� 
��&
��� also �Optimal Lip�

schitzian selection operator in quasi�convex optimization�� Journal of Mathematical

Analysis and Applications� to appear��

��� Prove that the functions logx and xlogx are respectively concave and convex on

the interval � � x �
� Using this� eastablish the following inequality� if x � �� y � ��
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both x� y � R�� then

log
x	 y



�
�

xlogx	 ylogy

x	 y
�
� log

x� 	 y�

x	 y
�

��� �i� Let �x�� hi�x�� i � � to m be continuously di�erentiable real valued functions

de�ned over Rn� Consider the nonlinear program�

minimize �x�

subject to hi�x� � �� i � � to m�

Prove that if �x is a feasible solution to this nonlinear program which is a local minimum

for this NLP� then the set of vectors fr��x��rhi��x�� i � � to mg must be a linearly

dependent set�

�ii� Consider the following NLP

minimize �x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t

where �x�� hi�x�� gp�x� are all continuously di�erentiable real valued functions de�ned

over Rn� Let x be a feasible solution to this NLP� De�ne P�x� � fp � p � � to t� gp�x�

� �g� If x is a local minimum for this NLP� prove that the set of vectors

fr�x�g � frhi�x� � i � � to mg � frgp�x� � p � P�x�g

must be a linearly dependent set� In addition� prove that there must exist a linear

dependence relation for this set of vectors of the form

�	r�x��
mX
i��

	irhi�x��
X

p�P�x�

�pgp�x� � �

where ��	� 	i for i � � to m� �p to p � P�x�� �� � and ��	� �p � p � P�x�� �� ��

���� Consider the following general QP

minimize Q�x� � cx	 ���
�xTDx

subject to Ax �
� b

x �
� ��

De�ne the following�

K � Set of feasible solutions of this problem�

L � Set of all local minima for this problem�

G � Set of all global minima for this problem�
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If K is bounded� prove that each of the sets L and G� is a union of a �nite number of

convex polyhedra� Is this result also true when K is not bounded!

���� Maximum Area Hexagon of Diameter One� A problem which has long

intrigued mathematicians if �nding the maximum area convex polygon in R� with an

even number of sides� and an upper bound on its diameter� The diameter of a convex

polygon is de�ned to be the maximum distance between any pair of points in it� When

the number of sides is odd� the regular polygon has the maximum area� but this may

not be true when the number of sides is even�

Consider the special case of this problem� of �nding the maximum area hexagon

of diameter one� Clearly� without any loss of generality� one can assume that two of

the vertices of the hexagon are ��� �� and ��� x��� and that the other vertices have

coordinates and positions as entered in the following �gure�

(0,    )

(    ,    )

(    ,    )

(    ,    )

(    ,    )

(0,0)

x
1

x
6

x
7

x
5

x
4

x
3

x
2

x
8

x
9

Figure ��

where x�� x�� x
� x are all �� �� Formulate the problem of �nding the maximum

area hexagon of diameter one� as a nonlinear program in terms of the variables x�
to x�� Check whether your model is a convex or nonconvex NLP� Write down the

necessary optimality conditions for your problem� Solve it on a computer using one of

the algorithms discussed in this text�
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���� Let gi�x� be a di�erentiable convex function de�ned on R
n for i � � to m� Let

x be a feasible solution of the system

gi�x� �� �� i � � to m

and let J�x� � fi � gi�x� � �g� Prove that the system� gi�x� � �� i � � to m� has a

feasible solution i� the objective value in the following LP� in which the variables are

�� d � �d�� � � � � dn�
T � is unbounded above�

minimize �

subject to rgi�x�d	 � �
� �� i � J�x��

���� Let gi�x� be a di�erentiable convex function de�ned on R
n for i � � to m� Let

x be a feasible solution of the system

gi�x� �� �� i � � to m�

Prove that the system� gi�x� � �� i � � to m� has a feasible solution� i� the following

system has no feasible solution � � ���� � � � � �m��

mX
i��

�irgi�x� � �

� � ��

���� Let A�m � n�� B�m � p�� a�� � n�� b�� � p� be given matrices� Prove that

exactly one of the following two systems �I�� �II� has a feasible solution� and the other

is infeasible�
�I�

Ax	 By � �

ax	 by � �

x �
� �

�II�

�A �
� a

�B � b

���� Let A�m� n�� B�m� p�� a��� n�� b��� p� be given matrices where b is in the

linear hull of the row vectors of B� Prove that exactly one of the following systems �I��

�II� has a feasible solution� and the other is infeasible�

�I�

Ax	 By � �

ax	 by �
� �

x � �

�II�

�A � a

�B � b
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��	� Consider the following NLP involving the vectors of decision variables x � Rn� �

and y � Rn�

minimize h�x� y� � �x� 	 cy

subject to g�x� 	 ay � b� �m� constraints�

Bx	Dy � b� �m� constraints�

l� �� x �� u�

l� �� y �� u�

where �x�� g�x� are continuously di�erentiable functions� Given x � Rn� � y � Rn�

satisfying the bound constraints in the NLP� de�ne the following LP� which comes from

a linearization of the NLP around �x� y��

minimize r�x�d	 cy

subject to rg�x�d	 Ay � b� � g�x�

Bd	Dy � b� �Bx

maxfl�j � xj � sjg �� dj �� minfu�j � xj � sjg� j � � to n�

l� �� y �� u�

where d � x� x� s � �sj� � Rn� � s � � is a vector of small positive numbers used to

bound d in the LP to keep the linearization reasonably accurate� Prove the following

i� If �x� y� is feasible to the NLP� �d� y� � ��� y� is feasible to the above LP for any

s � ��

ii� If the constraint matrix of the LP has full row rank� and �x� y� is a feasible solution

of the NLP� then ��� y� is an optimum solution of the above LP i� �x� y� is a KKT

point for the NLP�

iii� Let �x� y� be a feasible solution for the NLP� and suppose ��� y� is not an opti�

mum solution for the above LP� If �d	� y	� is an optimum solution for the LP� then

r�x�d	 	 c�y	 � y� � �� that is� �d	� y	 � y� is a descent direction for the NLP

at the point �x� y�� �See F� Palacios�Gomez� L� Lasdon and M� Engquist� �Non�

linear optimization by successive linear programming�� Management Science� 
��

�� �October ���
� ����&��
���

��
� Consider the following NLP

minimize Q�x� � cx	 �
�x

TDx

subject to kxk �� �

where D is a PD symmetric matrix of order n and � � �� Write down the KKT opti�

mality conditions for this problem� Prove that the optimum solution of this problem is

x��� � ��D 	 �l���cT for the unique � �
� � such that kx���k � �� unless kx���k �� ��

in which case� x��� is the optimum solution�
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���� Let f�x� � f��x�� � � � � fn�x��
T where each fj�x� is a continuous function de�ned

ofer Rn� Let K be a closed convex cone in Rn� De�ne the polar cone of K to be

K� � fy � y � Rn� yTx �
� � for all x � Kg� �For example� if K is the nonnegative

orthant� K� is tha same� Let J � f�� � � � � ng� If K is the orthant fx � x � �xj� �

Rn� xj �� � for j �� J� xj �� � for j � Jg� then K� is again K itself��

The generalized complementary problem corresponding to f�x� and K is to �nd

x satisfying

x � K� f�x� � K�� xT f�x� � � �����

using the hypothesis that K is a closed convex cone� prove that the generalized com�

plementarity problem ����� is equivalent to the variational inequality problem� �nd

x� � K satisfying

�x� x��T f�x�� �� � for all x � K ���
�

�see Karamardian �������

���� Let K� K�� f�x� be de�ned as in the previous Exercise ���� For any x � Rn

de�ne PK�x� to be the projection of x into K �i� e�� the nearest point in K to x� in

terms of the usual Euclidean distance�� Prove that a solution x� � K to the variational

inequality problem ���
�� can be characterized by the relation

x� � PK�x
� � �f�x���

where � is a positive constant� Using this� show that the generalized complementarity

problem ����� can be formulated as the �xed point problem of �nding x � K satisfying

x � g�x� �����

where g�x� � �PK�x� �f�x�� 	 ��� ��x� with a constant � � � and � � � �
� �� Here

� is known as the relaxation factor used after the projection�

Study the application of the successive substitution method for solving ������

This method will begin with a given x	 � K� and generate the sequence of points

fxr � r � �� �� � � �g using the iteration� xr�� � g�xr�� The iterative methods discussed

in Sections ���� ��� ��� are special cases of this general approach� Study the con�

vergence properties of the sequence of points generated under this method �M� Aslam

Noor� and K� Inayat Noor� �Iterative methods for variational inequalities and nonlinear

programming�� Operations Research Verf�� �� ������ ��&����

���� Let K � Rn be convex and let f�x� � �f��x�� � � � � fn�x��
T � where each fi�x� is a

continuous real valued function de�ned over K� De�ne a point x � K to be a critical

point for the pair �f�K� if y � x minimizes �f�x��T y over y � K� Let    �f�K� denote

the set of all critical points for the pair �f�K��

Let ����f�K� denote the set of all points x � K such that y � x minimizes ky �

x	 f�x�k over y � K� Prove that ����f�K� �    �f�K��



�� Exercises 	��

Let �x� be a real valued continuously di�erentiable function de�ned over K�

Consider the NLP
minimize �x�

over x � K�

Prove that every stationary point for this NLP is a critical point for the pair �r�x��K��

If K � Rn
� � fx � x � Rn� x �

� �g� prove that the problem of �nding a critical point

for the pair �f�Rn
�� is equivalent to the nonlinear complementarity problem �NLCP��

�nd x � Rn satisfying

x �
� �� f�x� �� �� xT f�x� � ��

Let d � Rn� d � � be a given vector� Let D��� � fx � x � Rn� x �
� �� and dTx �

� �g�

for each � �
� �� If K � D��� for some � �

� �� prove that x � D��� is a critical point

for the pair �f�D����� i� there is a w � Rn
� and z	 �� � such that�

f�x� � w � dz	� x
Tw � �

z	��� dTx� � ��

Also� prove that if x is a critical point of �f�D���� and dTx � �� then x is a critical

point of �f�Rn
��� Conversely if x �    �f�R

n
�� and dTx �

� �� then x �    �f�D�����

Consider the case where K is nonempty� compact and convex� In this case� for

each x � K� de�ne h�x� to be the y that minimizes ky � x	 f�x�k over y � K� Using

h�x� and Brower�s �xed point theorem show that �f�K� has a critical point�

�B� C� Eaves ���
���

���� Let f�x� � �f��x�� � � � � fn�x��
T where each fi�x� is a continuous real valued

function de�ned over Rn� Consider the NLCP� �nd x satisfying

x �
� �� f�x� �� �� xT f�x� � ��

For each x �
� �� de�ne h�x� to be the y that minimizes ky � x	 f�x�k over y �� �� If

h�x� � �hi�x��� show that

hi�x� �

�
�� if fi�x�� xi �� �
xi � fi�x�� if fi�x�� xi �� �

Prove that the following conditions are equivalent

i� x solves the NLCP given above�

ii� x �� � and h�x� � x�

iii� x �� � and x �    �f�Rn
��

where    �f�Rn
�� is de�ned in the previous Exercise ����

Suppose there is a compact convex set S � Rn such that for each x � Rn
� n S�

there is a y � S satisfying �y � x�T f�x� � �� Under this condition� prove that every

�xed point of h�x� lies in the set S�

�R� Saigal and C� Simon ������� B� C� Eaves ���
���



	�� Appendix �

���� �Research Problem�� In Section ������ subsection �� we described a special

direct procedure for obtaining a true optimum solution for an LP� from a given near

optimum solution for it� Consider the QP ������� Assuming that D is PSD� and that

a near optimum feasible solution� x� is given for it� develop a special direct procedure

to obtain a true optimum solution for the QP ������� from x�

���� An economic model leads to the following optimization problem� The decision

variables in this problem are x � Rn� y � Rn and z � Rp� The problem is

minimize cx	 dy 	 az

subject to A�x	A�y 	 A�z � b

x� y� z �� �

and xT y � �

where A�� A�� A� are given matrices of order m� n� m� n� m� p respectively� and c�

d� a� b are given vectors of appropriate dimensions� Formulate this as a mixed integer

linear programming problem�

���� Let x � R�� De�ne F�x� � fx� 	 �x� � �x � 
g� Compute a Kakutani �xed

point of F�x� using the algorithm discussed in Section 
�����
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